Eu-Europium

Donika Morina 30.11.2020

https://en.wikipedia.org/wiki/Europium#/media/File:Europium.jpg

Content

ELEMENT

CHEMISTRY and COMPOUNDS

SPECIFIC FUNCTIONALITIES/APPLICATIONS

Element

Discovery and origin of the name

- The name is derived from the continent of Europe.
- □ Discovered by a French chemist, Eugène-Antole Demarçay in 1896.
- Demarçay suspected that samarium which was recently discovered was contamined with another element. He identified spectroscopic lines in the samarium spectrum that belonged to the element europium.
- Demarçay was able to produce pure europium in 1901.

Abundancy and production

- ☐ Europium is the rarest element of the rare earth metals.
- □ The Rare Earth Metals are not actually very rare. They were discovered late and separating them was hard.
- Abundancy in Earth's crust 1-2.1 ppm.
- World reserves: 14 *10¹¹ kg.
- Most commonly found in bastnasite and monazite ores.
- ☐ Main mining areas of europium are China and USA.
- ☐ Reserves of europium are estimated to be around 150.000 tonnes and world production of the pure metal is around 100 tonnes a year.

Special features...

☐ Has two common oxidation states. +II oxidation state.

☐ Has a bright shiny surface but gets oxidized quickly when in contact with air.

 Europium complexes hold great potential as red-emitting and near-infrared emitting materials.

Chemistry and Compounds

1 H																	2 He
3 Li	4 Be											5 B	6 C	7 N	80	9 F	10 Ne
11 Na	12 Mg											13 Al	14 Si	15 P	16 S	17 CI	18 Ar
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
55 Cs	56 Ba	57 La	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr	88 Ra	89 Ac	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113 Nh	114 Fl	115 Mc	116 Lv	117 Ts	118 Og
			58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu	
			90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr	

Electron configuration, oxidation states

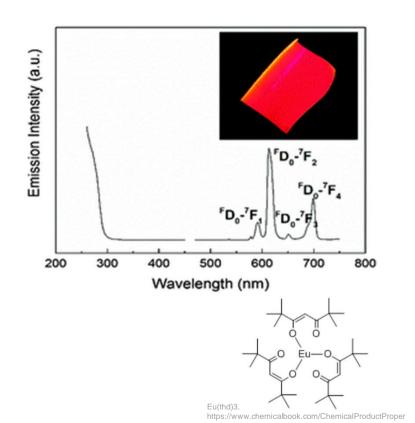
→ III and +II oxidation states are most common.

□ 4f subshells stabilize the ion making the oxidation state+II possible for Europium.

Size and an examples of important compounds, their properties and applications

☐ Metal radius is 208.4 pm and ionic radius is about 95 nm.

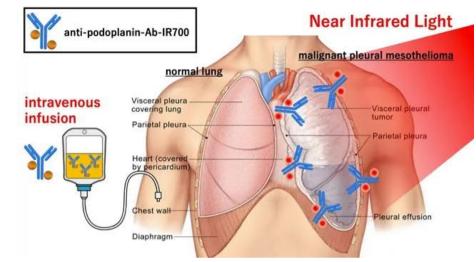
- ☐ It forms a cubic, body centered crystal structure.
- □ Europium oxide (Eu2O3) is a common phosphor used in TV or mercury discharche lamps.
 - → has an oxidation of +III and emits red light.



Specific functionalities

Flexible inorganic-organic thin film phosphors

- Inorganic-organic europium-based hybrid materials have good luminescent properties.
- ☐ Eu-hybrid thin-film phosphors grown by ALD/MLD by Eu(thd)3 and 3,5-pyridinedicarboxylic acid as precursors could be exciting new phosphor materials in many applications.
 - → flexible films or nanostructured films where thin coating needed.
- ☐ Emission intensity peak at about 615 nm.


Near-infrared emitting phosphor

- Discovery of broadband-emitting NIR light sources is a necessary and urgent requirement.
 - → broad full-width at half maximum (FWHM)
- □ Eu2+-activated phosphors normally possess high efficiency and have been applied in the field of commercial white LEDs.
- □ Ca3Sc2Si3O12:Eu2+ achieves a peak beyond 700 nm but can not be pumped by blue light.

 ☐ K3LuSi2O7:Eu2+ gives a broad emission band centered at 740 nm by a 460 nm blue light excitation.

□ Eu2+ phosphors can be used in night-vision technologies, and other fields such as medical and food industries.

https://www.technologynetworks.com/cancer-research/news/using-near-infrared-light-therapy-to-manage-malignant-lung-cancer-336373

https://www.autoevolution.com/news/how-night-vision-works-6891.html

References

Comission on Isotopic Abundances and Atomic Weights (CIAAW), International Union of Pure and Applied Chemistry (IUPAC). 2007-2015. Available at: http://www.ciaaw.org/europium.htm.

Giedraityte Z., Sunberg P., Karppinen, M., 2015. Flexible inorganic-organic thin film phosphors by ALD/MLD. J.Mater.Chem. 3, 12316. DOI: 10.1039/c5tc03201f.

Granta EduPack 2020. Europium Datasheet.

Jefferson lab, U.S. Department of Energy. 2020. The Element Europium. Available at: https://education.jlab.org/itselemental/ele063.html

Lenntech. 2020. Europium-Eu. Available at: https://www.lenntech.com/periodic/elements/eu.htm.

Life Science Staff. 2013. Facts About Europium. Available at: https://www.livescience.com/38186-europium.html.

PubChem. 2020. Europium. Available at: https://pubchem.ncbi.nlm.nih.gov/element/Europium.

Qiao J., Zhou, G., Zhou Y., Zhang Q., XIa Z., 2019. Divalent europium-doped near-infrared-emitting phosphor for light-emitting diodes. Nature Communications 10:5267. Doi: | https://doi.org/10.1038/s41467-019-13293-0.

WebElements: THE periodic table on the WWW. 2020. Europium: Properties of free atoms. Available at: https://www.webelements.com/europium/atoms.html.

Thank you!

