Uranium

Discovery

- ♦ Discovered in 1789 by Martin Heinrich Klaproth
- ♦ Named after planet Uranus
- ♦ Radioactive properties discovered in 1896 by Henri Becquerel
- ♦ Constitutes 2-4 ppm of Earth's crust
- ♦ In 2019, production amount was 54 752 tons of pure Uranium
- ♦ Kazakhstan produces the highest amount with 22 808 tons
- ♦ Australia has the largest resources with almost 2 millions of tons of Uranium on its soil

Chemistry of Uranium

- ♦ Atomic number is 92
- ♦ Atomic weight 238.03 u
- ♦ Actinide which belongs to the period 7
- ◆ Electron configuration [Rn] 5f³6d¹7s²
- Pure uranium is coloured silvery-white
- ♦ Uranium metal has very high density (70% more dense than lead)
- \diamond Oxidation states: +1, +2, +3, +4, +5 and +6
- ♦ Melting point 1133 °C
- Atomic radius 240 pm

Isotopes

- ♦ Uranium has three isotopes present in nature: ²³⁸U, ²³⁵U and ²³⁴U
- ♦ The most abundant isotope is ²³⁸U (99.28 %)
- Artificially possible to produce other isotopes
- ♦ All of them are radioactive but only ²³⁵U is fissionable in nature
- ♦ When ²³⁸U bombarded with neutrons, ²³⁹Pu is generated

Compounds

- \diamond The most common uranium oxide forms are U_3O_8 and UO_2
- ♦ Uraninite ore consists mostly of UO₂
- ♦ U₃O₈ is the most stable form of uranium
- ♦ UO₂ slowly converts to U₃O₈ at ambient temperatures
- Yellow cake is a uranium oxide concentrate produced from uranium ores
 - ♦ Consists mostly of U₃O₈

Uranium dioxide

Triuranium octoxide

Yellow cake (urania)

Compounds

- ♦ UF₆ is used in uranium enrichment process
- \bullet UF₄ is an intermediate between UF₆ and uranium oxides
- ♦ UF₄ can also be used in molten salt reactors that use molten fluoride salts as coolant and/or fuel

Uranium hexafluoride

Uranium tetrafluoride

Uranium processing

Compounds

- ♦ UH₃ is black or dark gray powder
 - ♦ Forms when uranium is heated to 250 °C in a vacuum followed by introduction of H₂ gas
 - ♦ Very reactive
 - Used as a starting material in many reactions
- Other compounds: e.g. nitrides, chlorides, bromides, organometals, complexes

Reagent	Reaction temperature (°C)	Product
$\overline{\mathrm{O}_2}$	ignites at room temperature	U_3O_8
$\overline{\text{H}_2\text{O}}$	350	UO_2
H_2S	400-500	US_2^-
$\overline{N_2}$	250	U_2N_3
$\overline{\mathrm{NH}_{3}}$	250	U_2N_3
PH_3	400	UP
Cl_2	250	UCl_4
CCl ₄	250	UCl ₄
	possibility of explosion at 25°C	•
HC1	250–300	UCl_3
HF	200-400	UF_4
Br_2	300-350	UBr_4
HBr	300	UBr_3
CO_2	300	UO_2

Applications

- ♦ Energy production from U-235
- ♦ Breeder reactor
- ♦ Military use
 - ♦ Nuclear weapons and submarines
- Ammunition and armour from depleted uranium

Efficient Removal and Recovery of Uranium by a Layered Organic–Inorganic Hybrid Thiostannate

- ♦ Uranium is one of the most radioactive elements in nuclear wastes, occurring in the form of soluble UO₂²⁺ (uranyl)
- ♦ UO₂²⁺ can be removed from nuclear waste solutions with chalcogenide (Me₂NH₂)_{1.33}(Me₃NH)_{0.67}Sn₃S₇·1.25H₂O (FJSM-SnS)
- ♦ FJSM-SNs is highly selective and stabile in pH of 2.1 - 11

Half-metallicity in uranium intermetallics

- ♦ Intermetallic compounds containing uranium has been studied due to reactivity of 5f electrons
- ♦ Possibility to push properties of 5f electrons in to one or other direction by alloying uranium with other metals
- Phenomenas like low-symmetry crystal structures, conventional superconductivity, ferromagnetic superconductivity etc.
- Recent studies suggest that UFe and UCo compounds act as half-metals

Sachs, M., Karttunen, A. J. & Kraus, F. 2019. Half-metallicity in uranium intermetallics: Crystal structure prediction of a high-pressure phase of UCo. Journal of Physics Condensed Matter, vol. 31, no. 2, 025501. https://doi.org/10.1088/1361-648X/aaeeca

Extraction of uranium via laser

- Producing gram quantities of uranium is challenging due to extreme thermal requirements
- ♦ In novel computational thermodynamic approach, uranium was extracted from uranium nitride at temperature exceeding 2500 K
- ♦ By irradiating uranium nitride with controlled laser under several gaseous conditions including high-vacuum resulted in yield up to 96 % of uranium metal
- Rapid cooling needed as well

Childs, B. C., Martin, A. A., Perron, A., Moore, E. E., Idell, Y., Heo, T. W., ... & Landa, A. (2020). Formation of high purity uranium via laser induced thermal decomposition of uranium nitride. *Materials & Design*, 108706.

References

- ♦ Morss, Lester. Encyclopædia Britannica. Uranium. 2020. https://www.britannica.com/science/uranium
- World Nuclear Association. World Uranium Mining Production. 2020. https://www.world-nuclear.org/information-library/nuclear-fuel-cycle/mining-of-uranium/world-uranium-mining-production.aspx
- World Nuclear Association. What is Uranium? How does it work? 2020. https://www.world-nuclear.org/information-library/nuclear-fuel-cycle/introduction/what-is-uranium-how-does-it-work.aspx
- Los Alamos National Laboratory. Uranium. 2013 https://periodic.lanl.gov/92.shtml
- World Nuclear Association. How is uranium made into nuclear fuel? 2020. https://www.world-nuclear.org/nuclear-essentials/how-is-uranium-made-into-nuclear-fuel.aspx
- * World Nuclear Association. Molten Salt Reactors. 2020. https://www.world-nuclear.org/information-library/current-and-future-generation/molten-salt-reactors.aspx
- * The Depleted UF6 Management Program Information Network. Chemical Forms of Uranium. 2020. https://web.evs.anl.gov/uranium/guide/ucompound/forms/index.cfm
- & Greenwood, N. N. & Earnshaw, A. 1998. *Chemistry of the elements*. 2nd ed. Oxford; Boston: Butterworth-Heinemann.
- ♦ Morss, L. R. et al. (2011) The Chemistry of the Actinide and Transactinide Elements (Set Vol.1-6) Volumes 1-6. 4th ed. Dordrecht: Springer Netherlands.
- * Royal Society of Chemistry. Uranium. 2020. https://www.rsc.org/periodic-table/element/92/uranium
- Mei-Ling, F., Debajit, S., Xing-Hui, Q., Ke-Zhao, D., Xiao-Ying, H. & Mercouri, G. K. 2016. Efficient Removal and Recovery of Uranium by a Layered Organic-Inorganic Hybrid Thiostannate. Journal of the American Chemical Society 138 (38). https://pubs.acs.org/doi/abs/10.1021/jacs.6b07351
- Sachs, M., Karttunen, A. J. & Kraus, F. 2019. Half-metallicity in uranium intermetallics: Crystal structure prediction of a high-pressure phase of UCo. Journal of Physics Condensed Matter, vol. 31, no. 2, 025501. https://doi.org/10.1088/1361-648X/aaeeca
- ♦ Childs, B. C., Martin, A. A., Perron, A., Moore, E. E., Idell, Y., Heo, T. W., ... & Landa, A. (2020). Formation of high purity uranium via laser induced thermal decomposition of uranium nitride. Materials & Design, 108706.