
1/ 40

Gene and SNP set enrichment analysis

Harri Lähdesmäki
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Motivation 1

I Consider e.g. a gene expression analysis between two groups:
I One of the most common use of gene expression studies (e.g. RNA-seq)
I Determine which genes are differentially expressed between two classes, say healthy

and diseased groups

I At the end, statistical analysis of the experimental data gives:
I A list of differentially expressed genes between the two classes
I This list can be empty, short (tens), long (hundreds), or very long (thousands)

I Nobody knows/remembers the function of all genes
I E.g. human genome contains around 20,000 genes
I Interpreting/Understanding such gene lists is challenging

→ Interpret the resulting gene list(s) collectively (not gene-by-gene) with the help of
computational tools
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Motivation 2

I If only a few replicate measurements exist, then gene-wise differential expression
tests gives results that

I Have low statistical power and, thus, possibly contain only a few genes
I May be unreliable

I Interpreting the resulting gene set collectively can help making the correct
biological conclusion

I Can utilize results for all genes: ranking of all genes vs. detecting statistically
significant genes

I Many studies often switch back and forth between gene level and gene set level
analysis/interpretation, depending on their purpose:

I For choosing a drug target we need gene level information
I For understanding global dysregulation in complex diseases, gene sets can be more

helpful
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Interpreting the list of differentially expressed genes

I A typical goal: find the biological processes that are affected between the study
groups, e.g., between healthy and diseased samples

I Address this question by assessing the genes collectively that are differentially
expressed between the groups

I Examples of biological processes:
I Protein translation
I Cell death
I Signal transduction
I Response to stress
I . . .

I Biological processes can be described at multiple levels
I Higher-level/more general process: multitude of genes
I Lower-level/more detailed process: a few specific genes
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Assignment of genes to ontologies

I Gene Ontology (GO): The GO project is a collaborative, international effort to
address the need for consistent and systematic functional annotation of gene
products: http://www.geneontology.org/

http://www.geneontology.org/
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Assignment of genes to ontologies

Figure: http://www.geneontology.org/

http://www.geneontology.org/
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Assignment of genes to ontologies

I GO offers three separate ontologies (term hierarchies):
I Biological process: describes a biological objective to which the gene or gene product

contributes
I E.g. cell growth, signal transduction, protein translation

I Molecular function: refers to the biochemical activity of gene products, without
considering in which biological context the corresponding reaction takes place

I E.g. enzyme, transporter, ligand

I Cellular component: specifies in which compartment or location of a cell the active
gene product can be found

I E.g. ribosome, nuclear membrane, Golgi apparatus
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Ontology structure

I The terms in each ontology are linked by two relationships, is a and part of
I is a is a simple class-subclass relationship, where A is a B means that A is a subclass

of B, e.g.
I Example: nuclear chromosome is a chromosome

I part of: C part of D means that whenever C is present, it is always a part of D, but
C does not always have to be present

I Example: nucleus part of cell; nuclei are always part of a cell, but not all cells have
nuclei

I Note: a term can have multiple parent terms

→ GO does not define a tree structure but rather a directed acyclic graph
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Ontology structure example

I A set of terms under the biological process node pigmentation

Figure from http://www.geneontology.org/

http://www.geneontology.org/
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Constructing gene categories from GO terms

I The set of genes S associated with any particular GO term could be considered as
a gene category or gene set of interest for subsequent analysis

I For example, we might ask if the genes associated with the Molecular Function
term “muscle alpha-actinin binding” are affected by a treatment used in our study

I That is, are the genes in this category (i.e., those annotated with term muscle
alpha-actinin binding) found in the list of differentially expressed genes more often
that would be expected by chance
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Other annotation resources

I MSigDB (Molecular signatures database)
I Sets based on curated pathway information from 9 databases
I Sets based on DNA motif occurrence
I Sets based on computation analysis/predictions (expression similarity etc.)
I Sets based on GO
I Sets based on chromosomal location

I PANTHER database (mainly signaling pathways)

I KEGG and KEGG pathways
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Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways

I “KEGG PATHWAY is a collection of manually drawn pathway maps representing
our knowledge on the molecular interaction and reaction networks for:”

I Metabolism
I Genetic Information Processing
I Environmental Information Processing
I Cellular Processes
I Organismal Systems
I Human Diseases
I Drug Development

I Directed or undirected networks/graphs
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Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways

Figure from http://www.genome.jp/kegg/

http://www.genome.jp/kegg/
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Enrichment of a gene set

I Assume we have obtained a list of genes G0 from statistical analysis of e.g.
RNA-seq data

I The gene list can contain genes that, based on our data, are statistically significantly
different between our two study groups, respond to a drug treatment, etc.

I In the following we call these genes to be differentially expressed

I Question: is a gene ontology term overrepresented among the genes in the gene
list?

I A gene ontology term corresponds to a set of genes S
I In other words, do the genes belonging to the gene set S occur in the list of

statistically significant genes G0 more often than would be expected by chance

I The most common setting for enrichment analysis
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Enrichment of a gene set: Cell adhesion molecules from KEGG

I An example: among cell-adhesion genes, differentially expressed genes between
stromal and epithelial cell in ovarian tumour samples are coloured as red
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Enrichment of a gene set

I Assume one is evaluating the enrichment significance for a gene category (e.g. a
biological process) S among differentially expressed genes G0

I G : all genes, |G | = N in total
I G0 differentially expressed genes, |G0| = n ≤ N (often n� N)
I S : a known set of m = |S | genes annotated with a biological process
I k: genes that are differentially expressed and belong to S , i.e., |G0 ∩ S | = k

I Null hypothesis H0 : Assume that our differentially expressed genes are
independent of the biological process

I Test statistic: the number of genes that overlap (intersect) S and G0, i.e. k
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Enrichment of a gene set

I Under the null, the probability of having overlap of exactly k genes, by chance,
can be computed from the hypergeometric distribution

P(overlap = k) =

(N−m
n−k

)(m
k

)(N
n

)
I Alternative hypothesis H1 : differentially expressed genes are not independent of

the biological process

I The probability of an overlap of at least k genes is

P(overlap ≥ k) =

min{n,m}∑
l=k

(N−m
n−l
)(m

l

)(N
n

)
I The above probability is the p-value for the above hypothesis testing
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Enrichment of a gene set: illustration

I An example
I 100 genes in total, N = 100
I 20 are differentially expressed, n = 20
I S contains 10 genes, m = 10
I 5 differentially expressed genes are in S , k = 5
I P(overlap = 5) = 0.0215
I P(overlap ≥ 5) =

∑10
i=5 P(overlap = i) = 0.0255
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Enrichment of a gene set: illustration 2

I Another example
I 20000 genes in total, N = 20000
I 500 are differentially expressed, n = 500
I S contains 100 genes, m = 100
I 10 differentially expressed genes are in S , k = 10
I P(overlap = 10) = 0.0001611
I P(overlap ≥ 10) =

∑100
i=10 P(overlap = i) = 0.00020185
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Enrichment of a gene set: Enrichment analysis in a mouse study

I Pathway-enrichment analysis of differentially expressed genes in transferred
Tet2-Tet3 DKO iNKT cells

Figure from (Tsagaratou et al., 2017)
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Enrichment of a gene set

I The above hypothesis testing corresponds to the Fisher’s exact test of association
I It is simple, accurate and can be applied in various contexts
I On the other hand, it requires setting a threshold for differential expression, and

assumes that observations for each gene are independent

I Several different computational methods have been proposed for enrichment
analysis
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Gene set enrichment analysis (GSEA)

I No-cutoff strategy: find enriched annotations (gene categories) without having to
specify a threshold for differentially expressed genes

I Reduces the ad-hoc threshold selection compared to a typical analysis
I Uses the whole information obtained from gene expression experiments

I Basic idea in gene set enrichment tests:
I Start from ranked list of all genes (from up-regulated to down-regulated) and

compute enrichment score for each gene set
I Estimate statistical significance (p-value) of an enrichment score by permuting

phenotype labels (subject-sampling) and recomputing differentially expressed genes

I Aim of GSEA: determine whether the members of S are randomly distributed
throughout a ranked list L or primarily found at the top or bottom of the list
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Gene set enrichment analysis (GSEA)

1. Rank genes according to differential expression, set a running-sum statistic to 0

2. Compute Enrichment Score (ES):
I Go down the list and increment a running-sum statistic if the gene belongs to set S
I Decrease the running-sum statistic a gene if not in S
I ES is the maximum deviation from 0 (a type of a Kolmogorov-Smirnov statistic)

3. Calculate empirical null distribution for ES:
I Permute phenotype labels R times
I Re-compute ES for each permutation: ES(1), . . . ,ES(R)

4. Compute empirical p-value from empirical null distribution by counting the
number of times the ES score is as large or even larger than for the observed data

p − value =
1

R

R∑
i=1

I (ES(i) ≥ ES)

5. Repeat the analysis for all sets S , adjust for multiple hypothesis testing
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Gene set enrichment analysis (GSEA)

that sets related to the phenotypic distinction will tend to show the
latter distribution.

There are three key elements of the GSEA method:

Step 1: Calculation of an Enrichment Score. We calculate an enrich-
ment score (ES) that reflects the degree to which a set S is
overrepresented at the extremes (top or bottom) of the entire
ranked list L. The score is calculated by walking down the list L,
increasing a running-sum statistic when we encounter a gene in S
and decreasing it when we encounter genes not in S. The magnitude
of the increment depends on the correlation of the gene with the
phenotype. The enrichment score is the maximum deviation from
zero encountered in the random walk; it corresponds to a weighted
Kolmogorov–Smirnov-like statistic (ref. 7 and Fig. 1B).

Step 2: Estimation of Significance Level of ES. We estimate the
statistical significance (nominal P value) of the ES by using an
empirical phenotype-based permutation test procedure that pre-
serves the complex correlation structure of the gene expression
data. Specifically, we permute the phenotype labels and recompute
the ES of the gene set for the permuted data, which generates a null
distribution for the ES. The empirical, nominal P value of the
observed ES is then calculated relative to this null distribution.
Importantly, the permutation of class labels preserves gene-gene
correlations and, thus, provides a more biologically reasonable
assessment of significance than would be obtained by permuting
genes.

Step 3: Adjustment for Multiple Hypothesis Testing. When an entire
database of gene sets is evaluated, we adjust the estimated signif-

icance level to account for multiple hypothesis testing. We first
normalize the ES for each gene set to account for the size of the set,
yielding a normalized enrichment score (NES). We then control the
proportion of false positives by calculating the false discovery rate
(FDR) (8, 9) corresponding to each NES. The FDR is the estimated
probability that a set with a given NES represents a false positive
finding; it is computed by comparing the tails of the observed and
null distributions for the NES.

The details of the implementation are described in the Appendix
(see also Supporting Text, which is published as supporting infor-
mation on the PNAS web site).

We note that the GSEA method differs in several important ways
from the preliminary version (see Supporting Text). In the original
implementation, the running-sum statistic used equal weights at
every step, which yielded high scores for sets clustered near the
middle of the ranked list (Fig. 2 and Table 1). These sets do not
represent biologically relevant correlation with the phenotype. We
addressed this issue by weighting the steps according to each gene’s
correlation with a phenotype. We noticed that the use of weighted
steps could cause the distribution of observed ES scores to be
asymmetric in cases where many more genes are correlated with
one of the two phenotypes. We therefore estimate the significance
levels by considering separately the positively and negatively scoring
gene sets (Appendix; see also Fig. 4, which is published as supporting
information on the PNAS web site).

Our preliminary implementation used a different approach,
familywise-error rate (FWER), to correct for multiple hypotheses
testing. The FWER is a conservative correction that seeks to ensure
that the list of reported results does not include even a single
false-positive gene set. This criterion turned out to be so conser-
vative that many applications yielded no statistically significant
results. Because our primary goal is to generate hypotheses, we
chose to use the FDR to focus on controlling the probability that
each reported result is a false positive.

Based on our statistical analysis and empirical evaluation, GSEA
shows broad applicability. It can detect subtle enrichment signals
and it preserves our original results in ref. 4, with the oxidative
phosphorylation pathway significantly enriched in the normal sam-
ples (P ! 0.008, FDR ! 0.04). This methodology has been imple-
mented in a software tool called GSEA-P.

Fig. 1. A GSEA overview illustrating the method. (A) An expression data set
sorted by correlation with phenotype, the corresponding heat map, and the
‘‘gene tags,’’ i.e., location of genes from a set S within the sorted list. (B) Plot
of the running sum for S in the data set, including the location of the maximum
enrichment score (ES) and the leading-edge subset.

Fig. 2. Original (4) enrichment score be-
havior. The distribution of three gene sets,
from the C2 functional collection, in the list
of genes in the male!female lymphoblas-
toid cell line example ranked by their cor-
relation with gender: S1, a set of chromo-
some X inactivation genes; S2, a pathway
describing vitamin c import into neurons;
S3, related to chemokine receptors ex-
pressed by T helper cells. Shown are plots of
the running sum for the three gene sets: S1
is significantly enriched in females as ex-
pected, S2 is randomly distributed and
scores poorly, and S3 is not enriched at the
top of the list but is nonrandom, so it scores
well. Arrows show the location of the maximum enrichment score and the point where the correlation (signal-to-noise ratio) crosses zero. Table 1 compares the
nominal P values for S1, S2, and S3 by using the original and new method. The new method reduces the significance of sets like S3.

Table 1. P value comparison of gene sets by using original and
new methods

Gene set
Original method
nominal P value

New method
nominal P value

S1: chrX inactive 0.007 "0.001
S2: vitcb pathway 0.51 0.38
S3: nkt pathway 0.023 0.54

15546 " www.pnas.org!cgi!doi!10.1073!pnas.0506580102 Subramanian et al.

Figure from (Subramanian et al., 2005)



28/ 40

Example: GSEA in lung cancer studies

I GSEA aim: provide a more robust way to compare independently derived gene
expression data sets

I Example: Two independent studies on lung cancer. Gene expression profiles from
lung cancer samples classified by clinical outcome (good vs. poor)

I Looking at individual genes, the two studies have little in common (12 genes
among top 100)

I However, there is large overlap between significantly enriched gene sets
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Example: GSEA in lung cancer studies

by experimental induction of a temperature-sensitive allele of p53
in a lung cancer cell line; (iii) an annotated collection of genes
induced by radiation, whose response is known to involve p53; (iv)
an annotated collection of genes induced by hypoxia, which is
known to act through a p53-mediated pathway distinct from the
response pathway to DNA damage; and (v) an annotated collection
of genes encoding heat shock-protein signaling pathways that
protect cells from death in response to various cellular stresses.

The complementary analysis (p53!"p53#) identifies one signif-
icant gene set: genes involved in the Ras signaling pathway.
Interestingly, two additional sets that fall just short of the signifi-
cance threshold contain genes involved in the Ngf and Igf1 signaling
pathways. To explore whether these three sets reflect a common
biological function, we examined the leading-edge subset for each
gene set (defined above). The leading-edge subsets consist of 16, 11,
and 13 genes, respectively, with each containing four genes encod-
ing products involved in the mitogen-activated protein kinase

(MAPK) signaling subpathway (MAP2K1, RAF1, ELK1, and
PIK3CA) (Fig. 3). This shared subset in the GSEA signal of the
Ras, Ngf, and Igf1 signaling pathways points to up-regulation of this
component of the MAPK pathway as a key distinction between the
p53! and p53# tumors. (We note that a full MAPK pathway
appears as the ninth set on the list.)

Acute Leukemias. We next sought to study acute lymphoid leukemia
(ALL) and acute myeloid leukemia (AML) by comparing gene
expression profiles that we had previously obtained from 24 ALL
patients and 24 AML patients (16).

We applied GSEA to the cytogenetic gene sets (C1), expecting
that chromosomal bands showing enrichment in one class would
likely represent regions of frequent cytogenetic alteration in one of
the two leukemias. The ALL"AML comparison yielded five gene
sets (Table 2), which could represent frequent amplification in ALL
or deletion in AML. Indeed, all five regions are readily interpreted
in terms of the current knowledge of leukemia.

The 5q31 band is consistent with the known cytogenetics of
AML. Chromosome 5q deletions are present in most AML pa-
tients, with the critical region having been localized to 5q31 (17).
The 17q23 band is a site of known genetic rearrangements in
myeloid malignancies (18). The 13q14 band, containing the RB
locus, is frequently deleted in AML but rarely in ALL (19). Finally,
the 6q21 band contains a site of common chromosomal fragility and
is commonly deleted in hematologic malignancies (20).

Interestingly, the remaining high scoring band is 14q32. This
band contains the Ig heavy chain locus, which includes "100 genes
expressed almost exclusively in the lymphoid lineage. The enrich-
ment of 14q32 in ALL thus reflects tissue-specific expression in the
lineage rather than a chromosomal abnormality.

The reciprocal analysis (AML"ALL) yielded no significantly
enriched bands, which likely reflects the relative infrequency of
deletions in ALL (21). The analyses with the cytogenetic gene sets
thus show that GSEA is able to identify chromosomal aberrations
common in particular cancer subtypes.

Comparing Two Studies of Lung Cancer. A goal of GSEA is to provide
a more robust way to compare independently derived gene expres-
sion data sets (possibly obtained with different platforms) and
obtain more consistent results than single gene analysis. To test
robustness, we reanalyzed data from two recent studies of lung
cancer reported by our own group in Boston (22) and another group
in Michigan (23). Our goal was not to evaluate the results reported
by the individual studies, but rather to examine whether common
features between the data sets can be more effectively revealed by
gene-set analysis rather than single-gene analysis.

Both studies determined gene-expression profiles in tumor sam-
ples from patients with lung adenocarcinomas (n $ 62 for Boston;
n $ 86 for Michigan) and provided clinical outcomes (classified
here as ‘‘good’’ or ‘‘poor’’ outcome). We found that no genes in
either study were strongly associated with outcome at a significance
level of 5% after correcting for multiple hypotheses testing.

From the perspective of individual genes, the data from the two
studies show little in common. A traditional approach is to compare

Table 2. Summary of GSEA results with FDR < 0.25

Gene set FDR

Data set: Lymphoblast cell lines
Enriched in males

chrY %0.001
chrYp11 %0.001
chrYq11 %0.001
Testis expressed genes 0.012

Enriched in females
X inactivation genes %0.001
Female reproductive tissue expressed genes 0.045

Data set: p53 status in NCl-60 cell lines
Enriched in p53 mutant

Ras signaling pathway 0.171
Enriched in p53 wild type

Hypoxia and p53 in the cardiovascular system %0.001
Stress induction of HSP regulation %0.001
p53 signaling pathway %0.001
p53 up-regulated genes 0.013
Radiation sensitivity genes 0.078

Data set: Acute leukemias
Enriched in ALL

chr6q21 0.011
chr5q31 0.046
chr13q14 0.057
chr14q32 0.082
chr17q23 0.071

Data set: Lung cancer outcome, Boston study
Enriched in poor outcome

Hypoxia and p53 in the cardiovascular system 0.050
Aminoacyl tRNA biosynthesis 0.144
Insulin upregulated genes 0.118
tRNA synthetases 0.157
Leucine deprivation down-regulated genes 0.144
Telomerase up-regulated genes 0.128
Glutamine deprivation down-regulated genes 0.146
Cell cycle checkpoint 0.216

Data set: Lung cancer outcome, Michigan study
Enriched in poor outcome

Glycolysis gluconeogenesis 0.006
vegf pathway 0.028
Insulin up-regulated genes 0.147
Insulin signalling 0.170
Telomerase up-regulated genes 0.188
Glutamate metabolism 0.200
Ceramide pathway 0.204
p53 signalling 0.179
tRNA synthetases 0.225
Breast cancer estrogen signalling 0.250
Aminoacyl tRNA biosynthesis 0.229

For detailed results, see Table 4, which is published as supporting informa-
tion on the PNAS web site.

Fig. 3. Leading edge overlap for p53 study. This plot shows the ras, ngf, and
igf1 gene sets correlated with P53! clustered by their leading-edge subsets
indicated in dark blue. A common subgroup of genes, apparent as a dark
vertical stripe, consists of MAP2K1, PIK3CA, ELK1, and RAF1 and represents a
subsection of the MAPK pathway.

15548 ! www.pnas.org"cgi"doi"10.1073"pnas.0506580102 Subramanian et al.

Figure from (Subramanian et al., 2005)
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Understanding disease associated genetics variants

I Lecture #3 described methods to detecting SNPs using high-throughput
sequencing technology

I Once genotyping has been done for a large cohort of individuals with and without
a condition, statistical genetics methods are used to identify SNPs that are
associated with the condition

I These are generally called as genome-wide association studies (GWAS), and will be
covered in other courses
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Understanding disease associated genetics variants

I An illustration of GWAS studies

Figure from http://genetics.thetech.org/ask-a-geneticist/how-gwas-works

http://genetics.thetech.org/ask-a-geneticist/how-gwas-works
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Understanding disease associated genetics variants

I Lets assume that we have successfully identified SNPs that are associated with a
condition/disease

I Disease-associated SNPs that overlap protein-coding genes:
I Can be studied further by analyzing individual proteins, experimentally or

computationally, to understand how the non-synonymous mutations (missense,
nonsense) affect the protein function

I Alternatively, computational methods can be used to assess whether
disease-associated loci as a group (i.e., all detected SNPs) are enriched in

I Biological pathways
I Genomic annotations in non-coding genome
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Understanding disease associated genetics variants

I A computational strategy proceeds as follows:
I Choose a distance threshold (e.g. 100kb)
I For a disease-associated SNP, associate to the disease those genes that are within

the distance threshold from the SNP (along the linear sequence)
I Repeat the previous step for all disease-associated SNPs
→ This will give you a set of disease-associated genes S

Enrichment quantification of SNPs and their proxies in 
genomic regions 

- E.g. overlap of trait specific SNPs in genomic regions of interest can 
yield profound insight into genomic data sets 

- Naive approach: randomize genomic regions  

- Causal SNPs generally unknown – the causal SNPs may equally 
well be the SNPs which are in LD

Genome

LD block

(Nousiainen K, Kanduri K, et al, in progress)

Genome

GWAS SNPs

Genic regions

Distance 
threshold

Disease-associated genes
An illustration of quantifying enrichment of GWAS SNPs at genic regions.
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Understanding disease associated genetics variants

I This gene set S can be interpreted as any gene ontology category and its
enrichment among differentially expressed genes can be analyzed using the same
methods that we just studied

I Alternatively, the set of disease-associated genes can be interpreted as a set of
differentially expressed genes G and its enrichment among gene ontologies can be
assessed using the Fisher’s exact test of association
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Understanding disease associated genetics variants

I Another computational strategy proceeds by randomizing SNPs
I Challenges in a straightforward (=uniform) randomization:

I Non-random clustering of functionally related genes
I SNPs have a greater likelihood to overlap long genes and regions of strong linkage

disequilibrium (LD)

I These biases can lead to false positive findings
I For instance, brain pathways typically containing large genes and thus they likely

appear to be overrepresented in GWAS loci
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Understanding disease associated genetics variants

I The SNPsnap tool samples randomly SNPs with similar genetic properties as a set
of query SNPs (i.e., the disease-associated SNPs)

I Random SNPs are matched based on
I Minor allele frequency
I Distance to nearest gene
I Number of nearby genes (gene density), and
I Number of SNPs in LD (“LD buddies”)
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Understanding disease associated genetics variants

I An illustration of SNPsnap tool

(Nousiainen K, Kanduri K, et al, in progress)

Genome

GWAS SNPs

Genomic regions
Ra

nd
om

iz
e 

R 
tim

es

…

An illustration of quantifying enrichment of GWAS SNPs at genic regions: SNPsnap randomization.
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Understanding disease associated genetics variants

I Empirical enrichment analysis for GWAS SNPs among genomic regions (=a gene
ontology set)

1. Count the overlap C of the original GWAS SNPs with the genomic regions
2. Construct an empirical null distribution:

I Randomize the GWAS SNPs R times using SNPsnap
I For each randomized SNP set, count the overlap with the genomic regions,

C (i), i ∈ {1, . . . ,R}
3. Compute empirical p-value from the empirical null distribution by counting the

number of times randomized SNP set has equal or larger overlap than the observed
overlap

p − value =
1

R

R∑
i=1

I (C (i) ≥ C )

4. Repeat the analysis for all genomic regions, adjust for multiple hypothesis testing
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