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Department of Computer Science
Aalto University

November 24, 2020



2/ 40

Contents

I Background & Motivation

I Single cell sequencing technologies

I Single cell sequencing data analysis: overview

I Single cell sequencing data analysis: emerging methods



3/ 40

Background & Motivation

I Most genomic profiling methods analyze cell populations

I We know that even cells of the same cell type can be different
I Genome: somatic mutations
I Transcriptome
I Epigenome
I . . .

I Recent technology development has made it possible to characterize individual cells at the
level of

I Transcriptome/RNA
I DNA
I Proteome
I DNA methylation
I Histone modifications
I Chromatin accessibility
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Background & Motivation

I Bulk sequencing vs. single-cell sequencing
Traditional v.s. Single-cell

Figure from https://scitechdaily.com/images/one-genome-from-many.jpg
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Background & Motivation

I Single cell analysis has many important applications in molecular biology, biomedicine, etc.

I For example, blood is a complex organ
I Molecular level profiling of whole blood sample provides average measurements across about

20 cell types present in blood
→ Single-cell technologies can extract information separately for different blood cell types

I Cancer research can greatly benefit from single cell technologies because
I Cancer can originate from a single cell
I Cancer progression can involve rare cell types that are difficult to quantify otherwise
I Tumour biopsies are heterogeneous, contain infiltrating cell types, etc.

I . . .
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DROP-seq

Figure from (Macosko et al, 2015)
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DROP-seq

Figure from (Macosko et al, 2015)
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DROP-seq

Figure from (Macosko et al, 2015)
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DROP-seq

I Paired-end sequencing reads the barcodes and the actual RNA fragment/gene

Figure from (Macosko et al, 2015)
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DROP-seq

I Analysis of the paired-end sequencing reads from DROP-seq distinguishes cells and UMIs

I Assign each read to the “closest” cell based on the cell barcode

Figure from (Macosko et al, 2015)
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DROP-seq

I (Figure caption from (Macosko et al, 2015))

Figure from (Macosko et al, 2015)
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scRNA-seq data analysis

I While single-cell RNA sequencing (scRNA-seq) is structurally similar with data from bulk
RNA-seq, scRNA-seq has distinct characters:

I Abundance of zeros (both biological and technical): only ∼20% of gene expression counts
are non-zero

I Increased variability
I Complex expression distributions

→ scRNA-seq requires specific analysis methods
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Unique molecular identifiers (UMI)

I Due to a very small amount of starting material, RNA library needs to be amplified with
PCR

I Many of the sequenced reads are multiple PCR-copies of the original transcripts

I The experimental protocol incorporates so-called unique molecular identifiers (UMI) for
each RNA fragment, which can be used to recover the counts of unique RNA molecules

I The DROP-seq protocol described above has 48 = 65536 different UMIs

→ Align the sequencing read corresponding to the RNA fragment (not the UMI) and then
count the unique UMIs for aligned sequencing reads
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Unique molecular identifiers (UMI)

I Align the sequencing read corresponding
to the RNA fragment (not the UMI) and
then count the unique UMIs for aligned
sequencing reads

I Because there are “only” 48 = 65536
different UMIs, some truly different RNA
fragments can have the same UMI by
chance and one of them would be removed
if UMI control was applied before
alignment

Figure from (Smith et al, 2017)
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scRNA-seq analysis to identify cell types

I Single-cell sequencing protocols and analysis methods are under active research and
development

I The standard practices and methods have not yet been established

I Lets illustrate how scRNA-seq data can be analyzed using Seurat tool, following a guided
tutorial from http://satijalab.org/seurat/, to identify cell types from whole blood sample

I Data is from peripheral blood mononuclear cells (PBMC)

→ Lots of different cell types

I scRNA-seq from 2700 single PBMC cells

I One of the goals is to identify cells types from the PBMC scRNA-seq data

http://satijalab.org/seurat/
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scRNA-seq analysis: cell and UMI identification

I Sequencing read data is grouped by cells using the cell barcode
I Transcript part of each read is aligned to the genome and unique UMIs are counted for

each gene in each cell
I Distributions of cell-specific count data: the number of genes and UMIs

Figure from http://satijalab.org/seurat/

http://satijalab.org/seurat/
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scRNA-seq analysis: normalization

I Recall normalization methods for bulk RNA-seq (e.g. RPKM)

I scRNA-seq data has more complex characteristics

Figure from (Vallejos et al, 2017)

I Seurat implements a standard normalization: scale each cell by the total read count,
multiply by 10000, and take logarithm
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scRNA-seq analysis: highly variable genes

I Focus analysis on highly variable genes (across cells)
I Compute empirical means and dispersions/variances
I Focus e.g. on ∼2000 genes
I This is kind of ad-hoc (more principled statistical methods exist)

Figure from http://satijalab.org/seurat/

http://satijalab.org/seurat/
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scRNA-seq analysis: remove unwanted variation

I Remove (or account for) unwanted variation, if needed, from measured read count ycg of
gene g and cell c using linear regression and use the regression residuals ecg for
downstream analysis

I Possible sources of unwanted variation for cell c
I Batch effects: xc,batch

I Biological sources of variation (e.g. cell cycle stage): xc,cycle

I Sequencing read alignment rate per cell: xc,rate

I The number of detected molecules xc,UMI and mitochondrial gene expression xc,mito per cell c

I For example

ycg = a0 + a1xc,batch + a2xc,cycle + a3xc,rate + a4xc,UMI + a5xc,mito + ecg ,

I Denote the expression residuals for cell c and d genes as xc = [ec1, . . . , ecd ]T ∈ Rd
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scRNA-seq analysis: dimensionality reduction

I Reduce dimensionality further by using
principle component analysis (PCA)

I Intuition: find a new basis vector
representation and represent the data
points in that new basis

I Find the basis vectors so that they are
oriented along the largest variation in the
data

388 Chapter 12. Latent linear models
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Figure 12.5 An illustration of PCA and PPCA where D = 2 and L = 1. Circles are the original data
points, crosses are the reconstructions. The red star is the data mean. (a) PCA. The points are orthogonally
projected onto the line. Figure generated by pcaDemo2d. (b) PPCA. The projection is no longer orthogonal:
the reconstructions are shrunk towards the data mean (red star). Based on Figure 7.6 of (Nabney 2001).
Figure generated by ppcaDemo2d.

where x̂i = Wzi, subject to the constraint that W is orthonormal. Equivalently, we can write this
objective as follows:

J(W,Z) = ||X − WZT ||2F (12.27)

where Z is an N × L matrix with the zi in its rows, and ||A||F is the Frobenius norm of matrix
A, defined by

||A||F =

√√√√
m∑

i=1

n∑

j=1

a2
ij =

√
tr(AT A) = ||A(:)||2 (12.28)

The optimal solution is obtained by setting Ŵ = VL, where VL contains the L eigenvectors
with largest eigenvalues of the empirical covariance matrix, Σ̂ = 1

N

∑N
i=1 xix

T
i . (We assume the

xi have zero mean, for notational simplicity.) Furthermore, the optimal low-dimensional encoding
of the data is given by ẑi = WT xi, which is an orthogonal projection of the data onto the column
space spanned by the eigenvectors.

An example of this is shown in Figure 12.5(a) for D = 2 and L = 1. The diagonal line is the
vector w1; this is called the first principal component or principal direction. The data points
xi ∈ R2 are orthogonally projected onto this line to get zi ∈ R. This is the best 1-dimensional
approximation to the data. (We will discuss Figure 12.5(b) later.)

In general, it is hard to visualize higher dimensional data, but if the data happens to be a
set of images, it is easy to do so. Figure 12.6 shows the first three principal vectors, reshaped
as images, as well as the reconstruction of a specific image using a varying number of basis
vectors. (We discuss how to choose L in Section 11.5.)

Below we will show that the principal directions are the ones along which the data shows
maximal variance. This means that PCA can be “misled” by directions in which the variance
is high merely because of the measurement scale. Figure 12.7(a) shows an example, where the
vertical axis (weight) uses a large range than the horizontal axis (height), resulting in a line that
looks somewhat “unnatural”. It is therefore standard practice to standardize the data first, or

Figure from (Murphy, 2012)
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scRNA-seq analysis: dimensionality reduction

I Reduce dimensionality further by using principle component analysis (PCA)

I Normalized expression vectors for C cells x1, . . . , xC , xi ∈ Rd (d genes)

I Estimate the covariance matrix

S =
1

C − 1

C∑

i=1

(xi − µx)(xi − µx)T ,

where µx = 1
C

∑C
i=1 xi

I The real-valued symmetric covariance matrix S can be written in a diagonalized form
S = VΛV T , where V = [v1, . . . , vd ] contains the orthogonal eigenvectors vi as columns
and Λ = diag(λ1, . . . , λd) is the diagonal matrix with eigenvalues on its diagonal

I Columns of V and Λ are typically ordered in decreasing order of eigenvalues λi ≥ λi+1
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scRNA-seq analysis: dimensionality reduction

I Take the k ≤ d largest eigenvalues and use the corresponding eigenvectors to form a
d × k matrix Wk = [v1, . . . , vk ]

I Typically k � d

I The PCA transformed data are yi = W T
k xi ∈ Rk

I Orthogonal transformation, each component chosen to have the largest variance

I 9 PCA components in this example
I That is, each cell is represented by a 9-dimensional expression vector
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scRNA-seq analysis: visualization

I Visualization of the two most important PCA components

Figure from http://satijalab.org/seurat/

http://satijalab.org/seurat/
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scRNA-seq analysis: clustering

I The final clustering for the 9-dimensional representation of cells using a graph-based
clustering method

I The Euclidean distance between two cells in the PCA space
I K-nearest neighbor (KNN) graph: edges drawn between cells with similar gene expression

profiles
I The edge weights between any two cells is based on the shared overlap in their local

neighborhoods (Jaccard distance)
I Optimize modularity in the network

I Visualize the clustering result and the data in 2-D using the t-distributed stochastic
neighbor embedding (tSNE)
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scRNA-seq analysis: visualization

I Visualize the clustering result and the data in 2-D using the t-distributed stochastic
neighbor (tSNE) embedding (tSNE)

I tSNE is a nonlinear dimensionality reduction technique

I Input: data in the k-dimensional PCA space y1, . . . , yC
I Probability distribution centered on yi : probability of sampling data item yj

pj|i =
exp(−||yj − yi ||2/2σ2

i )∑
k 6=j exp(−||yk − yi ||2/2σ2

i )
,

where σ2
i is a parameter

I A probability distribution over data item pairs: yi and yj

pij =
pj|i + pi|j

2C
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scRNA-seq analysis: visualization

I tSNE then tries to learn a new map in a lower dimensional space (typically 2-D) such that
the similarities between the cells are preserved

I Similar cells are modeled by nearby points and dissimilar cells are modeled by distant points
I Distances between cells cannot be maintained exactly in a lower dimensional space, so we

need to accept some errors between maps
I Model such errors robustly using a heavy-tailed distribution

I Motivated by heavy-tailed t-distribution, similarities qij are defined as

qij =
(1 + ||zj − zi ||2)−1

∑
k 6=j(1 + ||zk − zi ||2)−1

I The locations of the cells zi are optimized using e.g. gradient descent such that the
(non-symmetric) Kullback-Leibler divergence of the distribution Q from the distribution P
is minimized

KL(P||Q) =
∑

i,j

pij log
pij
qij
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scRNA-seq analysis: clustering

I Visualization of the clustering results in 2-D using tSNE

Figure from http://satijalab.org/seurat/

http://satijalab.org/seurat/
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scRNA-seq analysis: cluster biomarkers

I Identify genes differentially expressed between clusters (=cell types)

I Differential expression in one cell type relative to all other cell types

→ Biomarkers for cell types

I Several possible methods
I t-test
I Likelihood-ratio test based on zero-inflated models
I Receiver operating characteristics (ROC) analysis measures classification power for individual

genes (used in an example below)
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scRNA-seq analysis: cluster biomarkers

I Visualization of cell type specific biomarkers

Figure from http://satijalab.org/seurat/

http://satijalab.org/seurat/
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scRNA-seq analysis: cluster biomarkers

I Visualization of cell type specific cluster biomarkers

Figure from http://satijalab.org/seurat/

http://satijalab.org/seurat/
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scRNA-seq analysis: clustering

I Assign cell types based on the biomarkers

Figure from http://satijalab.org/seurat/

http://satijalab.org/seurat/


34/ 40

Contents

I Background & Motivation

I Single cell sequencing technologies

I Single cell sequencing data analysis: overview

I Single cell sequencing data analysis: emerging methods



35/ 40

Deep generative models for single cell data

I scRNA-seq profiles contain both biological (mostly unknown) and technical (still poorly
characterized) uncertainties

I Challenging to specify a well-motivated probabilistic data generating model
I Recent developments in deep learning field have shown great promise in modeling complex

data
I Autoencoder is a (deep) neural network that tries to predict its input x into output r via

an internal representation h
I Internal representation typically has a lower dimension and provides a useful

characterization for scRNA-seq data

18/06/2018, 14.01

Page 2 of 25http://www.deeplearningbook.org/contents/autoencoders.html

CHAPTER 14. AUTOENCODERS
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 Figure 14.1: The general structure of an autoencoder, mapping an input to an outputx
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 to the activations on the reconstructed input. Recirculation is regarded as more
 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 biologically plausible than back-propagation but is rarely used for machine learning
applications.
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 Copying the input to the output may sound useless, but we are typically not
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 One way to obtain useful features from the autoencoder is to constrain h to
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Figure from (Goodfellow et al, 2016)
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Deep generative models for single cell data

I A variational autoencoder (VAE) resembles a classical autoencoder, and consists of
I Encoder
I Decoder
I A probabilistic loss function

I Provides a way to design generative (probabilistic) model and inference for complex and
large data sets

I Models are end-to-end differentiable: if implemented using a probabilistic programming
language, then they can be inferred using automatic differentiation methods (e.g.
TensorFlow, Pytorch)
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A variational autoencoder for scRNA-seq data

I A probabilistic model for scRNA-seq data

observed batch annotation, as well as two additional, unobserved random vari-
ables. The latent random variable `n represents nuisance variation due to vari-
ation in capture efficiency and sequencing depth. It is drawn from a log-normal
distribution and serves as a cell-specific scaling factor.

The latent random variable zn represents the remaining variability, which
should better reflect biological differences between cells. It is drawn from a stan-
dard multivariate normal of low dimensionality d, and provides a latent-space
representation that can be used for visualization and clustering. The reason for
drawing zn from a multivariate normal is essentially for computational conve-
nience (see Methods 4.1). The matrix ⇢ is an intermediate value that relates
the observations xng to the latent variables. It provides a batch-corrected, nor-
malized estimate of the percentage of transcripts in each cell n that originate
from each gene g. We use ⇢ for differential expression analysis, and its scaled
version (multiplying by the estimated library size) for imputation.

Altogether, each expression value xng is drawn independently through the
following process:

zn ⇠ Normal(0, I) (1)

`n ⇠ LogNormal(`µ, `2�) (2)
⇢n = fw(zn, sn) (3)

wng ⇠ Gamma(⇢g
n, ✓) (4)

yng ⇠ Poisson(`nwng) (5)
hng ⇠ Bernoulli(fg

h(zn, sn)) (6)

xng =

(
yng if hng = 0,

0 otherwise.
(7)

Here B denotes the number of batches and `µ, `� 2 RB
+ parameterize the prior

for the scaling factor (on a log scale). The specification of these parameters
is discussed in Methods 4.1. The parameter ✓ 2 RG

+ denotes a gene-specific
inverse dispersion, estimated via variational Bayesian inference (Methods 4.2).
fw and fh are neural networks that map the latent space and batch annotation
back to the full dimension of all genes: Rd ⇥ {0, 1}B ! RG (Figure 1b, NN5-
6). We use superscript annotation (e.g., fg

w(zn, sn)) to refer to a single entry
that corresponds to a specific gene g. We enforce fg

w(zn, sn) to take values in
the probability simplex (namely for each cell n the sum of fg

w(zn, sn) values
over all genes g is one), thus providing interpretation as expected frequencies.
Importantly, neural networks allows us to go beyond the generalized linear model
framework and provide a more flexible model of gene expression. Figure 1a
specifies the complete graphical model and its implementation using neural-
network conditionals. Methods 4.1 provides further details on the specification
of this probabilistic model.
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Figure 1: Overview of scVI. Given a gene-expression matrix with batch annotations as input, scVI learns a non-linear embedding
of the cells that can be used for multiple analysis tasks. (a) The underlying graphical model. Shaded vertices represent
observed random variables. Empty vertices represent latent random variables. Shaded diamonds represent constants, set a
priori. Empty diamonds represent global variables shared across all genes and cells. Edges signify conditional dependency.
Rectangles (“plates”) represent independent replication. (b) The computational trees (neural networks) used to compute the
embedding as well as the distribution of gene expression. (c) Comparison of running times (y-axis) on the BRAIN-LARGE
data with a limited set of 720 genes, and with increasing input sizes (x-axis; cells in each input set are sampled randomly from
the complete dataset). scVI is compared against existing methods for dimensionality reduction in the scRNA-seq literature.
As control, we also add basic matrix factorization with factor analysis (FA).
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I Autoencoder architecture with deep neural networks

Figure 1: Overview of scVI. Given a gene-expression matrix with batch annotations as input, scVI learns a non-linear embedding
of the cells that can be used for multiple analysis tasks. (a) The underlying graphical model. Shaded vertices represent
observed random variables. Empty vertices represent latent random variables. Shaded diamonds represent constants, set a
priori. Empty diamonds represent global variables shared across all genes and cells. Edges signify conditional dependency.
Rectangles (“plates”) represent independent replication. (b) The computational trees (neural networks) used to compute the
embedding as well as the distribution of gene expression. (c) Comparison of running times (y-axis) on the BRAIN-LARGE
data with a limited set of 720 genes, and with increasing input sizes (x-axis; cells in each input set are sampled randomly from
the complete dataset). scVI is compared against existing methods for dimensionality reduction in the scRNA-seq literature.
As control, we also add basic matrix factorization with factor analysis (FA).
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I An illustration

Figure 3: We apply scVI, PCA and SIMLR to three datasets (from right to left: CORTEX, HEMATO and a simulated ‘’noise”
dataset sampled iid from a fixed zero inflated negative binomial (ZINB) distribution). For each dataset, we show a distance
matrix in the latent space as well as a two-dimensional embedding of the cells. Distance matrices: the scales are in relative
units from low to high similarity (over the range of values in the entire matrix). For CORTEX and HEMATO, cells in the
matrices are grouped by their pre- annotated labels, provided by the original studies (for the CORTEX dataset, cell subsets
were ordered by the hierarchical clustering in the original study). For ZINB, the color in the distance matrices is determined
by the clusters called by SIMLR on this data. Embedding plots: each point represents a cell and the layout is determined
either by tSNE (CORTEX, ZINB) or by a 5-nearest neighbors graph visualized using a Fruchterman-Reingold force-directed
algorithm (HEMATO; see Supplementary Figure 15d for the original embedding for SIMLR). For CORTEX and HEMATO,
the color scheme in the embeddings is the same as in the distance matrices. For ZINB, the colors reflect the number of UMI
in each cell (see Supplementary Figure 15a-c for coloring of cells according to SIMLR clusters)
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