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Background & Motivation

» Most genomic profiling methods analyze cell populations
» We know that even cells of the same cell type can be different
» Genome: somatic mutations
» Transcriptome
» Epigenome
>

> Recent technology development has made it possible to characterize individual cells at the
level of
> Transcriptome/RNA
DNA
Proteome
DNA methylation
Histone modifications
Chromatin accessibility
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Background & Motivation

» Bulk sequencing vs. single-cell sequencing
ONE GENOME FROM MANY

Sequencing the genomes of single cells is similar to sequencing
those from multiple cells — but errors are more likely.

» Standard genome sequencing

Loads of

A sample containing thousands to DNA is extracted from all the nuclei. DNA is broken into fragments The sequences are assembled to give a
millions of cells is isolated. and then sequenced. ‘common, ‘consensus’ sequence.

» Single-cell sequencing

E Hardly

S

DNA amplification

A single cell is difficult to isolate, but The DNA is extracted and amplified, Amplified DNA is sequenced. Errors introduced in earlier steps make
it can be done mechanically or with during which errors can creep in. sequence assembly difficult; the final
an automated cell sorter. sequence can have gaps.

Figure from https://scitechdaily.com/images/one-genome-from-many.jpg



Background & Motivation

» Single cell analysis has many important applications in molecular biology, biomedicine, etc.
» For example, blood is a complex organ

> Molecular level profiling of whole blood sample provides average measurements across about
20 cell types present in blood
— Single-cell technologies can extract information separately for different blood cell types



Background & Motivation

» Single cell analysis has many important applications in molecular biology, biomedicine, etc.
» For example, blood is a complex organ
> Molecular level profiling of whole blood sample provides average measurements across about
20 cell types present in blood
— Single-cell technologies can extract information separately for different blood cell types
» Cancer research can greatly benefit from single cell technologies because

» Cancer can originate from a single cell
» Cancer progression can involve rare cell types that are difficult to quantify otherwise
> Tumour biopsies are heterogeneous, contain infiltrating cell types, etc.



Contents

» Background & Motivation
» Single cell sequencing technologies
» Single cell sequencing data analysis: overview

» Single cell sequencing data analysis: emerging methods



DROP-seq
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Figure 1. Molecular Barcoding of Cellular Transcriptomes in Droplets

(A) Drop-Seq barcoding schematic. A complex tissue is dissociated into individual cells, which are then encapsulated in droplets together with microparticles
(gray circles) that deliver barcoded primers. Each cell is lysed within a droplet; its mMRNAs bind to the primers on its companion microparticle. The mRNAs are
reverse-transcribed into cDNAs, generating a set of beads called ““single-cell transcriptomes attached to microparticles” (STAMPs). The barcoded STAMPSs can
then be amplified in pools for high-throughput mRNA-seq to analyze any desired number of individual cells.

(B) Sequence of primers on the microparticle. The primers on all beads contain a common sequence (“PCR handle”) to enable PCR amplification after STAMP
formation. Each microparticle contains more than 10° individual primers that share the same “cell barcode” (C) but have different unique molecular identifiers
(UMIs), enabling mRNA transcripts to be digitally counted (D). A 30-bp oligo dT sequence is present at the end of all primer sequences for capture of mRNAs.
(C) Split-and-pool synthesis of the cell barcode. To generate the cell barcode, the pool of microparticles is repeatedly split into four equally sized oligonucleotide
synthesis reactions, to which one of the four DNA bases is added, and then pooled together after each cycle, in a total of 12 split-pool cycles. The barcode
synthesized on any individual bead reflects that bead’s unique path through the series of synthesis reactions. The result is a pool of microparticles, each
possessing one of 412 (16,777,216) possible on its entire 1t of primers (see also Figure S1).

(D) Synthesis of a unique molecular identifier (UMI). Following the completion of the “split-and-pool” synthesis cycles, all microparticles are together subjected to
eight rounds of degenerate synthesis with all four DNA bases available during each cycle, such that each individual primer receives one of 4° (65,536) possible
sequences (UMIs).

Figure from (Macosko et al, 2015)
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DROP-seq

> Paired-end sequencing reads the barcodes and the actual RNA fragment/gene

Sample sequencing read-pair

Read 1 Read 2
h

Cell  uUMI Gene identity
barcode

Figure from (Macosko et al, 2015)



DROP-seq

» Analysis of the paired-end sequencing reads from DROP-seq distinguishes cells and UMIs

» Assign each read to the “closest” cell based on the cell barcode

D ce
barcode UMI
—_—

—
ARATTATGACGATGTGETTG. ......v.. .. Gactacac
corracaTeccAGaGCaEE creaTacr
GACCTACGAGTTAGITIGHA. . .eTeaTan

cracerer .aarrrrer

aTeecee .amanceTe
TECCCOTCOTCTTATGRAGE ceaceace
AGTCCATGIGCGGEAGGIT: . .GTTGGCGT
AAATTATCACCAAGITTGTA. . . AcaTeeeG

TeTAGECT.

ANGGCTTG. .
TETTIGACCAGTCOTGACGS.
ACTGTCCATGCCCCTGTGTA
COTAAAACAATAATCCEETC.

(Hundreds of millions of reads)

cDNA (50-bp sequenced)
F—

cDNA alignment to
genome and group
results by cell

Cell3 Cell2 Cel1

Cell 4

+-COGTCTIA ] DDX 51
ceacence ] NOP2
. annncec ] ACTB

.....creamer ] [ BR
. aceeeme] ODF2
aacceres ] HIF1A

R
o] ACTB
aacroeac] RPS15
aarrmer ] GTPBP4
erreccar] GAPDH
.,MC:| ARLT

.zccacTce

(Thousands of cells)

Figure from (Macosko et al, 2015)

Count unique UMIs
for each gene
in each cell
—_—
Create digital
expression matrix

Cell:

GENE 1
GENE 2
GENE 3

GENE M

o b |k




DROP-seq

» (Figure caption from (Macosko et al, 2015))

Figure 2. Extraction and Processing of Single-Cell Transcriptomes by Drop-Seq
(A) Schematic of single-cell mMRNA-seq library preparation with Drop-seq. A custom-designed microfluidic device joins two aqueous flows before their
compartmentalization into discrete droplets. One flow contains cells, and the other flow contains barcoded primer beads suspended in a lysis buffer. Immediately
following droplet formation, the cellis lysed and releases its MRNAs, which then hybridize to the primers on the microparticle surface. The droplets are broken by
adding a reagent to destabilize the oil-water interface (Experimental Procedures), and the microparticles collected and washed. The mRNAs are then reverse-
transcribed in bulk, forming STAMPs, and template switching is used to introduce a PCR handle downstream of the synthesized cDNA (Zhu et al., 2001).
(B) Microfluidic device used in Drop-seq. Beads (brown in image), suspended in a lysis agent, enter the device from the central channel; cells enter from the top
and bottom. Laminar flow prevents mixing of the two aqueous inputs prior to droplet formation (see also Movie S1). Schematics of the device design and how it is
operated can be found in Figure S2.
(C) Molecular elements of a Drop-seq sequencing library. The first read yields the cell barcode and UMI. The second, paired read interrogates sequence from the
cDNA (50 bp is typically sequenced); this sequence is then aligned to the genome to determine a transcript’s gene of origin.
(D) In silico reconstruction of thousands of single-cell transcriptomes. Millions of paired-end reads are generated from a Drop-seq library on a high-throughput
sequencer. The reads are first aligned to a reference genome to identify the gene-of-origin of the cDNA. Next, reads are organized by their cell barcodes,
and individual UMIs are counted for each gene in each cell (Supplemental Experimental Procedures). The result, shown at far right, is a “digital expression matrix”
in which each column corresponds to a cell, each row corresponds to a gene, and each entry is the integer number of transcripts detected from that gene, in
that cell.

Figure from (Macosko et al, 2015)
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scRNA-seq data analysis

» While single-cell RNA sequencing (scRNA-seq) is structurally similar with data from bulk
RNA-seq, scRNA-seq has distinct characters:
» Abundance of zeros (both biological and technical): only ~20% of gene expression counts
are non-zero
> Increased variability
» Complex expression distributions

— scRNA-seq requires specific analysis methods



Unique molecular identifiers (UMI)

» Due to a very small amount of starting material, RNA library needs to be amplified with
PCR
» Many of the sequenced reads are multiple PCR-copies of the original transcripts

» The experimental protocol incorporates so-called unique molecular identifiers (UMI) for
each RNA fragment, which can be used to recover the counts of unique RNA molecules

» The DROP-seq protocol described above has 4% = 65536 different UMlIs

— Align the sequencing read corresponding to the RNA fragment (not the UMI) and then
count the unique UMIs for aligned sequencing reads



Unique molecular identifiers (UMI)

» Align the sequencing read corresponding A o
to the RNA fragment (not the UMI) and e
then count the unique UMlIs for aligned '

. UMI labeli

sequencing reads a+emg

» Because there are “only” 4% = 65536 _—
different UMls, some truly different RNA I
fragments can have the same UMI by PCR Amplification
chance and one of them would be removed :'+ 7
if UMI control was applied before —— ™
alignment —

Sequencing and bioinformatics

==

3 Unique 2
molecules

Figure from (Smith et al, 2017)




scRNA-seq analysis to identify cell types

>

Single-cell sequencing protocols and analysis methods are under active research and
development

The standard practices and methods have not yet been established

Lets illustrate how scRNA-seq data can be analyzed using Seurat tool, following a guided
tutorial from http://satijalab.org/seurat/, to identify cell types from whole blood sample
Data is from peripheral blood mononuclear cells (PBMC)

— Lots of different cell types
scRNA-seq from 2700 single PBMC cells

One of the goals is to identify cells types from the PBMC scRNA-seq data


http://satijalab.org/seurat/

scRNA-seq analysis: cell and UMI identification

» Sequencing read data is grouped by cells using the cell barcode

» Transcript part of each read is aligned to the genome and unique UMIs are counted for
each gene in each cell

» Distributions of cell-specific count data: the number of genes and UMls
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http://satijalab.org/seurat/

scRNA-seq analysis: normalization

» Recall normalization methods for bulk RNA-seq (e.g. RPKM)
» scRNA-seq data has more complex characteristics

Assumption Throughout the experiment In practice
Gene-specific effect Capture and Dilution Normalized  Estimated
‘expression level’ RT fraction factor expression scaling factor
A A A A A
= A
E(Xp) =s;x py; s = n x Fox A x D, X R; Xg = X5 1§
v v
Cell-specific effect Endogenous Amplification Sequencing Raw
‘scaling factor’ mRNA content factor depth read count
=] [ e ¥ s sl | =
v == = ——— E== \ 4
= e e e . .
Ignores gene-specific = t’&?‘ = o e EEE ST Uncertainty in the
biases (GC content, Q’ = = == =TE= estimation of scaling
transcript length) Capture Amplification Dilution ~ Sequencing factors is not propagated
and RT

Figure from (Vallejos et al, 2017)

» Seurat implements a standard normalization: scale each cell by the total read count,
multiply by 10000, and take logarithm



scRNA-seq analysis: highly variable genes

» Focus analysis on highly variable genes (across cells)
» Compute empirical means and dispersions/variances
» Focus e.g. on ~2000 genes
> This is kind of ad-hoc (more principled statistical methods exist)

o ™
=

HLADPB!

Dispersion
2
1

Lol
T
% 1

Average expression


http://satijalab.org/seurat/

scRNA-seq analysis: remove unwanted variation

» Remove (or account for) unwanted variation, if needed, from measured read count y., of
gene g and cell ¢ using linear regression and use the regression residuals e, for
downstream analysis

» Possible sources of unwanted variation for cell ¢

> Batch effects: xc patch

» Biological sources of variation (e.g. cell cycle stage): xc,cycle

> Sequencing read alignment rate per cell: Xc rate

> The number of detected molecules xc,um and mitochondrial gene expression Xc mito per cell ¢

» For example

Yeg = a0 + d1Xc batch + a2 Xc cycle + ad3Xc rate + a4 Xc, UMl + a5 Xc, mito + €cgs

» Denote the expression residuals for cell ¢ and d genes as x. = [ec1, - - -, ecd]T e R



scRNA-seq analysis: dimensionality reduction

» Reduce dimensionality further by using
principle component analysis (PCA)

» Intuition: find a new basis vector
representation and represent the data
points in that new basis

» Find the basis vectors so that they are
oriented along the largest variation in the
data

-5 e 0
Figure from (Murphy, 2012)



scRNA-seq analysis: dimensionality reduction

» Reduce dimensionality further by using principle component analysis (PCA)
» Normalized expression vectors for C cells xy, ..., xc, x; € RY (d genes)

» Estimate the covariance matrix
c
-
Z Mx)

where py = %Zlczl X;

» The real-valued symmetric covariance matrix S can be written in a diagonalized form
S = VAVT, where V = |vi,...,v4] contains the orthogonal eigenvectors v; as columns
and A = diag(A1, ..., Aq) is the diagonal matrix with eigenvalues on its diagonal

> Columns of V and A are typically ordered in decreasing order of eigenvalues \; > A\it1



scRNA-seq analysis: dimensionality reduction

> Take the k < d largest eigenvalues and use the corresponding eigenvectors to form a
d x k matrix Wy = [vy,...,v]
> Typically k < d
» The PCA transformed data are y; = Wka,- € R¥

» Orthogonal transformation, each component chosen to have the largest variance

» 9 PCA components in this example
> That is, each cell is represented by a 9-dimensional expression vector



scRNA-seq analysis: visualization

» Visualization of the two most important PCA components

20

PC2

PC1
Figure from http://satijalab.org/seurat/
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http://satijalab.org/seurat/

scRNA-seq analysis: clustering

» The final clustering for the 9-dimensional representation of cells using a graph-based
clustering method

> The Euclidean distance between two cells in the PCA space

> K-nearest neighbor (KNN) graph: edges drawn between cells with similar gene expression
profiles

> The edge weights between any two cells is based on the shared overlap in their local
neighborhoods (Jaccard distance)

> Optimize modularity in the network

> Visualize the clustering result and the data in 2-D using the t-distributed stochastic
neighbor embedding (tSNE)



scRNA-seq analysis: visualization

> Visualize the clustering result and the data in 2-D using the t-distributed stochastic
neighbor (tSNE) embedding (tSNE)

» tSNE is a nonlinear dimensionality reduction technique
» Input: data in the k-dimensional PCA space y1,...,Yyc¢
> Probability distribution centered on y;: probability of sampling data item y;

exp(—Ily; — yill*/20?)
5 o(— Iy — yilP/207)

Pili =

2

i

A probability distribution over data item pairs: y; and y;

where 0% is a parameter

v
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Pi=""%0



scRNA-seq analysis: visualization

> tSNE then tries to learn a new map in a lower dimensional space (typically 2-D) such that
the similarities between the cells are preserved

> Similar cells are modeled by nearby points and dissimilar cells are modeled by distant points

» Distances between cells cannot be maintained exactly in a lower dimensional space, so we
need to accept some errors between maps

> Model such errors robustly using a heavy-tailed distribution

> Motivated by heavy-tailed t-distribution, similarities g;; are defined as

oo (Al —zP) !
' Tz — 2P

» The locations of the cells z; are optimized using e.g. gradient descent such that the
(non-symmetric) Kullback-Leibler divergence of the distribution @ from the distribution P

is minimized pi
KL(P||Q) = ZPU |Og =




scRNA-seq analysis: clustering

» Visualization of the clustering results in 2-D using tSNE
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scRNA-seq analysis: cluster biomarkers

> Identify genes differentially expressed between clusters (=cell types)

» Differential expression in one cell type relative to all other cell types
— Biomarkers for cell types

» Several possible methods
> t-test
» Likelihood-ratio test based on zero-inflated models

> Receiver operating characteristics (ROC) analysis measures classification power for individual
genes (used in an example below)



scRNA-seq analysis: cluster biomarkers

» Visualization of cell type specific biomarkers
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scRNA-seq analysis: cluster biomarkers

» Visualization of cell type specific cluster biomarkers
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scRNA-seq analysis: clustering

> Assign cell types based on the biomarkers
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Deep generative models for single cell data

» scRNA-seq profiles contain both biological (mostly unknown) and technical (still poorly
characterized) uncertainties

> Challenging to specify a well-motivated probabilistic data generating model
» Recent developments in deep learning field have shown great promise in modeling complex
data
» Autoencoder is a (deep) neural network that tries to predict its input x into output r via
an internal representation h
> Internal representation typically has a lower dimension and provides a useful
characterization for scRNA-seq data

Figure from (Goodfellow et al, 2016)



Deep generative models for single cell data

» A variational autoencoder (VAE) resembles a classical autoencoder, and consists of

> Encoder
> Decoder
> A probabilistic loss function

» Provides a way to design generative (probabilistic) model and inference for complex and
large data sets

» Models are end-to-end differentiable: if implemented using a probabilistic programming
language, then they can be inferred using automatic differentiation methods (e.g.
TensorFlow, Pytorch)



A variational autoencoder for scRNA-seq data

> A probabilistic model for scRNA-seq data

zn, ~ Normal(0, I)
¢, ~ LogNormal(¢,,, ¢2)

Pn = f’w(ZTU Sn)
Wng ~ Gamma(p?, 0)
Yng ~ Poisson(f,,wyg)
hng ~ Bernoulli(f (2, $))

T _ Yng if h'ng = 07 Genes G
ng — .
0 otherwise. Cells N

Figure from (Lopez et al, 2019)



A variational autoencoder for scRNA-seq data

» Autoencoder architecture with deep neural networks
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A variational autoencoder for scRNA-seq data

» An illustration
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Seurat tool: http://satijalab.org/seurat/
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