PHYS-C0252 - Quantum Mechanics

Exercise set 5

Due date : November 27, 2020 before 10.00

1. (a) Derive momentum space representation of the position operator. (Hint: Use the commutation relation $[\hat{x}, \hat{p}]=\mathrm{i} \hbar$ and calculate $p\langle p| \hat{x}|\psi\rangle$ for any arbitrary $|\psi\rangle$)
(b) Calculate the commutator $[\hat{x}, \hat{p}]$ in the momentum representation and verify that it is equal to $\mathrm{i} \hbar$.
2. Consider the time-independent Schrödinger's equation in position representation for a free particle $(V(x)=0)$.

$$
-\frac{\hbar^{2}}{2 m} \frac{d \psi(x)}{d x^{2}}=E \psi(x)
$$

(a) Find a general solution for $\psi(x)$.
(b) Show that

$$
\psi(x, t)=A e^{i k\left(x-\frac{\hbar k}{2 m} t\right)}+B e^{-i k\left(x+\frac{\hbar k}{2 m} t\right)},
$$

where A, B are constants and $k=\sqrt{2 m E} / \hbar$.
(c) The first term in $\psi(x, t)$ represents a wave traveling to the right, and the second term represents a wave (of the same energy) going to the left. Since they only differ by the sign in front of k, we can write the wave function as

$$
\psi_{k}(x, t)=A e^{i\left(k x-\frac{\hbar k^{2}}{2 m} t\right)}
$$

and k runs negative to cover the case of wave travelling to the left. Find the velocity of this wave and compare with the velocity of classical free particle. Hint : Velocity of the wave $v_{\text {quantum }}=\frac{\hbar|k|}{2 m}$.
(d) The wave function $\psi_{k}(x, t)$ is not normalizable but the general solution to the time-dependent Schrödinger equation is still a linear combination of separable solutions (it's an integral over the continuous variable k, instead of a sum over the discrete index n). We call it as a wave packet:

$$
\psi(x, t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \phi(k) e^{i\left(k x-\frac{\hbar k^{2}}{2 m} t\right)} d k
$$

where $\phi(k)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \psi(x, 0) e^{-i k x} d x$. Show that the new $\psi(x, t)$ is normalizable and find the velocity of the wave packet.
3. An electron is moving freely inside a one-dimensional infinite potential box with walls at $x=0$ and $x=a$. If the electron is initially in the ground state $(n=1)$ of the box and if we suddenly quadruple the size of the box (i.e.,the right-hand side wall is moved instantaneously from $x=a$ to $x=4 a$), calculate the probability of finding the electron in:
(a) The ground state of the new box.
(b) The first excited state of the new box.
4. Consider a particle of mass m in the one-dimensional potential energy field

$$
V(x)= \begin{cases}0, & \text { if }-\infty<x<-a \\ -V_{0}, & \text { if }-a<x<+a \\ 0, & \text { if }+a<x<-\infty\end{cases}
$$

The potential is symmetric about $x=0$, there are two types of energy eigenfunctions. There are symmetric eigenfunctions which obey

$$
\psi(x)=\psi(-x)
$$

and anti-symmetric eigenfunctions which obey

$$
\psi(x)=-\psi(-x) .
$$

(a) Show, by considering the energy eigenvalue equation in the three regions of x, that a symmetric eigenfunction with energy $E=-\hbar^{2} \alpha^{2} / 2 m$ has the form:

$$
\psi(x)= \begin{cases}A e^{+\alpha x}, & \text { if }-\infty<x<-a ; \\ C \cos \left(k_{0} x\right), & \text { if }-a<x<+a ; \\ A e^{-\alpha x}, & \text { if }+a<x<-\infty\end{cases}
$$

where A and C are constants and $k_{0}=\sqrt{2 m\left(E+V_{0}\right) / \hbar^{2}}$.
(b) Show that $\alpha=k_{0} \tan \left(k_{0} a\right)$.

Hint: use the continuity of $\psi(x)$ and $d \psi(x) / d x$ at the edges of the potential.
(c) By seeking a graphical solutions of the equations

$$
\alpha=k_{0} \tan \left(k_{0} a\right) \text { and } \alpha^{2}+k_{0}^{2}=w^{2},
$$

where $w=\sqrt{2 m V_{0} / \hbar^{2}}$, show that there is one bound state if,

$$
0<w<\frac{\pi}{2 a}
$$

and two bound states if

$$
\frac{\pi}{2 a}<w<\frac{3 \pi}{2 a}
$$

(d) Find bound state energies for the anti-symmetric eigenfunction.

