PHYS-C0252 - Quantum Mechanics Part 5 16.11.2020-08.12.2020

Tapio.Ala-Nissila@aalto.fi

4.3 Finite Potential Barrier

- The first nontrivial case is that of a finite potential barrier, where the QM particle can penetrate in and scatter from:
$V(x)=0$
$V(x)=V_{B}$
$V(x)=0$

$$
V(x)= \begin{cases}0 & \text { if }-\infty<x<0 \\ V_{B} & \text { if } 0<x<a \\ 0 & \text { if } a<x<+\infty\end{cases}
$$

The full solution of this problem would entail dynamical treatment, and according to the SE

$$
\Psi(x, t)=\int c(E) \psi_{E}(x) e^{-\imath E t / \hbar}
$$

To the left of the barrier

$$
\psi_{E}^{\prime \prime}(x)=-k^{2} \psi_{E}(x), E=\frac{\hbar^{2} k^{2}}{2 m}
$$

and the wave solution is

$$
\psi_{E}(x)=A_{I} e^{\imath k x}+A_{R} e^{-\imath k x}
$$

where the intensity of the incident wave is $\left|A_{I}\right|^{2}$ and that of the reflected wave $\left|A_{R}\right|^{2}$

- When the energy of the incoming particle is larger than that of the barrier (classical crossing)

$$
\psi_{E}^{\prime \prime}(x)=-k_{B}^{2} \psi_{E}(x), E=\frac{\hbar^{2} k_{B}^{2}}{2 m}+V_{B}
$$

whose general solution is

$$
\psi_{E}(x)=A e^{\imath k_{B} x}+A^{\prime} e^{-\imath k_{B} x}
$$

For $E<V$, the region is classically forbidden (reflection), but the SE gives

$$
\psi_{E}^{\prime \prime}(x)=\beta^{2} \psi_{E}(x), E=-\frac{\hbar^{2} \beta^{2}}{2 m}+V_{B}
$$

and the general solution becomes a decaying one

$$
\psi_{E}(x)=B e^{-\beta x}+B^{\prime} e^{\beta x}
$$

Finally, on the r.h.s. of the barrier (equals I.h.s.)

$$
\psi_{E}(x)=A_{T} e^{\imath k x}, k=\sqrt{2 E m} / \hbar
$$

The physically interesting quantities here are the ratios of the reflected and transmitted intensities

$$
R=\frac{\left|A_{R}\right|^{2}}{\left|A_{I}\right|^{2}} \quad \text { and } \quad T=\frac{\left|A_{T}\right|^{2}}{\left|A_{I}\right|^{2}}
$$

These are called reflection and transmission probabilities and $R+T=1$

We focus here on a particle whose energy is below the barrier:

$$
\psi_{E}(x)= \begin{cases}A_{I} \mathrm{e}^{+i k x}+A_{R} \mathrm{e}^{-i k x} & \text { if }-\infty<x<0 \\ B \mathrm{e}^{-\beta x}+B^{\prime} \mathrm{e}^{+\beta x} & \text { if } 0<x<a \\ A_{T} \mathrm{e}^{+i k x} & \text { if } a<x<\infty\end{cases}
$$

Continuity at $x=0$ and a gives
$A_{I}+A_{R}=B+B^{\prime}$ and $i k A_{I}-i k A_{R}=-\beta B+\beta B^{\prime}$,
$B \mathrm{e}^{-\beta a}+B^{\prime} \mathrm{e}^{+\beta a}=A_{T} \mathrm{e}^{i k a}$ and $-\beta B \mathrm{e}^{-\beta a}+\beta B^{\prime} \mathrm{e}^{+\beta a}=i k A_{T} \mathrm{e}^{i k a}$
from which we can get the amplitudes as a function of B :

$$
\begin{gathered}
2 i k A_{I}=-(\beta-i k) B+(\beta+i k) B^{\prime} \\
A_{T} \mathrm{e}^{i k a}=\frac{2 \beta}{(\beta-i k)} B \mathrm{e}^{-\beta a} \quad \text { and } \quad B^{\prime}=B \mathrm{e}^{-2 \beta a} \frac{(\beta+i k)}{(\beta-i k)}
\end{gathered}
$$

In the limit of a wide barrier where $e^{-2 \beta a} \ll 1$ we can approximate that $B \ll B^{\prime}$, i.e. $2 i k A_{I} \approx-(\beta-i k) B$ which gives

$$
A_{T} \mathrm{e}^{i k a} \approx-\frac{4 i k \beta \mathrm{e}^{-\beta a}}{(\beta-i k)^{2}} A_{I}
$$

and

$$
T \approx\left[\frac{16 k^{2} \beta^{2}}{\left(\beta^{2}+k^{2}\right)^{2}}\right] \mathrm{e}^{-2 \beta a}
$$

Using the definitions

$$
k=\frac{\sqrt{2 m E}}{\hbar} \quad \text { and } \quad \beta=\frac{\sqrt{2 m\left(V_{B}-E\right)}}{\hbar}
$$

this can be written as

$$
T \approx\left[\frac{16 E\left(V_{B}-E\right)}{V_{B}^{2}}\right] \mathrm{e}^{-2 \beta a}
$$

- This is also known as the (QM) tunneling probability

