Taloustieteen matemaattiset menetelmät
31C01100
Syksy 2020
Lassi Tervonen
lassi.tervonen@aalto.fi

Problem Set 7: Solutions

1. Solution

We can rewrite all the equations in the form $x_{t+1}=a x_{t}+b$. When $a \neq 1$, the solution is

$$
x_{t}=a^{t}\left(x_{0}-\frac{b}{1-a}\right)+\frac{b}{1-a}
$$

(a) $x_{t}=5 \cdot 2^{t}-4$; unstable because $a>1$.
(b) $x_{t}=\left(\frac{1}{3}\right)^{t}+1$; stable because $|a|<1$.
(c) $x_{t}=-\frac{3}{5}\left(-\frac{3}{2}\right)^{t}-\frac{2}{5}$; unstable because $|a|>1$.
(d) Here $a=1$ so we cannot use the formula above. By repeated substitution, we can see that the solution is $x_{0}=3, x_{1}=0, x_{2}=-3, x_{3}=-6$, and so on. In general, $x_{t}=3-3 t$, which is unstable $\left(x_{t} \rightarrow-\infty\right.$ as $\left.t \rightarrow \infty\right)$.

2. Solution

(a) We have

$$
A \boldsymbol{v}_{1}=\left(\begin{array}{ll}
1 & 2 \\
3 & 2
\end{array}\right)\binom{2}{3}=\binom{8}{12}=4 \boldsymbol{v}_{1}
$$

and

$$
A \boldsymbol{v}_{2}=\left(\begin{array}{ll}
1 & 2 \\
3 & 2
\end{array}\right)\binom{1}{-1}=\binom{-1}{1}=(-1) \boldsymbol{v}_{2}
$$

(b) It follows immediately from what we did in (a) that the corresponding eigenvalues for eigenvectors \boldsymbol{v}_{1} and \boldsymbol{v}_{2} are $\lambda_{1}=4$ and $\lambda_{2}=-1$, respectively.
(c) We know that

$$
P=\left(\begin{array}{ll}
\boldsymbol{v}_{1} & \boldsymbol{v}_{2}
\end{array}\right)=\left(\begin{array}{cc}
2 & 1 \\
3 & -1
\end{array}\right) .
$$

We also know that D is a diagonal matrix and that its diagonal entries are eigenvalues of A, so

$$
D=\left(\begin{array}{cc}
4 & 0 \\
0 & -1
\end{array}\right) .
$$

Next we need to find P^{-1}. Because $P P^{-1}=I$,

$$
P P^{-1}=\left(\begin{array}{cc}
2 & 1 \\
3 & -1
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) .
$$

This yields a system of four equations:

$$
\begin{aligned}
& 2 a+c=1 \\
& 2 b+d=0 \\
& 3 a-c=0 \\
& 3 b-d=1 .
\end{aligned}
$$

By solving this system we get $a=\frac{1}{5}, b=\frac{1}{5}, c=\frac{3}{5}$, and $d=-\frac{2}{5}$, so we can write P^{-1} as

$$
P^{-1}=\left(\begin{array}{cc}
\frac{1}{5} & \frac{1}{5} \\
\frac{3}{5} & -\frac{2}{5}
\end{array}\right) .
$$

Now

$$
P D P^{-1}=\left(\begin{array}{cc}
2 & 1 \\
3 & -1
\end{array}\right)\left(\begin{array}{cc}
4 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{cc}
\frac{1}{5} & \frac{1}{5} \\
\frac{3}{5} & -\frac{2}{5}
\end{array}\right)=\left(\begin{array}{ll}
1 & 2 \\
3 & 2
\end{array}\right)=A .
$$

(d) We know that $A^{n}=P D^{n} P^{-1}$ (Lecture 18, p. 15). Also, because D is a diagonal matrix, we can write

$$
D^{n}=\left(\begin{array}{cc}
r_{1} & 0 \\
0 & r_{2}
\end{array}\right)^{n}=\left(\begin{array}{cc}
r_{1}^{n} & 0 \\
0 & r_{2}^{n}
\end{array}\right) .
$$

Thus

$$
\begin{aligned}
A^{n} & =P D^{n} P^{-1}=\left(\begin{array}{cc}
2 & 1 \\
3 & -1
\end{array}\right)\left(\begin{array}{cc}
4^{n} & 0 \\
0 & (-1)^{n}
\end{array}\right)\left(\begin{array}{cc}
\frac{1}{5} & \frac{1}{5} \\
\frac{3}{5} & -\frac{2}{5}
\end{array}\right) \\
& =\frac{1}{5}\left(\begin{array}{cc}
2 \times 4^{n}+3 \times(-1)^{n} & 2\left(4^{n}-(-1)^{n}\right) \\
3\left(4^{n}+(-1)^{n+1}\right) & 3 \times 4^{n}-2(-1)^{n+1}
\end{array}\right) .
\end{aligned}
$$

3. Solution

Write the system of difference equations in matrix form:

$$
\boldsymbol{z}_{t+\mathbf{1}}=\left[\begin{array}{l}
x_{t+1} \\
y_{t+1}
\end{array}\right]=\left[\begin{array}{cc}
2 & -2 \\
-1 & 3
\end{array}\right]\left[\begin{array}{l}
x_{t} \\
y_{t}
\end{array}\right]=A \boldsymbol{z}_{\boldsymbol{t}}
$$

and the initial conditions can be written as $\boldsymbol{z}_{\mathbf{0}}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$. Use the characteristic polynomial of A to find the eigenvalues:

$$
\operatorname{det}(A-r I)=\operatorname{det}\left[\begin{array}{cc}
2-r & -2 \\
-1 & 3-r
\end{array}\right]=(2-r)(3-r)-2=0
$$

By solving this we get the eigenvalues $r_{1}=1$ and $r_{2}=4$.

Next we can use the eigenvalues to find the eigenvectors. Eigenvector $\boldsymbol{v}_{\boldsymbol{r}_{i}}$ satisfies $\left(A-r_{i} I\right) \boldsymbol{v}_{r_{i}}=\mathbf{0}, i=1,2$. We know that $r_{1}=1$, so

$$
\left[\begin{array}{cc}
2-1 & -2 \\
-1 & 3-1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

This yields a system of two equations:

$$
\begin{aligned}
v_{1}-2 v_{2} & =0 \\
-v_{1}+2 v_{2} & =0 .
\end{aligned}
$$

The solution for this system of equations is $v_{1}=2 v_{2}$, so the first eigenvector is

$$
\boldsymbol{v}_{r_{1}}=\left[\begin{array}{l}
2 \\
1
\end{array}\right] .
$$

The second can be found in a similar way. It is $\boldsymbol{v}_{r_{2}}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$. Now we know that P is

$$
P=\left[\begin{array}{cc}
2 & -1 \\
1 & 1
\end{array}\right]
$$

One can solve P^{-1} as in Exercise 2c. It is

$$
P^{-1}=\frac{1}{3}\left[\begin{array}{cc}
1 & 1 \\
-1 & 2
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{3} & \frac{1}{3} \\
-\frac{1}{3} & \frac{2}{3}
\end{array}\right] .
$$

Next, make a change of variables $\boldsymbol{z}=P \boldsymbol{Z}$. Now the system can be written as

$$
\boldsymbol{z}_{t+1}=A \boldsymbol{z}_{t} \Leftrightarrow P \boldsymbol{Z}_{t+1}=A P \boldsymbol{Z}_{t} \Leftrightarrow \boldsymbol{Z}_{t+1}=P^{-1} A P \boldsymbol{Z}_{t}
$$

So

$$
Z_{t+1}=D \boldsymbol{Z}_{t} .
$$

Now we can see that $\boldsymbol{Z}_{\mathbf{1}}=D \boldsymbol{Z}_{\mathbf{0}}, \boldsymbol{Z}_{\mathbf{2}}=D \boldsymbol{Z}_{\mathbf{1}}=D\left(D \boldsymbol{Z}_{\mathbf{0}}\right)=D^{2} \boldsymbol{Z}_{\mathbf{0}}$ etc., so

$$
\boldsymbol{Z}_{\boldsymbol{t}}=D^{t} \boldsymbol{Z}_{0}, \text { where } D^{t}=\left[\begin{array}{cc}
r_{1}^{t} & 0 \\
0 & r_{2}^{t}
\end{array}\right] .
$$

Make a change of variables again: $\boldsymbol{z}=P \boldsymbol{Z} \Leftrightarrow \boldsymbol{Z}=P^{-1} \boldsymbol{z}$ and write the system as

$$
\begin{aligned}
P^{-1} \boldsymbol{z}_{\boldsymbol{t}} & =D^{t} P^{-1} \boldsymbol{z}_{\mathbf{0}} \\
\boldsymbol{z}_{\boldsymbol{t}} & =P D^{t} P^{-1} \boldsymbol{z}_{\mathbf{0}} .
\end{aligned}
$$

We know that $P=\left[\begin{array}{cc}2 & -1 \\ 1 & 1\end{array}\right], P^{-1}=\left[\begin{array}{cc}\frac{1}{3} & \frac{1}{3} \\ -\frac{1}{3} & \frac{2}{3}\end{array}\right], D^{t}=\left[\begin{array}{cc}1^{t} & 0 \\ 0 & 4^{t}\end{array}\right]$, and $\boldsymbol{z}_{0}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$. Thus,

$$
\begin{aligned}
\boldsymbol{z}_{\boldsymbol{t}} & =P D^{t} P^{-1} \boldsymbol{z}_{0} \\
& =\left[\begin{array}{cc}
2 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
1^{t} & 0 \\
0 & 4^{t}
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{3} & \frac{1}{3} \\
-\frac{1}{3} & \frac{2}{3}
\end{array}\right] \boldsymbol{z}_{0} \\
& =\left[\begin{array}{cc}
2 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
1^{t} & 0 \\
0 & 4^{t}
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{3} & \frac{1}{3} \\
-\frac{1}{3} & \frac{2}{3}
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right] \\
& =\left[\begin{array}{cc}
2 \cdot 1^{t} & -4^{t} \\
1^{t} & 4^{t}
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
& =\left[\begin{array}{c}
2-4^{t} \\
1+4^{t}
\end{array}\right] .
\end{aligned}
$$

4. Solution

Write the system of difference equations as

$$
\boldsymbol{w}_{t+\mathbf{1}}=\left[\begin{array}{l}
x_{t+1} \\
y_{t+1} \\
z_{t+1}
\end{array}\right]=\left[\begin{array}{ccc}
4 & -2 & -2 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{t} \\
y_{t} \\
z_{t}
\end{array}\right]=A \boldsymbol{w}_{t}
$$

Use the characteristic polynomial of A to find the eigenvalues:

$$
\begin{aligned}
\operatorname{det}(A-r I) & =\left|\begin{array}{ccc}
4-r & -2 & -2 \\
0 & 1-r & 0 \\
1 & 0 & 1-r
\end{array}\right|=(4-r)(1-r)^{2}+2(1-r) \\
& =\left(r^{2}-5 r+6\right)(1-r)=(3-r)(2-r)(1-r)=0
\end{aligned}
$$

The eigenvalues are $r_{1}=1, r_{2}=3$ and $r_{3}=3$. Next we can use the eigenvalues to find the eigenvectors. If $\boldsymbol{v}_{\boldsymbol{r}_{i}}$ is an eigenvector, then $\left(A-r_{i} I\right) \boldsymbol{v}_{\boldsymbol{r}_{i}}=\mathbf{0}, i=1,2,3$. To find the first eigenvector, write

$$
\left[\begin{array}{ccc}
4-1 & -2 & -2 \\
0 & 1-1 & 0 \\
1 & 0 & 1-1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{ccc}
3 & -2 & -2 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

This yields the equations $3 v_{1}-2 v_{2}-2 v_{3}=0$ and $v_{1}=0$, so $v_{2}=-v_{3}$. Thus, the first eigenvector is

$$
\boldsymbol{v}_{r_{1}}=\left[\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right] .
$$

The other eigenvectors can be found in a similar way: $\boldsymbol{v}_{r_{2}}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$ and $\boldsymbol{v}_{r_{3}}=\left[\begin{array}{l}2 \\ 0 \\ 1\end{array}\right]$.
The general solution can be written as (see Lecture 18, p. 10):

$$
\boldsymbol{w}_{\boldsymbol{t}}=c_{1} r_{1}^{t} \boldsymbol{v}_{\boldsymbol{r}_{\mathbf{1}}}+c_{2} r_{2}^{t} \boldsymbol{v}_{r_{2}}+c_{3} r_{3}^{t} \boldsymbol{v}_{r_{3}},
$$

where c_{1}, c_{2} and c_{3} are constants. Therefore, the general solution of this exercise is

$$
\boldsymbol{w}_{\boldsymbol{t}}=c_{1} 1^{t}\left[\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right]+c_{2} 2^{t}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]+c_{3} 3^{t}\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right] .
$$

5. Solution

Exercise 5 can be solved in a similar way as the previous exercise. Write the system of difference equations in matrix form:

$$
\boldsymbol{w}_{t+\mathbf{1}}=\left[\begin{array}{l}
x_{t+1} \\
y_{t+1} \\
z_{t+1}
\end{array}\right]=\left[\begin{array}{ccc}
3 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 3
\end{array}\right]\left[\begin{array}{l}
x_{t} \\
y_{t} \\
z_{t}
\end{array}\right]=A \boldsymbol{w}_{t} .
$$

The eigenvalues are $r_{1}=3, r_{2}=4$ and $r_{3}=1$, and the eigenvectors are $v_{r_{1}}=\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]$, $v_{r_{2}}=\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]$ and $v_{r_{3}}=\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]$.

The general solution is

$$
\boldsymbol{w}_{\boldsymbol{t}}=c_{1} 3^{t}\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]+c_{2} 4^{t}\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]+c_{3} 1^{t}\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right] .
$$

