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Label ranking



Label ranking

• Training output are given as lists of

pairwise preferences A � B between

labels: defines a partial order ”label A

is preferable to label B”

• Model ranks all labels: outputs a total

order, that is, all possible labels given

in sequential order

• Loss function is between two rankings:

loss in incurred if the prediction has

B � A and the ground truth has

A � B
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Label ranking: definitions

• X is the input space, Σ = {1, . . . ,K} set of labels

• Y = {Y |Y ⊂ Σ× Σ} is the output space of all possible sets of

pairwise preferences yk � yl over K labels

• S = {(xi ,Yi )}mi=1, (xi ,Yi ) ∈ X × Y is a set of training examples

• Each Yi ∈ Y is a set of pairwise preferences

• (p � q) ∈ Yi denotes label p is preferable to label q given input xi
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From multiclass classification to label ranking

• A multiclass predictor based on linear classification is relatively

straightforward to convert to a label ranking model

• For each label p, we have a model wT
p x that assigns a compatibility

score between the inputs x and the label p

• In multiclass classification, we only needed to make the correct class

yi the top-ranked one wT
yi xi ≥ wT

p xi for all p 6= yi

• In label ranking need to order all labels instead of just ranking the

correct class to the top:

wp
Tx ≥ wq

Tx if (p � q) ∈ Y
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Label ranker as a classifier

• The constraint

wT
q xi ≥ wT

p xi

corresponds to a hyperplane classifier

ypqiw
T
pqxi ≥ 0

where wpq = wp −wq and

ypqi =


+1 if p � q ∈ Yi

−1 if q � p ∈ Yi

0 otherwise

• It is unlikely that the data will be linearly separable for all

hyperplanes

• Minimization of the number of misclassified data is NP-hard

• We will again use the Hinge loss as the surrogate loss function
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Hinge loss for label ranking

• The loss for one example (x,Y ) is an average of the Hinge losses

over the set of label preferences Y :

1

|Y |
∑

p�q∈Y

max(0, 1− (wp
Tx−wq

Tx))

• Maximizes the average functional margin over pairs of label

preferences

• Minimizes an convex upper bound on the number of labels that are

in inverted order (Kendall’s distance of ranked sequence of labels)
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Label ranking SVM1

• Label ranking SVM is given by

min
wk ,k=1...,K

λ

2

K∑
k=1

‖wk‖2 +
m∑
i=1

1

|Yi |
∑

{p�q}∈Yi

ξpqi

s.t. wp
Txi −wq

Txi > 1− ξpqi
for all {p � q} ∈ Yi , i = 1, . . . ,m

ξpqi ≥ 0

• Objective:

• Regularizes the sum of norms of all label classifiers - indirectly

maximizes the margins

• Slack ξpqi corresponds to the upper bound on the Hinge loss for xi

and label pairs (p, q) ∈ Y

1Gärtner & Vembu, 2009
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Multilabel classification



Multilabel classification

• In multilabel classification, a

subset of the labels

yk , k = 1, . . . ,K is associated

with each input

• Loss functions are defined on

vectors of labels
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Multilabel classification

• Inputs are vectors x ∈ Rd (possibly obtained through some

preprocessing)

• Outputs are binary vectors y = (y1, . . . , yK ) ∈ {−1,+1}K = Y
• Loss function compares two binary vectors y and y′

• Zero-one loss: L0/1(y, y′) =

1 y 6= y′

0 y = y′

• Hamming loss: LHamming (y, y′) =
∑K

k=1 1{yk 6= y ′
k}

• Structural losses: based on the dependency structures of the labels

yk (e.g. hierarchical)
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Running example: Hierarchical Multilabel Classification

Goal: Given document x, and

hierachy T = (V ,E ), predict

multilabel y ∈ {+1,−1}k where the

positive labels yi take the form of

set of partial paths from root to

an internal node in T

news

entertainment

football athleticsfilm

champions league

sport politics

music

jazz classical euro 2008
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Binary relevance model for multilabel classification

Binary relevance (BR) models are a simple multilabel prediction approach

relying on binary classification:

• Assume that the individual labels yk , 1 ≤ k ≤ K are independent

(probably violated in practise!)

• Build a binary classifier hk(x) ∈ {−1,+1} for each individual label yk

• predicted multilabel is the vector (h1(x), h2(x), . . . , hK (x))
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Binary relevance model for multilabel classification

• Binary relevance models are often competitive in practice

• However, they ignore dependencies between the labels

• Thus the predicted vector (h1(x), h2(x), . . . , hK (x)) may contain

combinations of labels that are rarely or never seen in test data (e.g.

some label yk may be 1 only if another label yj has value 1 as well)

• Another problem is that multilabel data is often biased towards the

negative class:

• Only few variables per example have value 1

• Only a small fraction of examples has value 1 for a given variable

• The binary classifiers may be negatively biased as a consequence

(have high False Negative rate)
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Binary relevance model in Hierarchical Multilabel Classification

• BR model would predict each node of the hierarchy (topic)

independently

• A very small fraction of documents belong to each specific topic:

leaf nodes are dominated by negative examples, BR model might be

biased towards the negative class

• Independent prediction may cause a child node to be predicted

positive even if the parent is negative - this goes against of how we

think of hierarchical taxonomies

news

entertainment

football athleticsfilm

champions league

sport politics

music

jazz classical euro 2008
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Multilabel classification without BR decomposition

• Ideally, we would like to learn a model that directly predicts the

multilabel vector h : X 7→ {−1,+1}K

• We start by defining a linear model mapping an input vector x ∈ Rd

to an output y ∈ RK by

WTx = y

where W ∈ Rd×K is a matrix of weights, with weight vectors wk as

columns W = [w1, . . . ,wk ] = [wjk ]d,Kj=1,k=1

• We can think of each column defining a linear model wT
k x predicting

the label yk

• A weight wjk is interpreted as the importance of input variable xj to

predict the label yk
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Multilabel classification BR decomposition

• We represent the compatibility of the pair (x, y) by the sum of

margins of the column based models:

f (x, y) =
∑K

k=1 ykwT
k x = yTWTx

• Equivalently, we can write the same as a Frobenius inner product

〈A,B〉F =
∑

i,j aijbij between two matrices A = {aij} and B = {bij}

• We get yTWTx =
∑d

j=1

∑K
k=1 wjk(xjyk) = 〈W, xyT 〉F

• The matrix xyT gives a joint representation for the input and output:

xyT =


x1y1 . . . x1yK
x2y1 . . . x2yK

...
. . .

...

xdy1 . . . xdyK

 = [y1x, y2x, . . . , yKx]

• An entry xjyk models the dependency between the j ’th input

variable and the k ’th label
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Joint feature map

• We can flatten the two matrices into vectors by concatenating their

columns into a long vector

w = vec(W) = (wT
1 ,w

T
2 , . . . ,wK )T

and

φ(x, y) = vec(xyT ) = (y1xT , y2xT , . . . , yKxT )T

• φ(x, y) is an example of a joint feature map for the pair (x, y)

• The compatibility score for the pair (x, y) can be now written as

f(x, y) = 〈W , xyT 〉 = wTφ(x, y)

• The prediction of our model for input x will be

y∗ = argmaxy∈YwTφ(x, y)
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Learning objective

• Our goal will be to learn w so that the correct pairs (xi , yi ) are

ranked above all the incorrect pairs (xi , y), y 6= yi

• We can express our goal as the constraint:

wTφ(xi , yi )−wTφ(xi , y) ≥ 0, for all y 6= yi

• Or alternatively:

wTφ(xi , yi ) ≥ max
y 6=yi

wTφ(xi , y)

• It is not likely that the constraint can be satisfied for all pairs

(xi , yi ), i.e. the correct pairs (xi , yi ) may not be linearly separable

for the incorrect pairs (xi , y), y 6= yi

• Minimization of the number of incorrect pairs ranked above the

correct pairs is also computationally hard
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Learning objective

• Hence we will use a soft margin formulation, corresponding to

constraints

wTφ(xi , yi )−wTφ(xi , y) ≥ 1− ξi , for all y 6= yi

which call for establishing a functional margin of at least 1− ξi
between the correct pair and all incorrect pairs

• The constraints correspond to a multilabel Hinge loss:

LMLHinge(xi , yi ,w) = max
y 6=yi

(0, 1− (wTφ(xi , yi )−wTφ(xi , y))

• The loss measures the amount of slack needed by the highest

scoring incorrect multilabel to have a functional margin at least 1

compared to the correct multilabel

17



Multilabel SVM

• Adding regularization for the weight vector w we obtain an

optimization problem for multilabel SVM:

min
w,ξ≥0

λ

2
‖w‖2 +

1

m

m∑
i=1

ξi

s.t. wTφ(xi , yi )−wTφ(xi , y) ≥ 1− ξi ,∀i , y ∈ Y − {yi}

´

• Alternatively, we can rewrite the optimization problem in terms of

the multilabel Hinge loss:

min
w

λ

2
‖w‖2 +

1

m

m∑
i=1

LMLHinge(xi , yi ,w)

´

• Let us derive a stochastic gradient algorithm for this probem
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Stochastic gradient optimization for multilabel SVM

• We rewrite the objective as a average over training points:

min
w

1

m

m∑
i=1

(
λ

2
‖w‖2 + max

y 6=yi
(0, 1− (wTφ(xi , yi )−wTφ(xi , y))

)
• The multilabel Hinge loss for a single training example is piecewise

differentiable, with the gradient (formally subgradient):

∂LMLHinge(xi , yi ,w) = ∂

(
max
y 6=yi

(0,
(
1− (wTφ(xi , yi )−wTφ(xi , y)))

))
= φ(xi , ȳ)− φ(xi , yi )

where ȳ = argmaxy 6=yi

(
1− (wTφ(xi , yi )−wTφ(xi , y))

)
is the

incorrect multilabel with the smallest margin, that is, the highest

scoring incorrect multilabel

19



Stochastic gradient optimization for multilabel SVM

Initialize w = 0;

repeat

Draw a random training example (xi , yi )

Find the multilabel with the highest loss:

ȳ = argmaxy 6=yi (1− (wTφ(xi , yi )−wTφ(xi , y))

Update if Hinge loss is positive:

if wTφ(xi , yi )−wTφ(xi , ȳ) < 1 then

Choose a stepsize η

Update the weights towards the negative gradient:

w = w − η(λw + φ(xi , ȳ)− φ(xi , yi ))

end if

until Stopping criterion is satisfied
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Tackling large multilabel spaces

• The bottleneck of the above stochastic gradient algorithm is finding

the multilabel with the highest Hinge loss

ȳ = argmaxy 6=yi (1− (wTφ(xi , yi )−wTφ(xi , y))

• This is due to the large number of terms the maximization is

computed over

• With K different labels yk ∈ {−1,+1}, we have 2K different binary

multilabels y, leading to maximization over 2K − 1 terms

• We need efficient methods to tackle the large multilabel space
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Tackling large multilabel spaces

• In general, finding the multilabel with the highest Hinge loss is

computationally hard

ȳ = argmaxy 6=yi (1− (wTφ(xi , yi )−wTφ(xi , y))

• Efficient (polynomial-time) algorithms exist for special structures, for

example

• Label sequence learning: dynamic programming algorithms similar to

Hidden Markov Model inference algorithms

• Hierarchical classification: dynamic programming over the tree

• Typically efficient algorithms rely one decomposing the compatibility

score into a sum over the parts (substructures) of the output

structure

argmaxy∈Y

dy∑
j=1

wT
j φj(x, y)

and making use of the dependency structures between parts to avoid

exhaustive enumeration of Y
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Tackling large multilabel spaces

• In many cases, no pre-defined structure is available

• In these cases, the training data can be used to give a approximate

solution: we solve instead

ȳ(x) = argmaxy∈YS−{yi}(1− (wTφ(xi , yi )−wTφ(xi , y))

where YS = {y|(xi , y) ∈ S}} ⊂ Y contains the multilabels seen in

the training data

• This is in general relatively fast and effective, but requires that the

training data covers enough of the relevant output space
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Joint features

• We assumed so far that the joint feature map is φ(x, y) = vec(xyT )

• However, in general we can first map the inputs and outputs to new

spaces using any suitable basis functions, and then compute the

joint feature map

φ(x, y) = vec(φx(x)φy (y)T ) = φx(x)⊗ φy (x),

where ⊗ denotes the tensor product

• One joint feature for each input-output feature pair φx,k(x)φy ,`(y):

we can track co-occurring input-output features

• Makes no no prior assumption of which input-output feature pairs

might be relevant
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Joint feature map: hierarchical document classification

• φx(x) is the bag of words (word

frequencies) of the document

• φy (y) is the vector of edge-label

indicators: ψe,u(y) = 1 if adjacent

pair of nodes e = (i , j) is labeled u ∈
{(−1,−1)(−1,+1)(+1,−1), (+1,+1)}
• φ(x, y) ∈ Fxy contains counts of a

word co-occurring with an adjacent

label pair in example (x, y)

• Weights w are learned to pick up

importance input features (words)

predictive of an adjacent pair of labels

news

entertainment

football athleticsfilm

champions league

sport politics

music

jazz classical euro 2008
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Joint feature maps: label sequence learning

• Assume the task is to predict a label for every symbol in a sequence

(e.g. annotating biosequences)

• Usually locality matters: nearby input positions have larger influence

to the output than far away ones

• The joint feature map φ(x, y) = vec(φx(x)φy (y)T ) does not allow

directly to represent this

• It contains every pair of input-output features, irrespective of how far

in sequence they are
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Joint feature maps: aligned input and output

• We can define a sliding window spanning a few adjacent positions

c = istart . . . iend
• Compute a joint feature map over the window

φc(x, y) = φc1(x)⊗ ψc1(y)

• The joint feature map is computed as the sum of window-specific

joint feature maps:

φ(x, y) =
∑
c∈C

φc(xc , yc),
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Loss functions for structures



Loss functions for structures

• The multilabel Hinge loss

LMLHinge(xi , yi ,w) = max
y 6=yi

(0, 1− (wTφ(xi , yi )−wTφ(xi , y))

is an convex upper bound for the Zero-one loss:

L0/1(y, y′) =

{
1 y 6= y′

0 y = y′

• It treats all incorrect multilabels the same

• However, multilabels with only a few incorrect labels might be

preferable c than those with many errors

• The most common loss that can represent this kind of preference is

the Hamming loss:

LHamming (y, y′) =
K∑

k=1

1{yk 6= y ′k}
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Example: Hierarchical classification

• We can use the Hamming loss within the multilabel Hinge loss by

replacing the functional margin 1 with the Hamming loss

LMLHinge(xi , yi ,w) = max
y 6=yi

(0, LHamming (y, y′)−(wTφ(xi , yi )−wTφ(xi , y))

• The more incorrect the output y, the larger the required margin

• In the joint feature space, the constraints induce a set of

hyperplanes, corresponding to different levels of Hamming loss

• The point φ(xi , y) will be constrained to lie in the correct side of the

hyperplane that has distance LHamming from φ(xi , yi )

C E CLJ

Fi AM

E

N

S P

Fo

margin

w f(x,{N,E,M,S,A})

f(x,{E,M,J,S})

f(x,{N,E,M,S})

f(x,{N,E,M,S,Fo})
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Generalizations

The above described methods generalize to other settings (details out of

scope of this course):

• Instead of Hamming loss, we can use application dependent loss

functions that contain prior information of the severity of errors

• The models can be kernelized for applications where

high-dimensional input and output spaces are needed

• The outputs are not restricted to be multilabels but can be general

object

• The over all algorithm stays the same

• The representations of inputs and outputs as well as the procedures

for finding the outputs with the highest loss typically needs to

changed
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Summary

• Label ranking can be used for tasks where several labels may be

relevant but their preferences differ

• Label ranking can be formulated as a regularized loss minimization

problem and solved by stochastic gradient approaches

• Multilabel classification is used for applications where a particular

subset is relevant for an input

• Dependency structures between the labels and inputs can be

modeled through joint feature maps

• Hamming loss can be used to measure the distance between two

label vectors
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End of the course

• Last assignment deadline: Tomorrow 2.12.2020 23:59

• Course exam (online in Mycourses): Friday 18.12. at 13:00-16:00. It

will be a mixture of essay style and multiple choice questions.

• Answer the anonymous course feedback survey: It will open on

December 11 and close December 31. One extra point will be

awarded for everybody who answers.
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