## Aalto university

Björn Ivarsson

## Exercise sheet 11

Complex Analysis, MS-C1300.
Hand in exercise 1 and 2 for grading. Deadline Monday 30.11 at $23: 59$. The exercises should be uploaded to the correct folder on MyCourses as one pdf-file with name and student number in the file name. Submission via MyCourses is the only accepted way. Done during class Tuesday 1.12 or Wednesday 2.12.
(1) Determine the disks of convergence of
(a) $\sum_{n=1}^{\infty} \sqrt[n]{n}(z-1)^{n}$
(b) $\sum_{n=1}^{\infty} n^{2}(z+2)^{2^{n}}$
(c) $\sum_{n=1}^{\infty} n!(z-i)^{n!}$
(2) Find the Taylor series expansion of $f$ about the origin, and identify the largest open disk $\Delta(0, \rho)$ in which the expansion is valid. (Hint: Remember the geometric series. Also remember that Taylor series can be differentiated and integrated term-wise in their disks of convergence.)
(a) $f(z)=(1-z)^{-2}$
(b) $f(z)=\left(1+z^{2}\right)^{-3}$
(c) $f(z)=\log \left(1+z^{2}\right)$
(3) Show that

$$
\frac{e^{z}}{1-z}=\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} \frac{1}{k!}\right) z^{n}
$$

when $|z|<1$. (Hint: Taylor series can be multiplied in their disks of convergence.)
(4) Assume that $f$ is a non-constant entire function. Assume there is a constant $\lambda \neq 1$ such that $f(\lambda z)=f(z)$ for every $z \in \mathbb{C}$. Show that there must be an integer $m \geq 2$ such that $\lambda^{m}=1$. Also show that there is an entire function $g$ such that

$$
f(z)=g\left(z^{m}\right)
$$

where $m$ is the minimal integer $m \geq 2$ such that $\lambda^{m}=1$.

