CS-E5875 High-Throughput Bioinformatics Immune cell receptor sequencing

Harri Lähdesmäki
(most slides by Emmi Jokinen)
Department of Computer Science
Aalto University

November 27, 2020

Outline

- Immune system, T cells and T cell receptors
- Motivation and objectives
- TCR sequencing data
- Kernel methods
- Gaussian processes
- Results

Outline

- Immune system, T cells and T cell receptors
- Motivation and objectives
- TCR sequencing data
- Kernel methods
- Gaussian processes
- Results

Human immune system

- Humans are exposed to millions of potential pathogens daily, through contact, ingestion, and inhalation.

INNATE
IMMUNE RESPONSES

Innate Immune responses

- General defence reactions
- Three lines of defences:
- Physical and chemical barriers
- Cell-intrinsic responses
- An individual cell recognizes that it has been infected and takes measures to kill or cripple the invader
- A specialized set of proteins and phagocytic cells that recognize conserved features of pathogens and become quickly activated to help destroy invaders

Adaptive immune responses

- Highly specific responses
- Slow to develop on first exposure to a new pathogen (can take a week or so)
- Provide long-term protection
- Activated by innate immune system
- Carried out by lymphocytes
- Antibody responses (B cells)
- T-cell-mediated responses

T cells

- T cells are white blood cells (lymphocytes) that are distinguished from other lymphocytes by the presence of a T-cell receptor (TCR) on the cell surface
- T cells play a central role in the immune response

T cells and T cell receptors (TCRs)

Tcell
activated dendritic cell

- T cells are activated by foreign antigens (peptides)
- Peptides are displayed by major histocompatibility complex (MHC) proteins located on the surface of antigen-presenting cells (usually dendritic cells)
- Peptide-MHC complex is recognised by T cell receptor (TCR)
- Upon T cell activation via TCR, T cells proliferate and differentiate into effector cells

T cell receptors (TCRs)

- The T-cell receptor (TCR) gene is expressed in T cells and found on the surface of T cells
- The TCR is a heterodimer composed of two different protein chains, alpha and beta
- Antigen (peptide) specificity is determined by hyper variable loops, so-called complementary determining regions (CDR) 1, 2 and 3

TCR diversity

- Each individual T cell can (in principle, but not in practice) have a unique TCR gene in DNA: different TCRs recognise different peptides
- V(D)J recombination: TCRs are manufactured from variable (V), diversity (D), joining (J) and constant (C) gene fragments through a process of somatic gene rearrangement
(a)

(b)

Figure: [5]

TCR diversity

- TCR α chain locus: 45 V -gene and 50 J -gene segments
- TCR β chain locus: ~50 V-gene, 2 D-gene and 12 J-gene segments
- Junctional diversification: During the joining of these gene segments nucleotides can be lost from the ends of the segments, and one or more can also be inserted

Figure: Cellular and Molecular Immunology. Abul K. Abbas, Andrew H. H. Lichtman, Shiv

Antigen-binding site

Figure: [1]

- CDR3 primarily interacts with the peptide and is most variable
- CDR1 and CDR2 (and CDR2.5) mainly bind to the walls of the peptide-binding groove, but have sometimes been observed to be in contact with the peptide

TCR repertoire

- Each T cell has potentially an unique TCR
- TCRs of an individual are called a TCR repertoire
- After a T cell has recognized an epitope, it starts to proliferate
- The resulting set of T cells with identical TCRs is called a clone
- T cells from large clones are more likely to be sampled
- TCR repertoire contains an immunological memory of all immunological stimuli an individual has had during lifetime
- Viruses, microbes, other environmental exposures
- Vaccines

Complexity of TCR repertoires

- ~1018 possible TCRs
- $\sim 10^{12} \mathrm{~T}$ cells in a human
- $\sim 10^{8}$ distinct TCRs in a human (young adult)
- If a sample contains e.g. around 50000 T cells
- It's about 0.000005% of all T cells
- On average, each T cell recognises at least 1 million individual peptides
- A peptide can be recognised by several TCRs.

Outline

- Immune system, T cells and T cell receptors
- Motivation and objectives
- TCR sequencing data
- Kernel methods
- Gaussian processes
- Results

How to utilize TCRs?

Improved diagnostics

- Better understanding of an individual's immune status in different diseases

Personalized medicine

- Which patients would respond to different medications?

Repertoire level studies: utilize TCR repertoires of different subjects

- E.g. find TCRs associated with some condition Sequence level studies
- E.g. determine epitope specificity of individual TCRs

Another Goal

receptor for co-stimulatory protein

- Determine which peptides bind a given MHC
foreign peptide (antigen)

Why machine learning?

- "Perfect" solution:
- Test experimentally which peptides all possible TCRs (~1018) recognize
- Impossible
- Machine learning solution:
- Assume that similar TCRs behave similarly
- Based on known specificities of some TCRs, predict specificities for new TCRs (supervised learning)

Supervised learning

- A learning process which looks at annotated data to
receptor for co-stimulatory
protein then automatically annotate similar un-annotated data

Classification task

- Binary classification:
- Predict whether a TCR recognizes and binds to a certain peptide or not
cell-cell
adhesion
proteins
foreign peptide (antigen)

MHC protein

Outline

- Immune system, T cells and T cell receptors
- Motivation and objectives
- TCR sequencing data
- Kernel methods
- Gaussian processes
- Results

TCR sequencing

- TCRs can be quantified by sequencing
- Targeted sequencing for TCR locus in DNA using C-gene selective primer (TCR-seq)
- RNA-seq
- Additionally, one can first select T cells that recognize a specific peptide, and sequence the TCR gene from only those cells
- Epitope-specific, tetramer-sorted TCRseq

Figure: [6]

Quantification of TCRs from TCR-seq

- Align TCR-seq sequencing reads against V, D and J genes
- Similar to RNA-seq read alignment but with lots of mismatches and indels
- Several tools: e.g. MiXCR

Quantification of TCRs from TCR-seq

- Align TCR-seq sequencing reads against V, D and J genes
- Similar to RNA-seq read alignment but with lots of mismatches and indels
- Several tools: e.g. MiXCR

Figure: https://mixcr.readthedocs.io/en/master/

Epitope-specific TCRs

- Epitope-specific TCRs are stored e.g. in VDJdb https://vdjdb.cdr3.net
- TCRs recognizing epitopes from e.g.
- Influenza A
- Cytomegalovirus
- HIV
- Epstain Barr Virus
- Sars-Cov-2

Distribution VDJdb confidence scores

VDJdb score \square 0 , ${ }^{2} \square^{3}$

0 - critical information missing, 1 -medium confidence,
2 - high confidence, 3 -very high confidence.

Control sequences

- Negative controls may also be needed (e.g. for supervised analysis)
- Generally TCRs that recognize an epitope are sequenced, not TCRs that do not recognize that epitope
- We can take TCRs that appear only once (singletons) in a subject's TCR reportoire
- We can assume that these TCRs are unlikely to recognize a certain epitope

TCR amino acid sequences

- Usually a TCR is presented by its CDR3 amino acid sequence and V - and J -genes
- CDR1, CDR2 and CDR2.5 are completely determined by V -gene and allele

- We can construct a table of CDR1, CDR2 and CDR2.5 sequences corresponding to all possible V-genes and alleles
- Examples of TCR β sequences:

CDR3	CDR1	CDR2	CDR2.5
CASSIQALLTF	SGHDY	FNNNVP	PNASF
CASSVVGGNEQFF	SGDLS	YYNGEE	FPDLH
CASSVAQLAGGTDTQYF	SGDLS	YYNGEE	FPDLH
CSARDPSGLAGGLAETQYF	DFQATT	SNEGSKA	ASLTL

How to utilize sequences?

No alignment
CASSIQALLTF
CASSVVGGNEQFF
CASSVAQLAGGTDTQYF
CSARDPSGLAGGLAETQYF

With alignment
CASSIQ--------ALLTF
CASSVVG------GNEQFF
CASSVAQLA--GGTDTQYF
CSARDPSGLAGGLAETQYF

- Alignment free methods
+ Sequences can have arbitrary lenghts
- Cannot consider position specific information
- Methods that use aligned sequences
+ Can utilize position specific information
+ Can utilize amino acid features (more easily)
- Good alignment can be difficult to get
- New sequences need to be added to the alignment
- New sequences cannot be longer than those in the original alignment

Alignment-free comparisons

- Edit distance: Levenshtein distance
- Minimum number of single amino acid changes (insertions, deletions, substitutions) between two sequences:
-CASSLYF \rightarrow CAASSLYF \rightarrow CAASLYW: distance is 3
- k-mer or motif freqưencies
- Define a set of k-mers, all possible or some smaller set
- Can be used to define "similar" TCRs

	CAS ASS		SSL SLY	\cdots	
CASSLYFF	1	1	1	1	\cdots
CASSIQALLTF	1	1	0	0	\cdots
CASSVVGGNEQFF	1	1	0	0	\cdots
CAVGDRGYEQYF	0	0	0	0	\cdots
\vdots	\vdots	\vdots	\vdots	\vdots	\ddots

- Do not consider similarity between amino acids

Aligning TCR sequences

- There is a limited number of CDR1, CDR2 and CDR2.5 sequences, and we know what they are
- They can all be aligned according to IMGT definitions
- We assume that CDR3 sequences form simple loops
- We add gap at the top of the loop for shorter sequences (according to IMGT numbering)
- Easy to add new sequences to the alignment
- Examples of aligned TCR β sequences

CDR3	CDR1	CDR2	CDR2.5
CASSIQ--------ALLTF	SGH--------DY	FNN----NVP	P-NASF
CASSVVG------GNEQFF	SGD-------LS	YYN----GEE	F-PDLH
CASSVAQLA--GGTDTQYF	SGD--------LS	YYN----GEE	F-PDLH
CSARDPSGLAGGLAETQYF	DFQ-------ATT	SNEG---SKA	A-SLTL

One-hot encoding

- Most simple numeric presentation
- Sequences as vectors with constant length
- Does not consider similarity between amino acids

A R	N	D	E	Q	G	H	L	L	K	M	F	P	S	T	W	Y	V	-		
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

C	A	S	S	-	-	-	L	Y	F	F
0	1	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	1	1
0	0	0	0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	1	1	0	0	0	0

Amino acid properties

- There are 20 naturally occurring amino acids
- R-groups (or side chains) determine their different properties H

Amino acid	Abbreviation		Chemical	Volume	Hydropathy
Alanine	Ala	A	alipahatic	87	hydrophobic
Arginine	Arg	R	basic	173	hydrophilic
Aspargine	Asn	N	amide	114	hydrophilic
Aspartic acid	Asp	D	acid	111	hydrophilic
Cysteine	Cys	C	sulfur	109	hydrophobic
Glutamic acid	Glu	E	acid	138	hydrophilic
Glutamine	Gln	Q	amide	144	hydrophilic
Glysine	Gly	G	aliphatic	60	neutral
Histidine	His	H	basic	153	neutral
Isoleucine	Ile	I	alipahatic	167	hydrophobic
Leucine	Leu	L	alipahatic	167	hydrophobic
Lycine	Lys	K	basic	169	hydrophilic
Methionine	Met	M	sulfur	163	hydrophobic
Phenyalanine	Phe	F	aromatic	190	hydrophobic
Proline	Pro	P	Cyclic	113	neutral
Serine	Ser	S	hydroxyl	89	neutral
Threonine	Thr	T	hydroxyl	116	neutral
Tryptohophan	Trp	W	aromatic	228	hydrophobic
Tyrosine	Tyr	Y	aromatic	194	neutral
Valine	Val	V	alipahatic	140	hydrophobic

Feature presentation

- Use the different amino acid properties as features
- Concatenate them to make feature vectors for each amino acid, e.g.
$\left[\begin{array}{c}\text { volume } \\ \text { charge } \\ \text { hydrophobicity } \\ \text { polarity }\end{array}\right]$

Substitution matrices

BLOSUM62

- Describe how easily an amino acid can be substitued with another
- Can be based e.g. on:
- Sequence comparison
- Sequence comparison by protein blocks
- Chemical similarity
- Structural or physical similarity

With added gap (-) and scaled into range [0,1]

BLOSUM62

Amino acid features with BLOSUM62

PCA of BLOSUM62

\rightarrow feature vectors (size: $d \times 1$) for each amino acid

CDR3 presentation with BLOSUM62

 ecoSequence presentation (size: $/ \times d$ or $(I \cdot d) \times 1$)
C A S S Y K K - - - - T E G G D P

Outline

- Immune system, T cells and T cell receptors
- Motivation and objectives
- TCR sequencing data
- Kernel methods
- Gaussian processes
- Results

Classification

- Linear classification
- Fairly simple

- Non-linear classification
- More difficult
- Can be implemented with kernels

Kernels (1/3)

- Kernel functions allow us to encode the similarity of TCRs
- Kernels can map data $\mathrm{x} \in \mathscr{X}$ to a higher dimensional space \mathscr{H}, where it is linearly separable

Kernels (2/3)

- Definition:

For a non-empty set \mathcal{X}, a function $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ is a kernel if there exists a Hilbert space \mathcal{H} and a function $\phi: \mathcal{X} \rightarrow \mathcal{H}$ such that $\forall x, x^{\prime} \in \mathcal{X}, k\left(x, x^{\prime}\right):=\left\langle\phi(x), \phi\left(x^{\prime}\right)\right\rangle_{\mathcal{H}}$

- A commonly used kernel is Gaussian kernel (or radial basis function (RBF) or squared exponential (SE)):

$$
k\left(\mathbf{x}, \mathbf{x}^{\prime} \mid \theta\right)=\sigma^{2} \exp \left(-\frac{\left(\mathbf{x}-\mathbf{x}^{\prime}\right)^{T}\left(\mathbf{x}-\mathbf{x}^{\prime}\right)}{2 \ell^{2}}\right)
$$

where ℓ is the length-scale parameter, σ^{2} is the magnitude parameter and $\theta=\left(\ell, \sigma^{2}\right)$.

Kernels (3/3)

- Examples of kernel functions:

Matern32

Linear

Matern52

Cosine

SquaredExponential

Periodic

Figure: https://gpflow.readthedocs.io/en/develop/notebooks/kernels.html

Outline

- Immune system, T cells and T cell receptors
- Motivation and objectives
- TCR sequencing data
- Kernel methods
- Gaussian processes
- Results

GP classification

- A probabilistic classifier that uses kernels
- Can learn non-linear decision boundaries
- Learns suitable complexity of the boundary from data
- Models the confidence of the predictions

TCRGP pipeline

Epitope-specific TCR data

Dash data								
Species	Epitope species	Epitope gene	Epitope	MHC chain 1	MHC chain 2	Subjects	Samples	Unique $\operatorname{TCR} \alpha \beta \mathrm{s}$
Human	EBV	BMLF $1_{280-288}$	GLCTLVAML	HLA-A*02:01	-	6	76	69
	CMV	pp65495-503	NLVPMVATV	HLA-A*02:01	-	10	61	60
	IAV	$\mathrm{M} 1_{58-66}$	GILGFVFTL	HLA-A*02:01	-	15	275	237
Mouse	IAV	PB1-F2 ${ }_{62-70}$	LSLRNPILV	$\mathrm{D}^{\text {b }}$	-	9	117	117
	IAV	$\mathrm{NP}_{366-374}$	ASNENMETM	$\mathrm{D}^{\text {b }}$	-	24	305	263
	IAV	$\mathrm{PA}_{224-233}$	SSLENFRAYV	$\mathrm{D}^{\text {b }}$	-	15	324	293
	IAV	PB1703-711	SSYRRPVGI	$\mathrm{K}^{\text {b }}$	-	34	642	584
	mCMV	m139 ${ }_{419-426}$	TVYGFCLL	$\mathrm{K}^{\text {b }}$	-	8	87	87
	mCMV	M38316-323	SSPPMFRV	$\mathrm{K}^{\text {b }}$	-	14	158	143
	mCMV	M45985-993	HGIRNASFI	$\mathrm{D}^{\text {b }}$	-	13	291	271
VDJdb data								
Human	CMV	pp65 ${ }_{123-131}$	IPSINVHHY	HLA-B*35	B2M	17	65	58
	CMV	pp65 ${ }_{\text {417-426 }}$	TPRVTGGGAM	HLA-B*07	B2M	29	184	122
	CMV	pp65 ${ }_{\text {495-503 }}$	NLVPMVATV	HLA-A*02	B2M	103	413	242
	EBV	BMLF $1_{280-288}$	GLCTLVAML	HLA-A*02	B2M	54	299	152
	EBV	BZLF $1_{190-197}$	RAKFKQLL	HLA-B*08	B2M	17	225	149
	EBV	BRLF $1_{109-117}$	YVLDHLIVV	HLA-A*02	B2M	6	66	51
	IAV	M1 ${ }_{\text {58-66 }}$	GILGFVFTL	HLA-A*02	B2M	50	239	138
	IAV	$\mathrm{HA}_{306-318}$	PKYVKQNTLKLAT	HLA-DRA*01	HLA-DRB1*01,04	11	56	50
	HCV	NS31073-1081	CINGVCWTV	HLA-A*02	B2M	7	76	39
	HCV	NS31406-1415	KLVALGINAV	HLA-A*02	B2M	4	65	65
	HCV	NS31436-1445	ATDALMTGY	HLA-A*01	B2M	7	152	139
	HSV-2	VP22 ${ }_{49-57}$	RPRGEVRFL	HLA-B*07	B2M	5	68	29
	YFV	NS4B ${ }_{214-222}$	LLWNGPMAV	HLA-A*02	B2M	5	223	198
	DENV1	NS3133-142	GTSGSPIVNR	HLA-A*11	B2M	11	65	59
	DENV3-4	NS3133-142	GTSGSPIINR	HLA-A*11	B2M	8	51	46
	HIV-1	p2430-40	KAFSPEVIPMF	HLA-B*57	B2M	44	134	104
	HIV-1	p2448-56	TPQDLNTML	HLA-B* 42,81	B2M	21	52	40
	HIV-1	p24 128-135 $^{\text {d }}$	EIYKRWII	HLA-B*08	B2M	12	81	60
	HIV-1	p24 ${ }_{131-140}$	KRWIILGLNK	HLA-B*27	B2M	27	212	141
	HIV-1	p24 161-180	FRDYVDRFYKTLRAEQASQE	HLA-DRA*01	HLA-DRB1* $01,07,11,15$, HLA-DRB5*01	17	141	95
	HIV-1	$\mathrm{p} 24_{223-231}$	GPGHKARVL	HLA-B*07	B2M	1	62	53
	HIV-1	Nef ${ }_{90-97}$	FLKEKGGL	HLA-B*08	B2M	21	104	78

AUCs for 10 epitopes: Comparing TCRGP

 and TCRdist using leave-one-subject-out crossvalidation

AUCs for 22 epitopes for VDJdb data: Comparing several methods

How many epitope-selected TCRs are needed to build a reliable/robust prediction model?

Combining TCR-peptide recognition prediction with scRNA-seq analysis

- Can we gain more insight into diseases using combined TCR-seq+scRNA-seq?
- An example of HBV virus in hepatocellular carcinoma (HCC)

Cheng data

HBV-specific TCR β data

Zheng data

T cells from HBV+ HCC

Analyze HBV-
specific T cells in HCC

Analysis of TCR-seq+scRNAseq from HBV+ hepatocellular carsinoma patients

- Can identify which phenotypes HBVrecognizing T cells are enriched to
- Most exhausted and least functional

Other references

[1] Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., and Walter, P. (2007). Molecular biology of the cell. Garland Science, 5 edition.
[2] Robins, H. S. et al. (2009). Comprehensive assessment of T-cell receptor β-chain diversity in $\alpha \beta$ T cells. Blood, 114(19), 4099-4107.
[3] Lefranc, M. (1999). The IMGT unique numbering for immunoglobulins, T-cell receptors, and Ig-like domains. Immunologist, 7(4), 132-136.
[4] Rasmussen, C. E. and Williams, C. K. I. (2006). Gaussian processes for machine learning. The MIT Press.
[5] Daniel Joseph Laydon, Charles R M Bangham, Becca Asquith (year). Estimating T-cell repertoire diversity: Limitations of classical estimators and a new approach.
[6] Scott Brown, Lisa A. Raeburn, Robert A. Holt (2015) Profiling tissue-resident T cell repertoires by RNA sequencing

