LECTURE SCHEDULE

Date Topic

1.	Wed	28.10.	Course Introduction & Short Review of the Elements

- 2. Fri 30.10. Periodic Properties & Periodic Table & Main Group Elements (starts)
- 3. Fri 06.11. Short Survey of the Chemistry of Main Group Elements (continues)
- 4. Wed 11.11. Ag, Au, Pt, Pd & Catalysis (Antti Karttunen)
- 5. Fri 13.11. Redox Chemistry
- 6. Mon 16.11. Transition Metals: General Aspects & Crystal Field Theory
- 7. Wed 18.11. Zn, Ti, Zr, Hf & Atomic Layer Deposition (ALD)
- 8. Fri 20.11. V, Nb, Ta & Metal Complexes and MOFs
- 9. Mon 23.11. Cr, Mo, W & 2D materials
- 10 Wed 25.11. Mn, Fe, Co, Ni, Cu & Magnetism and Superconductivity
- 11. Fri 27.11. Resources of Elements & Rare/Critical Elements & Element Substitutions
- 12. Mon 30.11. Lanthanoids + Actinoids & Pigments & Luminescence & Upconversion
- 13. Wed 02.12. Inorganic Materials Chemistry Research

EXAM: Thu Dec 10, 9:00-12:00 (IN ZOOM)

PRESENTATION TOPICS/SCHEDULE

Wed	18.11.	Ti: Ahonen & Ivanoff

- Mon 23.11. Mo: Kittilä & Kattelus
- Wed 25.11. Mn: Wang & Tran Ru: Mäki & Juopperi
- Fri 27.11. In: Suortti & Räsänen Te: Kuusivaara & Nasim
- Mon 30.11. Eu: Morina U: Musikka & Seppänen

QUESTIONS: Lecture 12

- List all the possible lanthanoid ions that have 7 f electrons.
- List all the possible lanthanoid ions that have 14 f electrons.
- Why Eu has so low melting point?
- Which way you prefer to place the rare earth elements in the periodic table ? Why ?

1																	18
H	2	_										13	14	15	16	17	2 He
Li ³	Be ⁴											B ⁵	C ⁶	N 7	0 ⁸	F 9	10 Ne
л Na	12 Mg	3	4	5	6	7	8	9	10	11	12	A1	14 Si	P ¹⁵	S ¹⁶	17 Cl	18 Ar
19 K	20 Ca	21 Sc	22 Ti	V ²³	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	³⁴ Se	35 Br	36 Kr
37 Rb	.38 Sr	Y ³⁹	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	Ag ⁴⁷	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
55	56	57	72	_ 73	74	75	76	77	78	79	80	81	82	8.3	84	85	86
Cs	Ba	La	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
87	88	89	104	105	106	107	108	109	110								
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Uun								

- 58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	\mathbf{Pm}	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
90	91	92	93	- 94	95	96	97	98	- 99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	\mathbf{Fm}	Md	No	Lr

f-BLOCK TRANSITION METALS

- lanthanides [elements after La: Ce ~ Lu]
- actinides [elements after Ac: Th ~ Lr]
- lanthanoids (Ln): La + Lanthanides
- rare earth elements (RE): Ln + Y + Sc

La	lanthanum	Тb	terbium
Ce	cerium	Dy	dysprosium
Pr	praseodymium	Ho	holmium
Nd	neodymium	Er	erbium
Pm	promethium	Tm	thulium
Sm	samarium	Yb	ytterbium
Eu	europium	Lu	lutetium
Gd	aadolinium	Y	vttrium

Figure 4. Abundance (atom fraction) of the chemical elements in Earth's upper continental crust as a function of atomic number. Many of the elements are classified into (partially overlapping) categories: (1) rock-forming elements (major elements in green field and minor elements in light green field); (2) rare earth elements (lanthanides, La-Lu, and Y; labeled in blue); (3) major industrial metals (global production >~3x10⁷ kg/year; labeled in bold); (4) precious metals (italic); and (5) the nine rarest "metals"—the six platinum group elements plus Au, Re, and Te (a metalloid).

RARE EARTH ELEMENTS (= METALS)

Discovery history starts from and ends in Finland:

- Johan Gadolin (prof. at Univ. Turku) showed in 1794 that the new mineral found in Ytterby (near Stockholm) contained some new oxide ("earth") of an unknown/new element \rightarrow yttrium

- Olavi Erämetsä (inorg. chem. prof. at TKK) found in 1965 from nature small amounts of radioactive promethium (first discovered in USA in 1940s as a fission product in nuclear reactions)

Element

Cerium (Ce) Lanthanum (La) Terbium (Tb) Erbium (Er) Ytterbium (Yb) Holmium (Ho) Thulium (Tm) Scandium (Sc) Samarium (Sm) Gadolinium (Gd) Praseodymium (Pr) Neodymium (Nd) Dysprosium (Dy) Europium (Eu) Lutetium (Lu)

Discoverer

Klaproth 1803 Mosander 1839 Mosander 1843 Mosander 1843 Mariqnac 1878 Cleve 1878 Cleve 1879 Nilson 1879 Boisboudran 1879 Marignac 1880 Welsbach 1885 Welsbach 1885 Boisboudran 1886 Demarcay 1896 Urbain 1907

Origin of name

Ceres (asteroid) Greek *lanthano* (= to hide) Ytterby Ytterby Holmia (= Stockholm) Thule (= Nothern country) Scandinavia Samarskite (mineral) Johan Gadolin Greek *didymos* (= green twin) Greek *neos didymos* (= new twin) Greek *dysprositos prasios* (= difficult to reach) Europe Lutetia (= Paris)

LANTHANOID / ACTINOID CONTRACTION

Figure 1. Global rare earth element production (1 kt=10⁶ kg) from 1950 through 2000, in four categories: United States, almost entirely from Mountain Pass, California; China, from several deposits; all other countries combined, largely from monazite-bearing placers; and global total. Four periods of production are evident: the monazite-placer era starting in the late 1800s and ending abruptly in 1964; the Mountain Pass era, starting in 1965 and ending about 1984; a transitional perioc from about 1984 to 1991; and the Chinese era, beginning about 1991.

Atomic numbers: even more common than uneven

Currently: China produces >95 %

SEPARATION OF RARE EARTH ELEMENTS FROM EACH OTHER

- Very difficult due to the similarities in chemistry
- Cerium and Europium chemically:
 - oxidation of Ce^{III} to Ce^{IV} plus precipitation as CeO₂ or Ce(IO₃)₄
 - reduction of Eu^{III} to Eu^{II} plus precipitation as EuSO₄
- Fractional crystallization (hundreds of steps):
 e.g. *RE*(NO₃)₃•2NH₄NO₃•4H₂O or *RE*(BrO₃)₃
- Cation exchange
- Continuous solvent extraction (nonpolar organic solvent): current large-scale separation technique

CATION EXCHANGE

- In the cation exchange column Na⁺ ions are exchanged to RE³⁺ ions
- Elucidation with EDTA occurs in the order of: Lu, Yb, Tm, ... (from smaller to larger)

Misch-metal

- German: *Mischmetall* = mixed metal
- Metal alloy of rare earth elements
- Rare earth elements in natural portions (varies)
- Typical composition: 50% Ce + 45% La + Nd, Pr traces
- Use: in lighter: alloyed with Fe and Mg oxides \rightarrow ferrocerium
 - in production of FeSiMg alloy to remove free oxygen and sulphur

Scandium (Sc)

- discovered in 1879 by spectral analysis of the minerals euxenite and gadolinite from Scandinavia
- preparation of metallic Sc in 1937
- own rare mineral thortveitite (Sc,Y)₂Si₂O₇ (Norway 1911)
- produced as a by-product of rare-earth and uranium production; yearly trade of scandium (oxide) is only 10 tonnes
- first applications for scandium developed in the 1970s
- main use in aluminium alloys
- oxidation state +3; oxide Sc₂O₃
- chemical properties of Sc are intermediate between those of Al and Y
- diagonal relationship between Sc and Mg (ref. Al-Be)

Electronic configurations and oxidation states of lanthanoids

Z	Element	Electronic configuration	Oxidation states
57	Lanthanum (La)	4f ⁰ 5d ¹ 6s ²	+
58	Cerium (Ce)	4f ¹ 5d ¹ 6s ²	+ , + V
59	Praseodymium (Pr)	4f ² 5d ¹ 6s ²	+
60	Neodymium (Nd)	4f ³ 5d ¹ 6s ²	+
61	Promethium (Pm)	4f ⁴ 5d ¹ 6s ²	+
62	Samarium (Sm)	4f ⁵ 5d ¹ 6s ²	+
63	Europium (Eu)	4f ⁷ 5d ⁰ 6s ²	+ , +
64	Gadolinium (Gd)	4f ⁷ 5d ¹ 6s ²	+
65	Terbium (Tb)	4f ⁷ 5d ² 6s ²	+ , + V
66	Dysprosium (Dy)	4f ⁹ 5d ¹ 6s ²	+
67	Holmium (Ho)	4f ¹⁰ 5d ¹ 6s ²	+
68	Erbium (Er)	4f ¹¹ 5d ¹ 6s ²	+
69	Thulium (Tm)	4f ¹² 5d ¹ 6s ²	+
70	Ytterbium (Yb)	4f ¹⁴ 5d ⁰ 6s ²	+ , +
71	Lutetium (Lu)	4f ¹⁴ 5d ¹ 6s ²	+

MELTING POINTS (°C)

COLOURS OF IONS

- No strong colours
 - colourless: La^{III}, Ce^{III}, Gd^{III}, Yb^{III}, Lu^{III}, Ce^{IV}, Eu^{II}
 - green: Pr^{III}, Tm^{III}
 - violet: Nd^{III}, Er^{III}
 - yellowish pink: Pm^{III}, Ho^{III}
 - yellow: Sm^{III}, Dy^{III}, Yb^{II}
 - light pink: Eu^Ⅲ, Tb^Ⅲ

La	920
Се	795
Pr	935
Nd	1010
Pm	-
Sm	1072
Eu	822
Gd	1311
Tb	1360
Dy	1412
Но	1470
Er	1522
Tm	1545
Yb	824
Lu	1656

OXIDES

Ln_2O_3

- trivalent oxide most common Ln oxide (for all Ln)
- strongly basic
- absorbs water/carbon dioxide from air \rightarrow hydroxide/carbonate salts
- Similarities with alkali earth metal oxides

LnO₂

- CeO₂
- Pr₆O₁₁, Tb₄O₇

LnO

- EuO, YbO: electrical insulators (Ln²⁺ O²⁻)
- EuO ferromagnetic
- NdO, SmO: electrical conductors (Ln³⁺ O²⁻ e⁻)

PERMANENT MAGNETS (ferromagnets)

- 1970s: SmCo₅, Sm₂Co₁₇
- 1980s: Nd₂Fe₁₄B (= neomagnets; very strong)
- With neomagnets smaller electric motors (e.g. in car industry)

Material

In bulk material the domains usually cancel, leaving the material unmagnetized.

magnetic field.

BaFe ₁₂ O ₁₉	0.36	0.36
Alnico IV	0.07	0.6
Alnico V	0.07	1.35
Alcomax I	0.05	1.2
MnBi	0.37	0.48
Ce(CuCo)₅	0.45	0.7
SmCo₅	1.0	0.83
Sm ₂ Co ₁₇	0.6	1.15
Nd₂Fe₁₄B	1.2	1.2

Coercivity [T]

Remanence [T]

4f orbitals

SPECTROSCOPIC PROPERTIES

- Energies of 4f orbitals splitted in crystal/ligand field (ref. d orbitals)
- More complicated splitting scheme than in the case of the d orbitals

LANTHANOIDS in OPTOELECTRONICS

Electron transitions within 4f orbitals and between 4f and 5d orbitals

 Iantanoids have unique optical properties

Fluorescent lamps:
 from UV (254 nm)
 to visible light

 Y_2O_3 :**Eu**³⁺ CeMgAl₁₁O₁₉:**Tb**³⁺ (Ce,Gd)MgB₅O₁₀:**Tb**³⁺ BaMgAl₁₀O₁₇:**Eu**²⁺ Sr₅(PO₄)₃(F,Cl):**Eu**²⁺ ZnS:Mn²⁺

EL displays: from electric energy to visible light

Lasers:

ZnS:**Tb³⁺** Y₃Al₅O₁₂:**Nd³⁺**

SrS:Ce³⁺

green green blue blue yellow bluishgreen green 1064 nm

red

Fluorescence lamp

LUMINESCENCE (= fluorescence)

- Material absorbs higher-energy photon and emits smaller-energy photon (shorter-to-longer wavelength; UV → Vis)
- Energy difference → lost as heat
- Different ways to excite luminescence:
 - photoluminescence
 - electroluminescence
 - thermoluminescence
 - chemiluminescence
 - triboluminescence
 - bioluminescence

ISC

Emilssion

Ground State

Excitiation

⁵**D**₃

ENERGY TRANSFER: Sensitizer \rightarrow **Activator**

PIGMENT

- Material with wavelength-selective absorption
- Usable pigment must have a high tinting strength; used in paints, inks, plastics, fabrics, cosmetics, food, etc.
- For applications in industry and arts

 → insoluble in water and stable in light and
 heat
- Naturally occurring pigments such as ochres and iron oxides have been used as colorants since prehistoric times
- April 2018 by *Bloomberg Businessweek*:
 - global value of pigment industry \$30 billion
 - TiO₂ (white) has the largest share

Inorganic BLUE PIGMENTS

- 6 000 years ago, Ultramarine: "true blue" made from semiprecious gemstone lapis lazuli mined in e.g. Afghanistan
- 1826 French Ultramarine: synthetic ultramarine
- 4 000 years ago, Egyptian Blue: "turquoise", first synthetic pigment (calcium copper tetrasilicate) made by heating sand and copper together
- 1704 Prussian Blue: Fe₄[Fe(CN)₆]₃ (other names: e.g. Berlin, Turnbull, midnight blue)
- 1802 Cobalt Blue: CoAl₂O₄
- 2009 Mas or YInMn Blue: Y(In,Mn)O₃

- Prof. Mas Subramanian received 2008
 National Science Foundation grant to explore
 novel materials for electronics applications
- Main aim: multiferroic (FM + FE) materials
- He directed his PhD student Andrew Smith to synthesize a mixture of two oxides: YInO₃ (ferroelectric; white) YMnO₃ (antiferromagnetic; black)
- The result was NOT multiferroics, but blue material
- Subramanian has experience in chemical industry (DuPont) and recognized the value of the new blue pigment (filed a patent)
- Color adjusted by In/Mn ratio: Y(In_{0.8}Mn_{0.2})O₃ strongest
- First blue pigment discovered since 1802 (cobalt blue)
- Huge interest:
 - industry: Nike, Crayola, etc.
 - media: New York Times, Time Magazine, National Geographic, Businessweek, etc.
 - arts: Harward Art Museum, etc.

Mas Subramanian

- Born: 1954, Chennai, India
- MSc. I1977 (Inorganic Chemistry: clays and minerals) University of Madras 1977
- PhD 1982 (Solid State Chemistry: pyrochlore oxides) Indian Institute of Technology, Madras
- 1982-1984 PostDoc, Texas A&M University, USA
- 1984-2006 DuPont, USA:
 - ceramics, superconductors, dielectrics, catalysis, thermoelectrics, multiferroics, ionic conductors, etc.
- 2006-now Professor at Oregon State University: design and synthesis of novel functional materials for emerging applications in energy, environment & electronics
- 2009: novel durable blue pigment: YInMn Blue

Mount Hood (Oregon) by Aquarelles de Mas Blue by Ms. Rajeevi Subramanian

Linus Carl Pauling (1901–1994) was an American chemist, biochemist, peace activist, author, and educator, graduated at Oregon State University. He published more than 1200 papers and books, 850 on scientific topics. *New Scientist* rated him in 2000 the 16th most important scientist in history.

Pauling was one of the founders of the fields of quantum chemistry and molecular biology.

For his scientific work, Pauling was awarded the Nobel Prize in Chemistry in 1954.

In 1962, for his peace activism, he was awarded the Nobel Peace Prize.

Pauling is one of only two people who have received Nobel Prizes in different fields, the other being Marie Curie.

ACTI NOI DS

• Electronic subshells are filled in a manner analagous to the lanthanide series

	Ac	Th	Pa	U	Np	Pu	Am	Cm	$\mathbf{B}\mathbf{k}$	Cf	Es	Fm	Md	No	\mathbf{Lr}
Z	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
M(g)	6d 7s ²	$6d^27s^2$	² 5 f²6d 7s ²	² 5f ³ 6d7s ²	² 5f ⁴ 6d7s ²	5f ⁶ 7s ²	5f ⁷ 7s2	5f ⁷ 6d7s ²	$5t^{9}7s^{2}$	$5f^{10}7s^2$	$5f^{11}7s^2$	$5f^{12}7s^2$	$(5f^{13}7s^2)$	$(5f^{14}7s^2)$	$(5f^{14}6d7s^2)$

Occurrence of Uranium & Transuranoids

- only Ac, Th, Pa and U found in nature
- transuranoids exist only artificially (trace amounts of Np and Pu in uranium minerals)
- ca. 100 different uranium minerals, most important being uraninite (pikivälke) UO_x (x = 2-2.67) and carnotite K₂(UO₂)₂(VO₄)₂•3H₂O
- U ca. 500 times more common than Au: earth crust 2.1 ppm, ocean water 0.002-0.003 ppm
- occasionally U content may be high enough to create a natural nuclear reactor, e.g. Oklo in Africa billions years ago
- 15 isotopes (²²⁶U ²⁴⁰U): ²³⁸U 99.275 % ²³⁵U 0.720 % ²³⁴U 0.005 %
- all U isotopes unstable

ENRICHMENT OF URANIUM

- Small carbonate content in ore \rightarrow acid dissolution/extraction
- Large carbonate content in ore \rightarrow basic dissolution/extraction
- Concentration after filtering
- Precipitation → yellow cake acid solution: $(NH_4)_2U_2O_7$ or MgU_2O_7 carbonate solution: $Na_2U_2O_7$
- Reduction \rightarrow UO₂
- Green salt UF₄

- 235U 236U 92Kr 5 0 141Ba
- For isotope enrichment: $UF_4(s) + F_2(g) \rightarrow UF_6(g)$
- Isotope enrichment: gas diffusion process, centrifugal separation, electromagnetic separation, laser exitation, jet/spray separation
- Use as a fuel in nuclear reactors: ²³⁵U, ²³⁵UO₂, ²³⁵UC₂