Translational Engineering Forum

Concluding lecture

Ivan Vujaklija 01/12/2020

Agenda

- Course wrap-up
- Final technical details

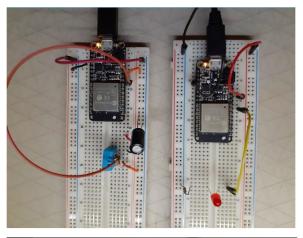
Essential Questions

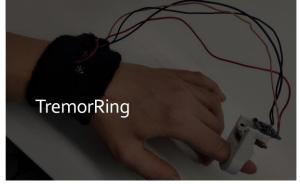
- What have we done?
- To what end?

Objective

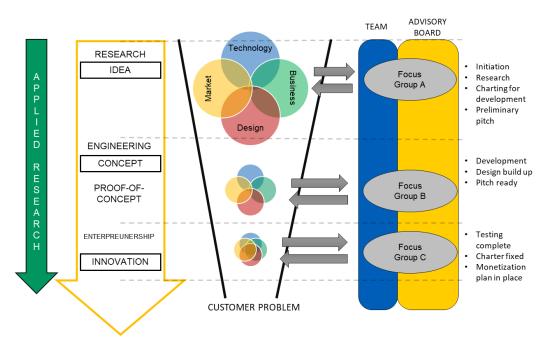
- Reflect on the course content
- Manage the future expectations
- Address any technical/content questions

Translational Engineering Forum


10 lectures

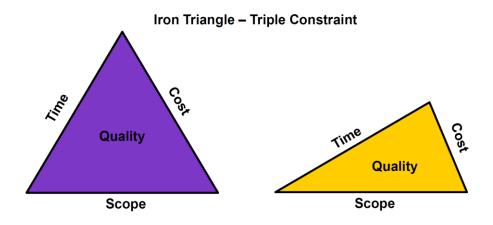

7 exercise sessions

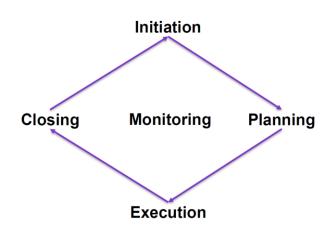
4 guests in 3 forum sessions

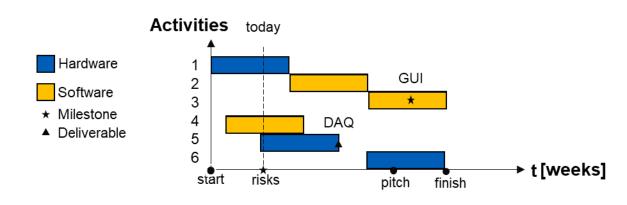


1. Introduction and local examples

1. Introduction and local examples






2. Engineering project management

2. Engineering project management

3. Regulations, standards and certifications

- Regulations (regulatory compliance) describe the goal that organizations aspire to achieve in their efforts to ensure that they are aware of and take steps to comply with relevant laws, policies, and regulations
- Standard is a level of quality or achievement instructions on how to handle regulatory compliance, providing a reminder of how compliance and risk should operate together
- Certification is an action or process of providing someone or something with an official document attesting to a status or level of achievement

3. Regulations, standards and certifications For each Failure effect rate its user impact:

System/Function	Failure Mode	Failure Mode Effects	Severity	Potential Causes of the Failure Mode	Current Preventative Actions	Occurrence	Current Detection Activities	Detection	Priority
Sensing/Temperature	Doesn't do	spoiled goods	9	sensor broken casing design power down		3	spike detection	7	7
	Measures wrong	melting of the container insulation fire	9	sensor broken calibration off reference voltage is off	sample testing casing design power control calibration (procedure and instruction)	7 • calibration log • calibration procedure		3	5
Sensing/Humidity	Doesn't do		8	sensor broken power down	sample testing casing design power control	4	spike detection	7	6
	Measures wrong	spoiled goods creation of the mold short circuiting	7	sensor broken calibration off reference voltage is off	sample testing casing design power control calibration (procedure and instruction)	7	calibration log calibration procedure	2	4
Actuation/Fan	Dies	spoiled goods melting of the container insulation fire	9	relay broken (voltage) controller broken fan broken	sample testing smooth start/stop power control	4	energy consumption monitor		10
	Runs too fast/slow	spoiled goods too dry/humid mechanical damage	8	relay broken (current) controller broken	sample testing smooth start/stop circuit design power control	5	spike detection	2	7

Aalto-yliopisto Aalto-universitetet Aalto University

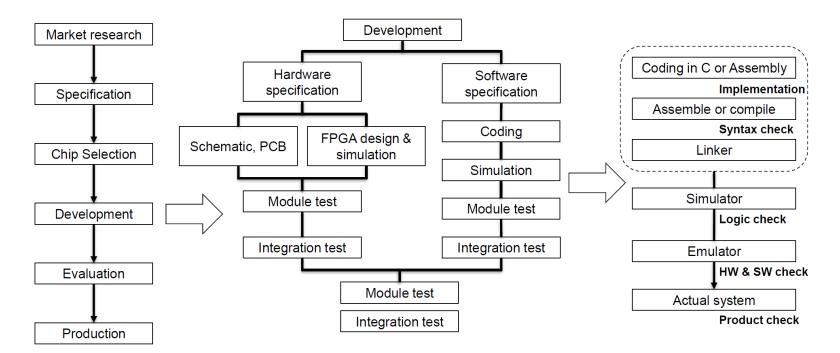
- Minimal system effect user is unaware
- Slight reduction in performance user notices
- Noticeable drop in performance user is disappointed
- Part of the system is inoperable user is annoyed
- Failure compromises user safety or regulations

List how you will prevent each failure cause:

- · Planned analysis
- Preliminary testing

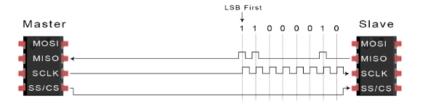
Rate how likely it is for this cause to occur:

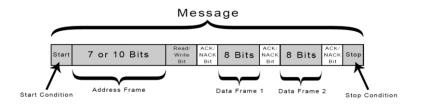
- (1) Remote not really anticipated (1:1.000.000)
- (2) Very low only under extreme circumstances (1:100.000)
- (3-4) Low isolated cases (1:30.000 or 1:1000)
- (5-6) *Moderate* occasionally (0,5%-2%)
- (7-8) *High* often (12-15%)
- (9-10) Very high it is bound to happen (>33%)

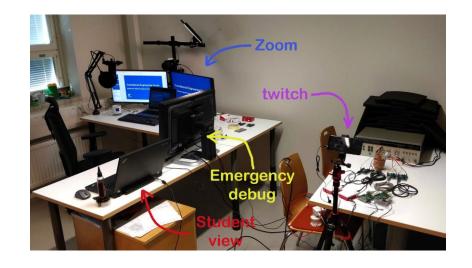

List how you plan to detect each failure cause:

- · Customer reviews
- Final testing

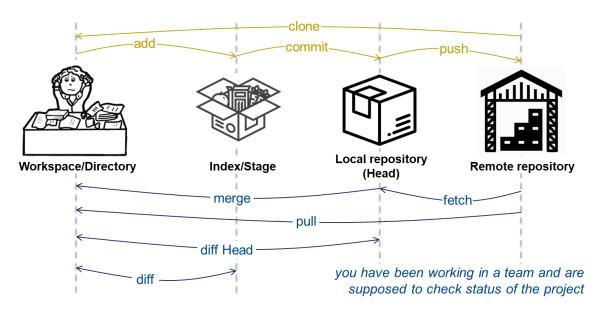
Rate how likely it is to detect this cause :

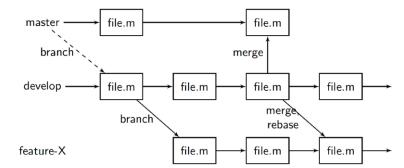

- (1-2) Very low Unlikely
- (3-4) Low Poor chance of detection
- (5-6) Moderate Might detect it
- (7-8) High Good chance of detection
- (9-10) Very high Almost certain detection


4. (Embedded) Electronic system design

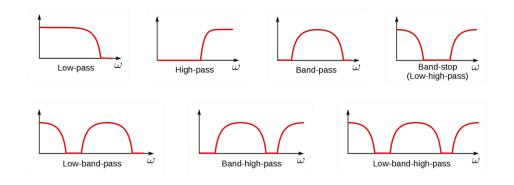


4. (Embedded) Electronic system design

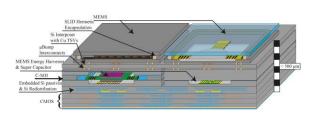




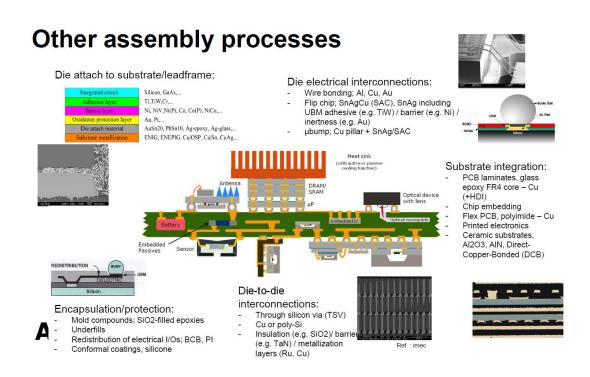
5. Software engineering



5. Software engineering & signal processing

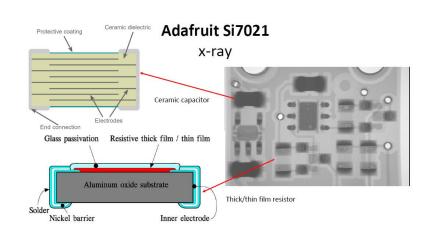


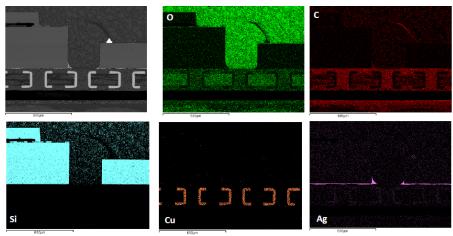

```
L = 5; %filter length
B = ones(1,L)/L; % [0.2, 0.2, 0.2, 0.2] numerator coefficients
A = [1]; %denominator coefficients
x = rand(1,10); %random samples for x;
y = filter(B,A,x); %filter input x and get result in y
```



6. MEMS and electronics integration

Prof. Mervi Paulasto-Kröckel


Concept for standalone sensor system



6. MEMS and electronics integration

Dr. Vesa Vuorinen

ADXL345 3-axis accelerometer

Forum

7. Forum 1

8. Forum 2

9. Forum 3

Milan Pešić

Manager Device and Technology Development at Applied Materials

Translational Engineering Forum 24/11/2020

To what end?

Now you hopefully:

- Understand the process and requirements to convert basic research into innovative products and technologies
- Apply the process of demand-based product development
- Define core knowledge and skills needed to design multidisciplinary technical products
- Design a concept for an electronic device and anticipate main challenges in the entity including SW/HW interfaces, EMC, assembly and manufacturing
- Identify processes needed for quality assurance in product development

So you can:

- Start more comprehensive projects
- Initiate new ventures within your area of expertise and interest
- Have more complete understanding of engineering activities and their impact
- Be more competitive and have a greater understanding of your own work
- Have easier time in other courses.

Final group report

Deadline **01/12** 23:59

This is <u>an extension of your previous</u> report. Therefore, apart from new content it should also account for provided comments.

There is no predefined format of the report as projects are highly individual, but it should still somehow convey at least the following:

Background research / introduction of the problem, Description of the team and individual roles, Project charter (objectives, stakeholders, timeline, communication plan, ...), sensor consideration, System design, Legislative considerations (regulations, standards and certifications), Upscaling plan

Reports will be evaluated based on their: technical content, clarity and style of writing, organization, implementation of the methods covered in the course

Short written feedback will be provided within the two weeks from each submission.

To be submitted through MyCourses (Assignments) as a PDF named: GroupNumber_GroupReport-ReportNumber-2020.pdf

Final peer evaluation

Deadline **06/12** 23:59

Send score sheets via email directly to ivan.vujaklija@aalto.fi

Students should evaluate (0-5) their own efforts as well as their group peers by filling in the following table on two occasions.

The peer evaluation will be **fully anonymous**, and each student will communicate these directly with the instructor.

One week following each submission students will receive the average of all grades.

Do not submit uncontested grading!

	Self	Peer 1	Peer 2	:	Peer N
Reaching goals					
Meeting deadlines					
Participation in group work					
Commitment					
Quality					
Proactivity					
Learning					

Thank you!

Online Course Feedback