PHYS-C0252 - Quantum Mechanics Part 11 16.11.2020-08.12.2020

Tapio.Ala-Nissila@aalto.fi

7.3 Time Dependence of Operators

- The formulation of quantum dynamics is not unique for the states and operators. Consider the expectation value of some (Hermitian) operator

$$
\begin{aligned}
\langle\hat{A}(t)\rangle & =\langle\psi(t)| \hat{A}|\psi(t)\rangle=\langle\hat{U}(t) \psi(0)| \hat{A}|\hat{U}(t) \psi(0)\rangle \\
& =\langle\psi(0)| \hat{U}^{\dagger}(t) \hat{A} \hat{U}(t)|\psi(0)\rangle \\
& =\left(\langle\psi(0)| \hat{U}^{\dagger}(t)\right) \hat{A}(\hat{U}(t)|\psi(0)\rangle) \\
& =\langle\psi(0)|\left(\hat{U}^{\dagger}(t) \hat{A} \hat{U}(t)\right)|\psi(0)\rangle
\end{aligned}
$$

The form where the states evolve in time is the Schrödinger picture

$$
\langle\hat{A}(t)\rangle=\left(\langle\psi(0)| \hat{U}^{\dagger}(t)\right) \hat{A}(\hat{U}(t)|\psi(0)\rangle)
$$

and where the operator(s) evolve in time but states stay the same is the Heisenberg picture:

$$
\langle\hat{A}(t)\rangle=\langle\psi(0)|\left(\hat{U}^{\dagger}(t) \hat{A} \hat{U}(t)\right)|\psi(0)\rangle
$$

7.3.1 Schrödinger Picture

- The time evolution of the state is governed by

$$
\imath \hbar \frac{\partial}{\partial t}|\psi(t)\rangle_{S}=\hat{H}|\psi(t)\rangle_{S}
$$

or equivalently $|\psi(t)\rangle_{S}=\hat{U}\left(t, t_{0}\right)\left|\psi\left(t_{0}\right)\right\rangle_{S}$
For operators (expectation values)

$$
\begin{aligned}
& \imath \hbar \frac{\partial}{\partial t}\langle\psi(t)| \hat{A}|\psi(t)\rangle_{S} \\
= & \imath \hbar\left(\langle\psi(t)| \hat{A}|\dot{\psi}(t)\rangle_{S}+\langle\dot{\psi}(t)| \hat{A}|\psi(t)\rangle_{S}\right)
\end{aligned}
$$

$$
=\langle\psi(t)| \hat{A} \hat{H}|\psi(t)\rangle_{S}-\langle\psi(t)| \hat{H} \hat{A}|\psi(t)\rangle_{S}=\langle[\hat{A}, \hat{H}]\rangle_{S}
$$

If the commutator is zero, the expectation value of A is a constant of motion

7.3.2 Heisenberg Picture

- In the HP the states do not evolve in time but the operators (expectation values) do, and we can write

$$
\hat{A}_{H}(t)=\hat{U}^{\dagger}\left(t, t_{0}\right) \hat{A}_{S} \hat{U}\left(t, t_{0}\right)
$$

which agree at time t_{0}
The wave functions are related by

$$
\left|\psi_{S}(t)\right\rangle=\hat{U}\left(t, t_{0}\right)\left|\psi_{H}\right\rangle
$$

The operators depend on time now and their equation of motion is given by

$$
\begin{aligned}
& \frac{\partial \hat{A}_{H}}{\partial t}=\frac{\partial\left(\hat{U}^{\dagger} \hat{A}_{S} \hat{U}\right)}{\partial t} \\
& =\frac{\imath}{\hbar}\left(\hat{U}^{\dagger} \hat{H} \hat{A}_{S} \hat{U}-\hat{U}^{\dagger} \hat{A}_{S} \hat{H} \hat{U}\right) \\
& =\frac{\imath}{\hbar}\left(\hat{H}_{H} \hat{A}_{H}-\hat{A}_{H} \hat{H}_{H}\right) \\
& =-\frac{\imath}{\hbar}[\hat{A}, \hat{H}]_{H}
\end{aligned}
$$

Note that for time-independent Hamiltonian

$$
\hat{H}_{H}=\hat{U}^{\dagger} \hat{H} \hat{U}=\hat{H}
$$

There is also an interaction (Dirac) picture, which is used when the system Hamiltonian can be divided into two parts as (in Schrödinger picture)

$$
\hat{H}_{S}=\hat{H}_{S}^{0}+\hat{H}_{S}^{I}
$$

where the first part is "easy" (usually solvable). Then a state vector in the IP is given by

$$
\left|\psi_{I}(t)\right\rangle=e^{\imath \hat{H}_{S}^{0} t / \hbar}\left|\psi_{S}(t)\right\rangle
$$

An operator in the IP is defined by

$$
\hat{A}_{I}(t)=e^{\imath \hat{H}_{S}^{0} t / \hbar} \hat{A}_{S} e^{-\imath \hat{H}_{S}^{0} t / \hbar}
$$

Recently a correlation picture (transformation) has been introduced for open quantum systems

Correlation-Picture Approach to Open-Quantum-System Dynamics

S. Alipour $\odot,^{1,{ }^{*}}$ A. T. Rezakhani $\odot,{ }^{2, \dagger}$ A. P. Babu $\odot{ }^{1}$ K. Mølmer, ${ }^{3}$ M. Möttönen $\odot,{ }^{4}$ and T. Ala-Nissila ${ }^{1,5, \ddagger}$

FIG. 1. Description of the correlation picture. At any time τ (or τ^{\prime}), a correlating transformation \mathscr{C}_{χ} transforms an uncorrelated state $\varrho_{\mathrm{S}} \otimes \varrho_{\mathrm{B}}$ to a correlated state $\varrho_{\mathrm{SB}}=\varrho_{\mathrm{S}} \otimes \varrho_{\mathrm{B}}+\chi$, at the same instant of time, due to an abstract correlation-dependent parent operator given by H_{χ}. Using this transformation, we obtain the temporal evolution of the uncorrelated system with a universal Lindblad-like generator \mathscr{L}^{χ} [see Eq. (9)] constructed from H_{SB}, the generator of the total system dynamics in the Schrödinger picture.

