- Here are short answers to some of the exercise questions, but not those requiring longer verbal answers
- Note that these are not necessarily complete model answers, but rather short answers enough for you to be able to judge whether your own answers are correct or not
- On the last page you can find the evaluation table; please let me know if you find some mistakes e.g. in summing up the points
- Note that even though you have got the full "2" points, your answer may not be perfectly correct; the evaluation scale was roughly as follows:

2 points: all questions addressed with reasonable and mostly correct answers1.5 points: questions mostly answered but several clear mistakes1 point: answer sheet returned but only partly answered/a number of mistakes

Which element(s) was/were discovered

- As a result of huge interest in burning reactions in 1700s: O, N
- Based on accurate measurements of air in 1890s: Ar, Kr, Ne, Xe
- Thanks to the progress in electrochemical techniques in 1800-1810: alkali and alkaline earth metals
- Thanks to the progress in spectroscopy techniques in 1860s: Cs, Rb, Tl, In, He
- For the first time from outside of the Earth (1868): He
- Much earlier in South America by native Indians than in Europe (in 1750~1850): platinum metals
- Based on quantum chemical considerations: Hf (first, several others later)
- By a Finnish professor: Y (and Pm from the nature for the first time)
- The discovery was rewarded by a Nobel prize in 1906: F

- Why copper readily exists in the oxidation state +I ? Give the electron configuration for Cu. Valence electron configuration: 4s¹3d¹⁰
- How many f electrons (in neutral atom) the following elements have: La, Eu, Lu ? La 0 (6s²5d¹), Eu 7 (6s²5d⁰4f⁷), Lu 14 (6s²5d¹4f¹⁴)
- How many f electrons the following ions have: La³⁺, Eu³⁺, Eu²⁺ ?
 La³⁺ 0, Eu³⁺ 6, Eu²⁺ 7
- How many unpaired electrons the following ions have: V⁵⁺ (0), Cr³⁺ (3), Cu²⁺ (1), Eu³⁺ (6), Tb³⁺(6 or 8), Yb³⁺(1), Lu³⁺ (0)?
- Indicate for each of the following pairs the larger atom/ion, or state that they are of the same size if that is the case: Na–K, K–Ca, Fe²⁺–Fe³⁺, Ti³⁺–Ti⁴⁺, Ti⁴⁺–Zr⁴⁺, Zr⁴⁺–Hf⁴⁺ (same size), La–Lu

- 1. Name four main group elements which you consider to be most unique; also give the most characteristic property for each of these elements.
- **2.** Draw semitopological diagrams for the following boranes: B_4H_{10} and B_5H_{11}

See the following slides

Below are Latimer diagrams for bromine in acidic and basic conditions:

 $\begin{array}{cccc} & +0.99 \ V & +0.54 \ V & +0.45 \ V & +1.07 \ V \\ Basic: & BrO_4^{-} & ----- \rightarrow BrO_3^{-} & ----- \rightarrow HBrO & ----- \rightarrow Br_2 & ----- \rightarrow Br^{-} \end{array}$

Draw the corresponding Frost diagrams and answer to the following questions: see the next slide

(a) Which of the species tend to disproportionate?

Acidic: HBrO

Basic: Br₂

(b) Calculate E_{red}^{0} for the reduction of BrO₃-ion to bromine.

For example in acidic: [(4*1.49)+(1*1.59)] V / 5 = 1.51 V

(c) Why the last reduction potential is the same in acidic and basic conditions?

This reaction does not involve H or O atoms

In octahedral crystal field, transition metal cations with the electron configurations of d⁴, d⁵, d⁶ and d⁷ have the possibility for two spin states. Give the electron configurations for which the same applies in tetrahedral crystal field.

d³, d⁴, d⁵, d⁶

- How many unpaired electrons the following ions have (assume high spin) in (a) octahedral, and (b) tetrahedral crystal fields: Cr³⁺ (3,3), Mn²⁺ (5,5), Fe²⁺ (4,4), and Co⁺² (3,3) ?
- Which of the following ions is/are (a) colourless (Cu⁺; d¹⁰), (b) lightly coloured (Fe3⁺; d⁵), (c) strongly coloured (Co²⁺; d⁷): Fe³⁺, Co²⁺, Cu⁺?

- Why Zr and Hf are of the same size ? Give an example of the consequence of the same size ?
- Which of the four elements (Zn, Ti, Zr, Hf) forms compounds at oxidation state +III ? Ti
- Coordination number preferences of Zn, Ti, Zr and Hf in their oxides ? Zn 4, Ti 6, Zr 7, Hf 7
- Which element can be used as a substituent to enhance electrical conductivity of ZnO ? Would the conductivity be of n- or p-type ? Al³⁺ for Zn²⁺ → n-type
- Which element can be used as a substituent to create oxygen vacancies in ZrO₂? Why ? Y³⁺ for Zr⁴⁺ (charge is balanced through creation of oxygen vacancies; these are needed for the compound to be a good oxide ion conductor)
- How thin is a thin film ?
- Why in ALD technique: film thickness control is straightforward ?
 - conformal coating is readily achieved ?

1. Explain shortly:

Perovskite

MOF

MLD

2. Name the following metal complexes:

K ₃ [Fe(CN) ₆]	potassium hexacyanoferrate(III)
[CoN ₃ (NH ₃) ₅]SO ₄	penta-ammine atsido cobalt(III)sulphate
NH ₄ [Cr(NCS) ₄ (NH ₃) ₂]	ammonium diamine tetrakis(isothiocyanato)chromate(III)
[Cr(H ₂ O) ₆]Cl ₃	hexa-aqua chromium(III)chloride
[AI(OH)(H ₂ O) ₅] ²⁺	penta-aqua hydroxo aluminium(III)ion

1. Explain why K_2CrO_4 is colorful even though hexavalent Cr does not have d electrons. Give two other examples of the same phenomenon.

> Electron transfer from O to $Cr \rightarrow Cr^{+V} \& O^{-1}$ Similar examples: KMnO₄, CrO₃

- 2. Give three examples of typical 2D materials.
- 3. Explain the concept of "layer-engineering".

- Most stable oxidation state in acidic conditions: Mn (+2), Fe (+2), Co (+2), Ni (+2), Cu (0) (you can see these e.g. from Frost diagrams) ?
- 2. In which condition (acidic or basic) Cu⁺ tends to disproportionate?
- How many unpaired 3d electrons (oct./hs): Fe²⁺ (4), Fe³⁺ (5), Co²⁺ (3), Co³⁺ (4)?
- 4. Which one of the iron oxides, FeO, Fe_3O_4 and Fe_2O_3 , is:
 - mixed valent Fe₃O₄
 - antiferromagnetic Fe₂O₃
 - ferrimagnetic Fe₃O₄
 - electrically conducting Fe₃O₄ (because mixed valent)
- 5. Give the abbreviated name for HgBa₂Ca₂Cu₃O₈: Hg-1223

• Give three examples of seriously critical elements

Explain three chemistry approaches to solve the problems related to the CRMs

- List all the possible lanthanoid ions that have 7 f electrons: Eu²⁺, Gd³⁺, Tb⁴⁺
- List all the possible lanthanoid ions that have 14 f electrons: Yb²⁺, Lu³⁺
- Why Eu has so low melting point? Eu: 6s² 5d⁰ 4f⁷; only two (for lanthanides typically three) electrons per atom participate in metal bond → weaker metal bond → easier to break → lower melting point
- Which way you prefer to place the rare earth elements in the periodic table ? Why ?

- 1. Give the abbreviated name for HgBa₂Ca₂Cu₃O₈: Hg-1223
- 2. Oxidation state of Cu in La_2CuO_4 (+2.0), $La_2CuO_{4.1}$ (+2.2) and $(La_{0.9}Ba_{0.1})_2CuO_4$ (+2.2) ?
- 3. Are the above copper oxides superconducting ? Superconductivity requires V(Cu) > +2 \rightarrow La₂CuO_{4.1} (+2.2) and (La_{0.9}Ba_{0.1})₂CuO₄ (+2.2) superconducting
- 4. Why multilayered structure is important for high- T_c superconductors ? Non-superconducting metal oxide layers help the compound to form (charge balance) and work for adjusting the Cu valence in the CuO2 layers to be > +2.
- 5. Why multilayered structure is useful for thermoelectric materials ? Multilayered structure increases the structural complexity which is important to decrease thermal conductivity without decreasing electrical conductivity.

		T	I	· · · · ·			T	1	1	· · · · · ·	1	1		
No	1	2	3	4	5	6	7	8	9	10	11	12	13	Σ
528333	2	2		-	0.75	-	1.5	1.75	1.25	-	1.75	2	1.75	14.75
876276	2	2	1	2	1.5	0.5	1.5	1.75	2	1.5	1.75	1	1.75	20.25
655206	2	2	2	2	1.5	1.5	2	1.75	2	1.5	2	2	2	24.25
437686	2	2	0.75	2	-	1.5	2	2	1.75	2	2	2		18
612760	2	2	2	2	2	-	2	2	2	2	2	-	2	22
652267	2	2	1.75	1.5	1.5	1.5	1.75	1.75	2	1.75	2	1	1.75	22.25
587413	2	2	2	2	2	2	2	2	2	2	2	2		24
913605	2	2	2	1.5	1.5	1.5	1.5	1.5	-	1.25	1	0.5	1	17.25
593261	2	1.75	1.75	-	-	-	1.75	-	2	1	1.75	1.75	1.75	15.5
899949	2	2	1.75	2	1.75	1.75	2	1.75	2	1.5	1.5	2	-	22
480235	2	1.75	-	1.5	-	-	-	-	-	-	-	-	-	5.25
606080	2	2	2	2	2	2	2	2	2	2	2	2	2	26
894737	2	2	2	2	-	1	-	-	2	-	-	2		13
879561	2	2	1.75	2	2	1	2	2	2	1.5	1.75	1.5	2	23.5
657356	2	2	2	2	2	2	2	2	2	2	2	2	2	26