MS-E2112 Multivariate Statistical Analysis (5cr) Lecture 7: Multiple Correspondence

Lecturer: Pauliina Ilmonen Slides: Ilmonen/Kantala

Analysis

Lecturer: Pauliina Ilmonen Slides: Ilmonen/Kantala

Correspondence
Analysis

Frequency Table Row Profiles

Column Profiles

ndices Multiple

Correspond Analysis

Example Example

Some Remarks
References

Multiple Correspondence Analysis

Frequency Tables

Row Profiles

Column Profiles

Attraction Repulsion Indices

Multiple Correspondence Analysis

Graphical Presentation

Example

Some Remarks

References

Multiple Correspondence Analysis

-requency rable

Row Profiles

Column Profiles

Attraction Repulsion Indices

lultiple orresponden

Analysis

Evamola

ome Remark

Multiple Correspondence Analysis

Multiple Correspondence Analysis

Multiple correspondence analysis (MCA) is an extension of bivariate correspondence analysis to more than 2 variables.

Lecturer: Pauliina Ilmonen Slides: Ilmonen/Kantala

Multiple Correspondence Analysis

Frequency Tables

Row Profiles

Attraction Repulsion

Multiple

Correspondence Analysis

xample

Poforonoco

Example: Gender, Civil Status and Education

In this lecture, we consider an example where we examine dependencies of categorical variables gender, civil status and

education.

Lecturer: Pauliina Ilmonen Slides: Ilmonen/Kantala

Multiple
Correspondence
Analysis

ow Profiles Jumn Profiles traction Repulsion

lultiple correspondence

Graphical Pres

ome Remarks

Corresponde

Frequency Tabl

Row Profiles

Column Profiles

Attraction Repulsion Indices

ultiple prrespondence

araphical Presentatio

ome Remark

Some Heman

Frequency Tables

We consider a sample of size n described by P qualitative variables $Y_1, ..., Y_P$. The variable Y_p has K_p modalities (categories), and $\sum_{p=1}^P K_p$ is the total number of the categories. The number of individuals having the modality I of the variable Y_p is denoted by n_{pl} . We set a variable $x_{ipl} = 1$ if individual I has modality I of Y_p , and we set $X_{ipl} = 0$ otherwise. Now

$$\sum_{l=1}^{K_{p}}n_{pl}=n,$$

and

$$\sum_{p=1}^{P} \sum_{l=1}^{K_p} n_{pl} = nP.$$

The table of K_p dummy variables associated with variable Y_p .

	1	2		K_p	
1	X _{1p1}	X _{1p2}		X_{1pK_p}	1
2	X _{2p1}	X_{2p2}	• • •	X_{2pK_p}	1
:	:	:	:	:	:
n	X _{np1}	X_{np2}		X_{npK_p}	1
	n_{p1}	n_{p2}		n_{pK_p}	n

Table: Table of dummy variables

Now we introduce the $n \times K$ table/matrix $X = [X_1, \dots, X_P]$, called the complete disjunctive table.

		X_1				X_P		Column Profiles
	X ₁₁		X_{1K_1}		X_{P1}		X_{PK_P}	$\sum_{p=1}^{P} \sum_{l=1}^{K_p} x_{ipl}$
1	X ₁₁₁		X _{11K₁}		X _{1P1}		$X_{1PK_{P}}$	Politiple Correspondence
:	:	÷	:	:	:	÷	:	Analysis Graphical Presenta
i	<i>X</i> _{i11}		X_{i1K_1}		X _{iP1}		X_{iPK_P}	P Example
:	:	÷	:	:	:	÷	:	Some Remarks References
n	<i>X</i> _{n11}		X_{n1K_1}		X _{nP1}		X_{nPK_P}	P
$\sum_{i=1}^{n} x_{ipl}$	n ₁₁		n _{1 K1}		n _{P1}		n_{PK_P}	nP

Table: Complete disjunctive table

- Variable X₁ gender has two modalities/categories male
 (1) and female (2).
- Variable X₂ civil status has three modalities single (1), married (2), divorced/widowed (3).
- Variable X₃ education has two modalities low education (1), at least high school diploma (2).

Now
$$K = K_1 + K_2 + K_3 = 2 + 3 + 2 = 7$$
.

We display the gender, civil status and education data as a complete disjunctive table.

	<i>X</i> ₁₁	<i>X</i> ₁₂	<i>X</i> ₂₁	X_{22}	X ₂₃	<i>X</i> ₃₁	<i>X</i> ₃₂	$\sum_{p=1}^{7} \sum_{l=1}^{K_p}$	1 Xipl
1	0	1	1	0	0	1	0	3	Attraction Re Indices
2	0	1	1	0	0	0	1	3	
3	1	0	0	0	1	1	0	3	
4	0	1	0	1	0	0	1	3	
$\sum_{i=1}^{n} x_{ipl}$	1	3	2	1	1	2	2	12	Example

Table: Complete disjunctive table

- The first individual is female, single, and has low education.
- The third individual is male, divorced/widowed, and has low education.

Multiple Correspondence Analysis

Bivariate correspondence analysis is now applied to the

complete disjunctive table!

Lecturer: Pauliina Ilmonen Slides: Ilmonen/Kantala

Multiple
Correspondence
Analysis

Frequency Tables

Row Profiles

Attraction Repulsion

Indices

Correspondence Analysis

Anaiysis Graphical Presen

kampie ome Remark

oferences

From the complete disjunctive table, it is straightforward to compute the associated relative frequency table (F), where the elements of the complete disjunctive table are divided by the total sum nP leading to

$$f_{ipl} = \frac{x_{ipl}}{nP} \ (i = 1, ..., n; p = 1, ..., P; l = 1, ..., K_p).$$

The marginal relative frequencies are computed as

$$f_{i..} = \frac{1}{n} (i = 1, ..., n) \text{ and } f_{.pl} = \frac{n_{pl}}{nP} (p = 1, ..., P; l = 1, ..., K_p).$$

We display the gender, civil status and education data as a complete disjunctive table.

	X ₁₁	<i>X</i> ₁₂	<i>X</i> ₂₁	X_{22}	X_{23}	<i>X</i> ₃₁	<i>X</i> ₃₂	f_{i}
1	0	1/2	1/2	0	0	1/12	0	$\frac{1}{4}$
2	0	<u>17</u>	12	0	0	Ö	<u>1</u> 12	$\frac{1}{4}$
3	1/12	Ö	0	0	<u>1</u> 12	1 12	Ö	$\frac{1}{4}$
4	Ö	$\frac{1}{12}$	0	1/12	Ö	Ö	1/12	1/4
$f_{.pl}$	1 12	3 12	2 12	12	1 12	<u>2</u> 12	12	1

Table: Relative frequency table

Correspondence Analysis

requerity rabi

Row Profiles

Column Profiles

Attraction Repulsion Indices

Multiple Correspondence

Granhical Presentat

:xample

ome Remark

Row Profiles

The idea behind MCA, like in bivariate correspondence analysis, is to apply a PCA type approach on one hand to the row profiles, and on the other hand to the column profiles of the relative frequencies table F. The coordinate pl of the row profile $l_i(1 \times K)$ associated with individual i is given as

$$(I_i)_{pl}=\frac{f_{ipl}}{f_{i...}}=\frac{x_{ipl}}{P}, \qquad i=1,\ldots,n.$$

The *n* row profiles weighted equally (1/n) compose a point cloud in \mathbb{R}^K with a center given by the relative marginal profile

$$G_I = (\frac{n_{11}}{nP}, \dots, \frac{n_{1K_1}}{nP}, \dots, \frac{n_{P1}}{nP}, \dots, \frac{n_{PK_P}}{nP}).$$

The row profiles of the gender, civil status and education data is given as follows.

	X ₁₁	X_{12}	<i>X</i> ₂₁	X_{22}	X_{23}	<i>X</i> ₃₁	X_{32}	
1	0	1/3	1/3	0	0	1/3	0	1
2	0	<u>1</u>	1 3	0	0	Ŏ	1/3	1
3	1/2	ŏ	ŏ	0	1/2	1/2	ŏ	1
4	ŏ	<u>1</u>	0	<u>1</u>	ŏ	ŏ	<u>1</u>	1

Table: Row profiles

Row Profiles

Lecturer:
Pauliina Ilmonen
Slides:
Ilmonen/Kantala

Intuitively, the distance between two individuals is small if they have many modalities in common, and the distance between the individual i and the center increases as the modalities taking by the individual i becomes rare ($x_{ipl} = 1$ for n_{pl} small).

$$d^{2}(l_{i_{1}}, l_{i_{2}}) = \sum_{p=1}^{P} \sum_{l=1}^{K_{P}} \frac{1}{f_{.pl}} ((l_{i_{1}})_{pl} - (l_{i_{2}})_{pl})^{2}$$
$$= \frac{n}{P} \sum_{p=1}^{P} \sum_{l=1}^{K_{P}} \frac{1}{n_{pl}} (x_{i_{1}pl} - x_{i_{2}pl})^{2}.$$

$$(\frac{n}{P}\sum_{p=1}^{P}\sum_{k=1}^{K_{P}}\frac{1}{n_{pl}}(x_{i_{1}pl}-x_{i_{2}pl})^{2})$$

$$= \left(\frac{4}{3} \sum_{n=1}^{3} \sum_{k=1}^{K_P} \frac{1}{n_{pl}} (x_{i_1pl} - x_{i_2pl})^2\right)$$

$$=(\frac{4}{3}(1(0-0)^2+\frac{1}{3}(1-1)^2+\frac{1}{2}(1-1)^2+1(0-0)^2+1(0-0)^2+\frac{1}{2}(1-0)^2+\frac{1}{2}(0-1)^2))$$

$$=\frac{4}{3}\approx 1.33.$$

Analysis

Daw Duefiles

TIOW I TOIL

Column Profiles

Attraction Repulsion Indices

Multiple Correspondence

Analysis

xample

onne Hemark

Column Profiles

The coordinate i of the column profile c_{pl} $(n \times 1)$ associated with the modality l of Y_p is given as

$$(c_{pl})_i = \frac{f_{ipl}}{f_{,pl}} = \frac{x_{ipl}}{n_{pl}}, \qquad p = 1, \dots, P; l = 1, \dots, K_p.$$

The weight of each column profiles is proportional to its frequency and given by $f_{.pl} = \frac{n_{pl}}{nP}$. The K column profiles compose a point cloud in \mathbb{R}^n with the center given by the relative marginal profile $G_c = (\frac{1}{n}, \dots, \frac{1}{n})$.

The column profiles of the gender, civil status and education is given as follows.

	<i>X</i> ₁₁	X_{12}	X ₂₁	X_{22}	X_{23}	<i>X</i> ₃₁	X_{32}
1	0	1/3	1/2	0	0	1/2	0
2	0	<u>1</u>	<u>†</u>	0	0	ō	1/2
3	1	ŏ	Ō	0	1	1 2	Ō
4	0	<u>1</u>	0	1	0	ō	1/2
	1	ĺ	1	1	1	1	1

Table: Column profiles

Column Profiles

Lecturer:
Pauliina Ilmonen
Slides:
Ilmonen/Kantala

Intuitively, the χ^2 distance between two modalities is small if the same individuals take these two modalities together, and the distance between the modality I of Y_p and the center increases as the modality becomes more rare (n_{pl} small).

$$\begin{split} d^2(c_{p_1l_1},c_{p_2l_2}) &= \sum_{i=1}^n \frac{1}{f_{i..}} ((c_{p_1l_1})_i - (c_{p_2l_2})_i)^2 \\ &= n \sum_{i=1}^n (\frac{x_{ip_1l_1}}{n_{p_1l_1}} - \frac{x_{ip_2l_2}}{n_{p_2l_2}})^2. \end{split}$$

$$\sum_{i=1}^{n} \frac{1}{f_{i..}} ((c_{p_1 l_1})_i - (c_{p_2 l_2})_i)^2$$

$$=4((0-0)^2+(0-0)^2+(1-0)^2+(0-1)^2)=8$$

Attraction Repulsion Indices

Multiple Correspondence

Frequency Tables

1 tow 1 Tollies

Column Profiles

Attraction Repulsion Indices

Multiple Corresponden

Analysis

- . . .

example

Some Remark

With categorical variables, it is usual to test, whether there is a significant association between the variables, with the chi-square test of independence. It is also interesting to compare the association at the level of the modalities instead of the variables. Let $n_{p_1 l_1, p_2 l_2}$ be the number of individuals having the modality I_1 of the variable Y_{p_1} and the modality I_2 of the variable Y_{p_2} . Now the attraction repulsion index $d_{p_1 l_1, p_2 l_2}$ between the modality I_1 of the variable Y_{p_1} and the modality I_2 of the variable Y_{p_2} is given by

$$d_{p_1l_1,p_2l_2} = \frac{n_{p_1l_1,p_2l_2}/n}{n_{p_1l_1}/nn_{p_2l_2}/n} = \frac{n_{p_1l_1,p_2l_2}}{\frac{n_{p_1l_1}n_{p_2l_2}}{n}}.$$

Attraction Repulsion Indices

Lecturer:
Pauliina Ilmonen
Slides:
Ilmonen/Kantala

It is clear that if the attraction repulsion index is larger than one, the individuals are more inclined to take both modalities simultaneously than under the hypothesis of independence. And vice-versa, if the attraction repulsion index is smaller than one, the individuals are less inclined to take both modalities simultaneously than under the hypothesis of independence. The aim of the MCA is to produce graphical display in lower dimension which reproduce, without losing too much information, the associations between the modalities through the attraction repulsion index.

The attraction repulsion index $d_{i,pl}$ between the individual i and the modality l of the variable Y_p is defined as follows.

$$d_{i,pl} = \frac{f_{ipl}}{f_{i..}f_{.pl}} = \frac{x_{ipl}}{n_{pl}/n}.$$

Now, clearly

$$d_{i,pl}=0,$$

if $x_{ipl} = 0$ and

$$d_{i,pl}=rac{n}{n_{pl}},$$

if $x_{ipl} = 1$. Thus, if the individual i does not have the modality l of the variable Y_p , then the attraction repulsion index $d_{i,pl}$ is equal to 0, and if the individual i does have the modality l of Y_p , then the attraction repulsion index $d_{i,pl}$ increases as the l of Y_p becomes rare.

Correspondence

Frequency Tables

Row Profiles

Attraction Repulsion

Indices

Multiple Correspondence Analysis

Graphical Presentatio

Somo Domark

oune nemark

Multiple Correspondence Analysis

To obtain a representation in lower dimension, PCA type transformation is applied on the two data clouds: the rows and column profiles. A transformation of the profiles is necessary to center the variables, and to be able to use euclidian distances instead of χ^2 distances:

$$(I_i^{\circ})_{pl} = \frac{(I_i)_{pl}}{\sqrt{f_{.pl}}} - \sqrt{f_{.pl}} \text{ and } (c_{pl}^{\circ})_i = \frac{(c_{pl})_i}{\sqrt{f_{i...}}} - \sqrt{f_{i...}}$$

The solution of the problem of maximization associated with the transformed row and column profiles is given respectively by the eigenvalues and the eigenvectors of the matrices $V(K \times K)$ and $W(n \times n)$ where

$$V = T^T T$$
 and $W = TT^T$ where $T_{i,pl} = \frac{x_{ipl} - n_{pl}/n}{\sqrt{Pn_{pl}}}$.

The MCA components for the individuals are derived from the eigenvectors of the matrix V, and the MCA components for the modalities from the eigenvectors of the matrix W.

Let H = rank(V) = rank(W). The scores of the individuals are given as

$$\phi_{h,i} = \sum_{k=1}^K u_{h,k}(I_i^\circ)_k \quad h = 1,\ldots,H,$$

where $u_{h,k}$ is the kth element of the eigenvector associated with the hth largest eigenvalues of V.

The scores for the modalities are given as

$$\psi_{h,pl} = \sum_{i=1}^n v_{h,i}(c_{pl}^\circ)_i \quad h = 1,\ldots,H.$$

$$C(pl,h) = \frac{f_{,pl}\psi_{h,pl}^2}{\lambda_h} = \frac{n_{pl}\psi_{h,pl}^2}{nP\lambda_h}.$$

Global contribution of the variable Y_p is given by

$$C(p,h) = \sum_{l=1}^{K_p} C(pl,h).$$

Correspondence Analysis

Frequency Table:

Row Profiles

Column Profiles

Attraction Repulsion Indices

ultiple orrespondence

araphical Presentati

Example

ome Remark

Graphical Presentation

The attraction repulsion index

$$d_{p_1l_1,p_2l_2} = 1 + \sum_{h=1}^{H} \psi_{h,p_1l_1}\psi_{h,p_2l_2}.$$

The graphical output of MCA is the approximation of the previous formula using few dimensions. Suppose that the modalities are well represented in two dimensions. Then we can plot the two first MCA components and interpret the proximity between the points on the first principal plan with the following approximation

$$d_{p_1l_1,p_2l_2} \approx 1 + \sum_{h=1}^2 \psi_{h,p_1l_1} \psi_{h,p_2l_2}.$$

$$d_{i_1,i_2} = 1 + \sum_{h=1}^{H} \phi_{h,i_1} \phi_{h,i_2}.$$

Two individuals are close if they have in general the same modalities.

Now d_{i_1,i_2} can be approximated by

$$d_{i_1,i_2} \approx 1 + \sum_{h=1}^2 \phi_{h,i_1} \phi_{h,i_2}.$$

The attraction repulsion index

$$d_{i,pl} = 1 + \sum_{h=1}^{H} \frac{1}{\sqrt{\lambda_h}} \phi_{h,i} \psi_{h,pl},$$

and thus again

$$d_{i,pl} \approx 1 + \sum_{h=1}^{2} \frac{1}{\sqrt{\lambda_h}} \phi_{h,i} \psi_{h,pl}.$$

Multiple Correspondence

Analysis

.....D..........

w Profiles

numn Profiles traction Repulsion

Multiple Corresponden

Analysis

. xample

Some Remarks

$$\hat{\phi}_{1,j} = \frac{1}{\sqrt{\lambda_1}} \phi_{1,j}$$

and

$$\hat{\phi}_{2,j} = \frac{1}{\sqrt{\lambda_2}} \phi_{2,j}.$$

Then

$$d_{i,pl} \approx 1 + \sum_{h=1}^{2} \hat{\phi}_{h,i} \psi_{h,pl},$$

and the final graphical representation can be given simultaneously as a double biplot.

Lecturer: Pauliina Ilmonen Slides: Ilmonen/Kantala

Example

Multiple Correspondence

requency Tables

Row Profiles

Column Profiles

Attraction Repulsion Indices

ultiple

Analysis

xamnle

Some Remark

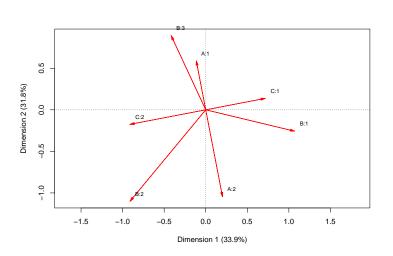
ome Hemark

Disclaimer: This example data set is randomly generated. Please do not draw real life conclusions from it.

	<i>X</i> ₁₁	X_{12}	<i>X</i> ₂₁	X_{22}	X_{23}	<i>X</i> ₃₁	X_{32}	$\sum_{p=1}^{7} \sum_{l=1}^{K_p}$	1 X _{ipl}
1	0	1	1	0	0	1	0	3	Analysis
2	0	1	1	0	0	0	1	3	
			-	-					
:	:	:	:	•	:	:		:	
25	1	0	0	0	1	0	1	3	
$\sum_{i=1}^{n} x_{ipl}$	16	9	9	6	10	14	11		

Table: Complete disjunctive table

Example of MCA



Correspond Analysis Graphical F Example Some Rem References

Figure: Result of MCA (A1=male, A2=female, B1=single, B2=married, B3=divorced/widoved, C1=low education, C2=at least high school diploma.)

Lecturer: Pauliina Ilmonen Slides: Ilmonen/Kantala

Some Remarks

Correspondenc

Frequency Tables

Row Profiles

olumn Profiles

Attraction Repulsion Indices

ultiple orresponden

Sorrespondence Analysis

Graphical Presentat

ampie

Some Remarks

Some Remarks

Lecturer:
Pauliina Ilmonen
Slides:
Ilmonen/Kantala

When performing MCA, it is better to take into account variables that have more or less the same number of modalities. (The number of modalities has an effect on the analysis.) It is also advised to avoid having very rare modalities. (Rare modalities have a big impact on analysis, and that makes MCA quite nonrobust method.) One can preprocess the data by grouping modalities if necessary.

Next Week

Next week we will talk about canonical correlation analysis.

Lecturer: Pauliina Ilmonen Slides: Ilmonen/Kantala

Correspondence Analysis

requency Tables

1011 1 1011103

Attraction Repulsio

ndices

Correspondent

aranysis Araphical Presentati

kampie omo Pomorko

Some Hemarks

◆ロト→園ト→園ト→園ト 夏 め9○○

Lecturer: Pauliina Ilmonen Slides: Ilmonen/Kantala

References

Multiple Correspondence

Frequency Table

Row Profiles

olumn Profiles

Attraction Repulsion Indices

ultiple

Analysis

Example

. Some Remarks

References

References I

Lecturer:
Pauliina Ilmonen
Slides:
Ilmonen/Kantala

Correspondence Analysis

_ _ _ ...

Column Profiles

Au De De la

ndices

Multiple Corresponden

Analysis

Example

Poforonooe

K. V. Mardia, J. T. Kent, J. M. Bibby, Multivariate Analysis, Academic Press, London, 2003 (reprint of 1979).

- R. V. Hogg, J. W. McKean, A. T. Craig, Introduction to Mathematical Statistics, Pearson Education, Upper Sadle River, 2005.
- R. A. Horn, C. R. Johnson, Matrix Analysis, Cambridge University Press, New York, 1985.
- R. A. Horn, C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, New York, 1991.

References III

Lecturer: Pauliina Ilmonen Slides: Ilmonen/Kantala

L. Simar, An Introduction to Multivariate Data Analysis, Université Catholique de Louvain Press, 2008.