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Topics: Laferal torsional, pure torsional and combined flerural-torsional buckling.

Homework #3

Lateral torsional buckling,
Pure torsional buckling
and
Combined flexural-torsional buckling

L

Deadline 18.3.2020 before 23:45

March 7, 2020

Contents

1 Exercize: Lateral torsional buckling

2 Exercise: Combined flexural and torsional buckling

3 Exercise: Flexural-torsional buckling

4

NB: Only two exercises are compulsory. The remaining one, will be counted
as extra points. Each Question is graded by five points and EXTRA, five
points, respectively.

Readings

1.

CHAI H. YOO & SUNG C. LE. Stability of Structures
Chapter 6. Torstonal and Flexural- Torsional Buckling
Chapter 7. Lateral-Torsional Buckling

Lecturer's reading-supporting material pdf:
Chapter 2: Torsion of open thin-walled beams

Lecture slides of the third week

Use of other sources is not prohibited but is encouraged

1 Exercise: Lateral torsional buckling

Use energy principles! and determine an approximative expression for the
buckling load Pg of the simply supported elastic beam of length £ is centrically
loaded by a compressive axial load P as shown in Figure (1). The end-
rotations support is a fork-type. The buckling load should be expressed as
Py = f(El, EL,,GI}, ¢, a).
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Figure 1: Simply supported beam. The support condition for end-rotations

is a fork-type. The load P is at a distance a from from the neutral axis. The
cross-section of the I-beam is doubly symmetric.
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For comparison, the analytical exact solution is given and is

Pyt
4M, o

~ 1.35 [\/ 1+ [0.54Pg ya/M,ef)? + 0.54Pg ya/M,.5| , (1)

where Pgy = n2ELy/ and Myes = \/Pgy[GL, + mEL,/ ]

Hints: 1) Trigonometrical trials lead to less work for the student. For instance, for
rotation ¢(z) ~ Asin(mz/f) is enough. Naturally, the student is free to chose his
own kinematically admissible approximation.

2 Exercise: Combined flexural and torsional buck-
ling

An elastic cantilever column (Figure 2) is centrically axially loaded at its free end.
The load acts on the center of gravity of the section (= centroid).
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Figure 2: Axially loaded cantilever column. The geometrical parameters are
such that ¢t = h/5 and £ = 10h.

« Determine the buckling load Pg and the corresponding mode (flexural or tor-
sional or combined?). The location of the center of shear (SC) and the warping
inertia moment I, can be determined using tables.
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3 Exercise: Flexural-torsional buckling Stio
Consider the simply supported elastic column (sub-figure a) in Fig. 3). The cross-

section is in the form of a crucifix X or +. The thrust P is axially centric. MPa.

what
At both end we have a fork support for rotations and also warping is free to happen nm)
at both ends and thus ¢" = 0 at 2 = 0 and x = £. As regard to bending both ends
can be assumed, for the purpose of the exercise, freely supported.

o Determine the buckling load and the corresponding mode

« (EXTRA 5 pnts) Determine only the pure torsional buckling load for the real
X-column in sub-figure b) in Fig. 3) Hint: find the column in Finland and
determine its dimensions (approximative). Assume it made of steel and simply
supported and the end-load being centric. Do not account for self-weight.

(EXTRA 2 pnts) Determine the critical length £, for mode transition between
pure torsional and pure flexural. Draw a diagram of the critical load P,, =
P..(£) as a function of ¢ for both flexural and torsional buckling. Show the
buckling envelope.

p Central axial compression at the center of

= const. ) .
Lr=/const l gravity of the cross-section

a) R

Simply supported X-shaped column

Figure 3: a) Simply supported elastic column (of length £) under centric
thrust P. b) X-shaped column somewhere in Finland.
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Topics of the lectures and homework

3. Torsional buckling (vainténurjahdus)
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sections can have torsional modes of

Lecturer stability loss due to their relatively low
Djebar BAROUDI,PhD. torsional rigidity .
Lecturer

Alle | e .S- .
Alito University ... and for narrow cross-sections, too




(OIOZ'ZO'vZ)\l

(0T0C 20" ¥2)

i: Lateral torsional buckling of i-beam
(kiepahdus)

Conment: Good experinment with load-displacerment curves
The student can clearly see the transition frombendinginthe
vertical plane to bendinginthe horizontal planeandtarsion

2: Pure Torsional buckling of L-
shape cross-section (angle) column
(Puhdas vadntonurjahdus)

Conment: Good experiment witha funny
professor.

Note that, theapparent (torsional) rigidity gets
drametically reduced close tothe buckling load



https://www.youtube.com/watch?v=OoORi_2Vkcg&app=desktop
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https://www.youtube.com/watch?v=OoORi_2Vkcg&app=desktop

The phenomenon

Lateral torsional buckling
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Beams with thin-walled open cross-sections
can have torsional modes of stability loss due
to their relatively low torsional rigidity
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Thin-walled open cross-sections examples

Combined flexural and torsional buckling
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The phenomenon of buckling Axial loading

with torsion l
(Pure) torsional
Torsional buckling buckling
Vaantonurjahdus ﬁ J
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Flexural buckling  Torsional buckling

Beams having thin-walled open cross-sections can have
torsional modes of stability loss due to their relatively
low torsional rigidity .

(Pure) Torsional
buckling
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Lateral torsional buckling Transversal loading
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In both cases the cross-section have a torsional motion



The phenomenon

Lateral-Torsional buckling
Singly symmetric cross section
Loadini;lan
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S- shear center (rotationcenter): (¥s, zs = 0)
C- center of mass

Moment arm of external force: @y = (¥s — %o)

Lateral-torsional buckling of singly symmetric thin-walled

)

open section beam under transversal load g,.
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The phenomenon

Kinematics of lateral torsional buckling

Kinematics of the lateral buckling :
the flanges as thin plate being physically as
a discrete grid or network of slender
inter-connected thin bars in which

1. Each compressed bar separately buckles
as simple axially compressed column, P2

resulting in: lateral deflection ,;
t)\a | 1

2. The vertical bars, because of continuity, # .

. . . -4
rotate, resulting in: rotation of cross- =
sections L onk

|

,P )u-:'r:u-_/’ ~=

3. Bars in tension have a stabilizing effect e i

Lateral motion due to £
vertical loading j motior

Lateral torsional buckling
Kiepahdus

pre-buckled configuration
(membrane stale)

slightly buckled configuration

Lateral torsional
buckling



The phenomenon Axial loading
Axial loading

Pure torsional buckling l

Puhdas vaantonurjahdus

i
YTV T

-
)

—_-_———__ggt—.—_—————-—
N

0
il T

.

Axial vertical loading



p Central axial compression at the center of
l gravity of the cross-section

t = const.

W

b

Torsional Buckling Flexural Buckling

Simply supported X-shaped column



What is warping? What is the shear center? £
The student should refer to the additional reading Fih %
material for details on warping For the purpose of this 7,)

course: use tables to L
find SC and Iw O
'-'I- (7))
(G) center of gravity —
[= area center (C)] E o
= 00 Clamped boundary g "'E"
e
L & o

(SC) center of shear
[center of rotation]

Fat G F at SC'

Combined and torsion

Only bending in transversal
plane

1. When transverse force applied at shear center it
does not lead to torsion

2. The shear center (SC) is the center of rotation
fora thin-walled section of beam subjected to
pure torsion

3. The shear center is a location of shear flows
resultant force when the thin-walled beam is
subjected to pure shear

U Combined and torsion



Distortional modes in some
thin-walled cross sections

NB. In addition to the modes =

shown in previous slide,

Local distartional buckling
nodes forbeanms
withaverythin-walled cross-
sectionarepossible > the
cross-sectiongeonetryis
distorted

For such very-thinwalled
beams it becomesinpossible
andnat practical toput
stiffenerstokeepthe cross-
sectionundistorted

sl

G

S

(SC) center of shear
[center of rotation]

Distortional local
buckling. Vlasov
theory does not
account for such
deformation mode.

What is the shear center?

(G) center of gravity
[= area center (C)]

Fat G
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Combined and torsion

does not lead to torsion

2. The shear center (SC) is the center of rotation

fora thin-walled section of beam subjected to

torsion

3. The shear center is a location of shear flows

Clamped boundary

/ \ subjected to pure shear

Fat SC

Only bending

The cross-section shapeisassuned ‘ Q‘&\s&\%\
nat distortingiinMassov'stheary A9

F
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resultant force when the thin-walled beam is
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1. When transverse force applied at shear center it



Mechanics of thin-
walled beams with
Open cross-sections

In lateral-torsional and
torsional buckling
we should consider

warping to obtain
the correct strain
energy change due to
these modes of
deformatio

In order to derive the
correct stability (loss)
equation

Torsion problem (no buckling)

Lateral torsional buckling equation: Warping effects Pure torsion (MO)Q

Kiepahdus \‘EI (4) _ Gl " — —-—¢ =0,
Thin-walled open EIy
cross-section \\_4 __________________ -
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Ref. Rakenteiden mekaniikan jatkokurssr lecture-notes, Emeritus prof. Markku Tuomala
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Rigid body rotation
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What is this high-tech
device?




Let’s repeat this experiment
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What is warping? What is the shear center?
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What is warping?

Poikkileikkauksen kayristyminen

Warping is a displacement called
deplanation which is an axial
motion of points on a cross-
section occurring
perpendicularly to this cross-
section and resulting from pure
torsion

pure torsion
015101 aJand

warping ——

Relative motion

»
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C
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Vo
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pure torsion

Axial normal stresses
result from restraining
the warping




Geometry of the motion of points on the
cross-section

Total torsion

M, = M; + M,
.

= T=Tt+ Ty

\ & | (uniform torsion, free
xS ] .
+ 0] .9 1 torsion, out of plane
* Y. ﬁ : warping uniform and not
: : constrained)
: Shearing — distortion of
: midplane

The two coordinate systems: global and local.

: Vlassov torsion
(non-uniform torsion,
warping torsion)

No shearing — no
distortion

Superposition principle

A schematic for the total torsion problem. Assume a twist =
moment M, is acting at the ends of the shell-beam. By superposition we | —
decompose the total twist moment as M, = M; + M,,. Nota bene that in ' - . W/ D’
this presentation of Viassov theory, we consider only the contribution of e Au(t)

slanation

torsion moment M, leading to zero distortion of the mid-plane xs.

Zero shearing of the mid-plane (Vlassov’s kinematic hypothe-
sis) - experimental evidence.



Geometry of the motion of points on the
cross-section

— - x
df(z) = [d6z, 0, 0]' =db(z)i, 9

dit = PP’ = [df(z)7] x f(s),

p(s) = (y — ya)j + (z — za)k.

Kinematics of the displacement

The main idea: Express the deplanation differential such that it can
be integrated to obtain the axial displacement u(z,s)) at any point
P(z, s) of the section at on the mid-plane. In order to achieve this task,
one has to find an expression for the deplanation differential du(z, s)),
one should express du in terms of dv which is at its turn expressed
in terms of y(z) = dv/dz, (Fig. 2.1). This is what we will do in the
following,.

Main geometric assumption:

The cross-section shape does not chanj

(no distortion, ei vaaristy)

So stiffeners should be added to keep t
cross-section not distorted i

Such assumption is quite impossible to
achieve with very thin-walled cross sec
This is one reason why, in practice
computational tools are needed.

(Cross-section.
tions.



Va l|d |ty Of th e Vlass OV'S What is warping? What is the shear center? 1. When transverse force applied at shear center it

The student should refer to the additional reading For the purpose of this does not lead to torsion
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Validity of the Vlassov's theory (or model)

i =(u—yv' — 2w —we)i+ (v—(z—2)0)] + (w+ (y — ys)P)k.

It should be reminded that the kinematics described by (Eq. 1.559) corre-
sponds to the rigid-body motion of the cross-section in orthogonal plane to x.

Therefore, it implicitly assumes that the cross-section geometry remains without HQ (il? ) = U — y“i'_ir — Z ’LU, — l’.dtf}f}
any distortions. In other words, the geometry of the orthogonal projection of

cross-section remains unchanged during motion. In order for this assumption vQ (I ) = U — (E — Eg)(i’:,

to hold in reality, the thin-walled cross-section should have enough stiffeners to

avoid possible shape distortions (Cf. Figure margin). Otherwise, the Vlasov the- we (..T } = w + (y — yg)(ﬁ,

ory on which the above kinematic assumptions are based, will not hold. In this,
case accounting analytically for such shape distortions makes the theory unnec
essarily complex. This is however, done in many published work. Our-days, i
will be more wise, in such cases, to use also computational simulation tools anc
treat the thin walls as thin shells. However, for many cold-formed steel thin
walled cross-section, it is often not practical nor possible to weld any additiona
stiffener.

Flexural bucklin ‘ i
Lateral-torsional buckling of |-beam g  Torsional buckling

Front view

Local /

distortional

modes
Thin-shell

Front view

V\BD - FE-model

Top view

Distortion of the
cross-section




Thin-walled structures are
iImportant for engineers

They deserve their own scientific journal

Thin-Walled Structures 150 (2020) 106677

\ Contents lists available at ScienceDirect

Thin-Walled Structures

¥ 05 j r

ELSEVIER journal homepage: http://www.elsevier.com/locate/tws

Full length article @
Dynamic buckling of cylindrical storage tanks under fluctuating
wind loading

Jumpei Yasunaga®, Yasushi Uematsu” An example Of a pUblication

* Steel Research Laboratory, JFE Steel Corperation, Kawasaki, 210-0855, Japan
® National Institute of Technology (KOSEN), Akita College, Akita, 011-8511, Japan

ARTICLE INFO :>
Keywords:

Cylindrical storage tank With
Wind tunnel experiment rim
Finite element method analysis

Buckling

Vibration

Time-history response analysis

(@) Pre-bucking  (b) Buckling  (c) Post-buckling  (d) Static buckling

Fig. 11. Variation of deformation mode obtained from the time history response analysis and static buckling mode (top view of 3D model, steel tank, H/D = 0.92).




The sectorial coordinate — w(s)

The complete story of the warping: Deriving the deplana-

tion from only geometric meaning of Vlassov’s kinematic
hypothesis

From geometry, (Fig. 2.6), one have

E

r(s) = h(s) = p(s)cosa|. (2.5)
= du = vds
Projecting dw on the undeformed geometry (small displacement theory)
dv (s) df(x
—diit. & = — =p(s)cosa-———
dv =d - € (2.6) T= 3z P
=p(s)cosa - df(z), (2.7) =r(s)
=r(s)df(x). (2.8) Inserting this ’shear angle’ expression into the boxed equation one obtains
From the kinematics, (Fig. 2.7), we write that increment of the axial du(z,s) = —r(s) - 9’(1-) .ds. (2.14)
off-plane displacement (deplanation) du of any point on the mid-plane '
(component in the direction of r—axis of the total displacement under Finally integrating along the curvilinear coordinate from a freely chosen
twist only) as polus or starting- point sp = 0 to s one obtains the axial displacement due
du = —ds-siny &~ —yds, | (2.9) to torsion as
where the rigid-body motion for the point P on the mid-plane follows , p . p
directly from Vlassov’s kinematic assumption (differential element dxds H(Ir S) - fST(S)Q ('T)ds = —0 (I) L T(S)ds =0 (:If) ’ ':""(S)' 15)
have a rigid body rotation in pure twist of the section) v,; = 0 =,

displacement vertical and horizontal components in section plane are - = .. . ;
P P ! Finally we have obtained both 7) the definition of the sectorial coordinate

dv = dz - siny = ydz, (2.10) w(s) :
du = —ds - siny = —~ds, (2.11) iy (S) = ]?‘(S)ds. (2.16)
s
where v is a small rotation angle between two adjacent cross-sections.

Combining the above equation, finally, one obtains the needed relation for
the axial increment of displacement

and i) an equation above for computing the axial displacement due to
torsion - u(x, s) - which is called deplanation or warping.




Normal Stress resultant from Vlassov twist

) = —fsr(s)ﬁr(:c]ds — _0(2) fsr(s}ds = _0/(2) - w(s). wa(s) = fsfr(s)ds.

€22(T,8) = %u(m, s)=—0"(z) - w(s)
g’w(:ﬂ : 5] = Fe,, (:E, 5) — — E.;,J(S)Q” (;I;) warping normal stress or Vlassov’s normal stress
- — U — —E§" — Shear stresses
[4 0.z, 5)dA fA Ew(s)8"(z)dA = —E6"(z) L w(s)dA = 0.
1 T =T+ T,

sectorial linear moments < [AW (s)dA =S5, Te = % -1(s)
f o,ydA = —EQ”(E:)/ w(s)y(s)dA =0, sectorial static moment of the cross-section. :

A A

[. 0,2dA = —E8"(z) [_w(s)z(s)dﬂ = 0. ‘ Suwy = Lw(s]y(s)dﬂ,

Bi-moment Swz = Lw(s)z(s)dA. o.(z,5) = B(x) - "-*-'I(S)
_ _ " 2 w
B(z) = L TastodA = —F0'(z) [ w()dA
v Ozz — My - z}:]'

I, = / wz(s)d}l. sectorial moment of inertia
A



Saint Venant Vlassov shear Total shear

Shear stresses 71 —=171,+ 17, L shear
/ny '
Me 4o o
= — - t(s
T %,
O
B ‘e
ou(a,5) = ~Bu(s)f () = PO |
_ B'(z)S,(s)  M,(x)S.(s)
W) = L T )L,
S, = / w(s)dA = /w(s)t(s)ds,
A s
I, = / w?(s)dA = /wE(s)t(s)ds,
A s
TIUHUS Benmpos useuda
bi-moment and the warping moment (torsional)
i Shear stresses from free-torsion (Saint Venant) and non-uniform
B (:E ) — _E I ugﬂ(m ); Mw — B = _E Ingl”j torsion (Vlassloxe:). (these ﬁgu:‘leslwere aila;)tec(;lfiom ];ellai::\} (119519).)

constitutive relations

~ELO0")Nz)+GLO' =m,| M,=GL0, B=—-EL#S', M,—B ——EL"




The phenomenon
Torsional stresses

7 e
- ]
—

—

Shear stresses from pure torsion

g

)
\
I

\

\

(a) Positive Angle of Rotation

Warping shear

stresses

— i e = e

Two.

« Location of Shear Center
uw=Gteo'

(b) Shear Stress Due to Pure Torsion

Warping normal
stresses

Owo
_\\‘H-.

C compression
T tension
Swo

°‘W@
T~

COyg= EW;.W

(d) Normal Stress Due % Warping



Example of table giving shear center and the warping inertia moment 7

Shear
Center

J | —T J _ 2&{‘ + M“S If tf = t' = {:
! w '3 : _
Of— A trhtb3 i ¢
¢ h}2 w ™= ’ ] p : = =
N J Co = I, J =2 (2+h
T,
b b, 1 3 .
l[ } Fl] e mh b; Iftf"tg-t.
Tt T by + et
f Of - |
T h J - (b1 + ba)ts® + ht,? J = E:(b; + bs + B)
¢ e | ' 3 , 3
{ C. = trh?  bi3bs? . _
My, Y12 bt 4 bt
3b% Ift, =to = ¢:
— b - ! ! w
_-[ ¢ ﬁbtf + Ms e = 3b=
el ,E, 1 5 _ 200+ hay? 6 + h
O h _ - 3 R J = if (2b + h)
Wy _l_ C. o Lbh? 3bty + 2hty 3 |
T T T2 bty + hte tb%h3 3b + 2h
g PP N ! Co =

12 6b +h

Now to stay
realistic (6 weeks
stability course)
we will use tables
for theses cross-
section constants

Torsion topicis a
wide subject.
Torsion of beams
with thin-walled
Open-cross
sections
deserves, at least,
a full three-weeks
course by itself



Main geometric assumption of the Vlassov’s

theory:
The cross-section shape does not change (no nitial
distortion, ei vaaristy) equilibrium

configuration

So stiffeners should be added to keep the
cross-section not distorted

= Such assumption is quite impossible to
achieve with very thin-walled cross sections

-

This is one reason why, in practice
computational tools are needed to perform
reliable stability analysis and GNA for very
thin-walled shell-beams ...




Deriving the linear equations of |oss of stability — The IDEA

nitial stresses irom pre-buckled configuration

ai= [ e ™Baav + [ &Tolay - AWe(Pia)
g 4 ~ » ‘__V 'v\, such that}U{cr“,Eg}
linear part of strain increments  quadratic part of strain incre
~ - - Non-linear strains (quadratic
/ / U(e%e2) parl) from slightly buckled
| configuration
€; = —(’1.-:1,j + Ui + Uk tuk,;,*) - using Einstein summation rule

2 ((Vxll) + Vxu+ (VXU)T . VXU) 3

S(ATIT) = §[82T1| o] = 0,Véu,

kin. admissible,

The linear equations of |oss of stability
Eigen-value problem (BVP)

no warping [, ~ 0

primary
equilibrium

Perturbed
equilibrium

V motion

Initial primary
equilibrium

It is the solution of these equations
<= which provides the buckling load
and the corresponding mode

Lateral torsional

Yertu rbed

equilibrium bUCkling
Equation example
(M,)?
El,o% — GI, 0" — ~=2—p =0,
EI,



Total potential energy Morinearstains (quadratic part) - ilial siresses from pre-buckled configuration

from slightly buckled configuration
1 ot ==
All = Ef 61 Ee dV + e lo'dV — LﬁWm{P, Eﬂl 1 o®
~ 4 — i ‘__V ~— _ such that U (o0,e3)
linear part of strain increments  quadratic part of strain increments 0
U (09 e2)
1 e £ 1 Flexural
A== [ Bz + [ oA ()]ds] —P = N'a) <0+t
2 Jo (V") Jo °F [2{ Jld. (z) buckling
4 R
€2
l Pure torsion

1 ¢ "2
ATl = 5 f ElLyw™dx H
0 [

Initial stresses: o, = 7 Y —
Warping B %_ Initial stresses: -
£ 1 £ 70 _Qo(m) =
AT =2 f ELw"ds + - / EI,¢" Azl =@ =5 50
\

¢ 1
0= /I \2 /I \2
T 0 /A UxQEwQ) + (UE) ]dAd:L‘ Beams having thin-walled open cross-sections = p

chebalidy o ¢ €2 Flexion in both directions can have torsional modes of stability loss A _
o il B ] due to their relatively low torsional rigidity . / moten
AT=TT +&T buckling load Lateral torsional
\5(&”)= O /P=tagme ) and mode ... and for narrow cross-sections, too buckling

P



In short ...

'

We will derive BVP for
lateral torsional and
combined flexural-
torsional buckling

\
\

bending Pure torsion

R S T
ATT == f ELw"dz + - / GL¢ dx +
2 Jo 2 Jo

£ 1
0 I \2 ! \2
o + dAdx
0 /AU 2\[(@”@) (’UQ) ]/

Initial stresses from pre-buckled configuration Non-linear strairYs (quadralic part)
chebr L3 Loss from slightly buckled configuration

=T+ AT
S(A-TT )= 0O ,’P—?a; min
X -

—

buckling load
and mode

Warping

1 1
- / EL,¢"det
2 Jo

pre-buckled configuration
(membrane state)

S(ATI) = §[0%T| o] = 0, Vou,

kin. admissible,

slightly buckled coniiguration

The linear equations o1 10ss of stability

'l}' motion

Lateral torsional

Eigen-value problem (BVP)

)

buckling

It is the solution of these equations
which provides the buckling load
and the corresponding mode

» ) ) o Lets start the story from the beginning ...



Lateral-torsional buckling of beams
kiepahdus

Whatto do?

» derive the stability loss equations for lateral torsional buckling
when the warping is negligible

Assumptions

* negligible additional vertical deflection vat buckling
« accounts for the effect of shear stress
* negligible or no warping at all

I, << 1, START: Narrow cross-section
no warping [, =~ 0 Initial stress

Pure torsion /
|

1 /¢ "2 i1 2, | € 0
_ Efu ElLw d:x:-l-:Z/ Grg’dz - | /A.:rmEgdAdm,

l’ e !

S(Alljw, ¢]) =0, Véw,d¢ kin. admissible —

Rectangular narrow
cross-section

state

no warping I, ~ (0

GOAL: Stabilit .
ability equation
EL, (w")" - (M) =0 || ok
(GI:¢") + Mow" = 0.
complete model

- 4

infinitesimal
Post-buckled critical :>penurbation
equilibrium toward adjacent

equilibrium

infinitesimal displacement
increment between critical
point and disturbed state

—— Thefollowing slides show the details of how we obtain the stability loss equations: ..

—



Lateral-torsional buckling of beams Rectangular narrow

kiepahdus -
: ) _ cross-section
* In flexural buckling of columns the thrust (puristus) was axial

——> |no warping [, =~ (

Effect of location

and normal to the cross-section of the beam-column
of the load
* Now we address stability of beam having a thin-walled open
cross-section
) centroid ’
* The loading is transversal to the axis of the beam P bost-buckled
state
. A\ e .
I, << 1, Narrow cross-section o . i _ g AR
no warpin I:.:J ~ U . equilibrium teowu??dr?grﬁcent
ping Pure torsion , e = L2 4 o) ) ke
tension g\We T %y
1 ¢ 12 72 flange = s —wa)? + E(va — uy)? \‘/‘\
:5/ ElLuw d:r-l-lQ/GItgé d:r:'-l—[/crafgdﬂd:r A IR |
0 1 ‘
————————————— = §(w,z)2- | G Jw [\ —t')
Initial stresses NL
: ‘ . : . _ : 0 Yoy = ’Y:ry + Yoy = F}/Iy + ’Y:ry S i_/t\?i =X —@(
kinematics of the displacement increments of the mid-plane z = 0 o _ M compression A
. = v(a) = acos ¢ ‘
w(z,y) =w(@) +ysing~w(z)+yse) ) 72T LY |||t ppsi
u(a:,y) =0 . Work conjugates: . l(w )2 . s sin -
Hypothesis (which holds) 27 g\Ne2 d=du=1d=(0,0,w)=u
v(z,y) =0 - . . . » —
* negligible additional vertical deflection v at Initial stresses . —
buckling 0 MO 'hﬂféﬁi'ﬂfeﬁ?ffiiﬂiﬁ
x / : :
* accounts for the effect of shear stress 0 (z,y) = @ ( ) ty) = —( : () STy 2" 0-cislurbed state
. ligible or no warping at all Work i bI & bl,
neglsl ping conjugates:

NL __
Y::y w_-z;'fb'y Yoy = ’}’Iy -+ 'YI 'T:cy + ’ny



Lateral-torsional buckling of beams

. Rectangular narrow . [no warping 1, ~ 0
LD cross-section —

1 ¢ 12 1 £ 12 ¢ 0
Al = 5/[] Efyw dx + 5/{1 Gjrt';f) dm""/ﬁﬁmfﬂdﬂdm’ Iy << I,

Ll 2

no warping I, ~ (0

Initial stresses

Post-buckled
state

Sign convention

o
Bending Shear stresses from transversal load Gyle)
. ~y oz infinitesimal
ﬂffn 0 od critical perturbation
0 _ Z Q (m) (ﬂd'o(:c))’| = equilibrium toward adjacent
{J‘Ti‘ T y 0 Yy + z + % equilibrium
T T (Z,Y) = ———8 = S
z .‘I,'y( ’y) bIz b-A (y) bIz z (y) |
This is now a complete model ﬂ =z ]
;}i , Tey
1 st 2 1 rt 12 ¢ O Nt O ITA(Y)
All = 7 Elyw™ dz + 5 Gli¢g""dz + | (M, ¢)w'dz J ,
0 0 0
L. - - P
bending & shear yn L
Sy =2ty
NB For pedagogical reasons andtolower the complexity of the procedure, | decided that inthe fallowing B, i=du=0=00vw)=u
derivation of equations of stability, we first st_al_'t_by omttlngth_e effect of shearstrgsses resulting from Example: Transverse /yr-h.fQ Sy = S0 o — dl_"splacement
transversal load and account only for bendingiinitial stresses. Thisway should be easier frothestudent to |, p o gistributed 5 _oM Ny We——"
follow Thenwe add the contribution of initial shear stresses (of the transversal load) when shear effects |54 ¢ applied at the SIS s ot

tocompletethetotal potential energyincrement andfinditseffect tothe stability lossequations centroid



Lateral-torsional buckling of beams

Pure torsion
1 ff "2 1 ¢ 12 ¢ 0
ATl = - f ELuw"dz + f GIL¢ %z + f f o%esd Ada,
2 Jo 2 Jo 0 JA

I Initial stress:

kinematics of the displacement increments of the mid-plane z = 0: . MQ
w(@,y) =w(G)+ysing~w@) +ypx) |7*T T, 7Y
’UJ(:C’ y) — Oa 1
v(z,y) =0 Sl S(w? + )
= (s w4 (v~ uy )
2~ 2~~~
= =0 =0
_ 1 2|
“ = 5(1{13) |
1 ¢ 9 1 r¢ 9 14 v A/
AIl = —/ ELw"dz + —/ Gli¢' " dx +/ Mgw’cﬁ"dm
2 Jo 2 Jo 0JA 4
/

when shear effects omitted

for in lateral-torsional buckling, ref.
lecturer pdf-material)

Rectangular narrow
cross-section

I, << I,
no warping I, ~ (0

Example: Load P or
distributed load g

applied at the centroid

centroid

G orC

(this model is not complete. T How we obtain this term?
Shear force effects should be accounted

no warping I, ~ (0

Post-buckled
state

infinitesimal
critical perturbation
equilibrium toward adjacent

equilibrium

T\

@\ A\ =z
wi | 3

[ AL
va(a)=,acos? P

| o
4
a=du=1=(0,v,w)=u
~—————

infinitesimal displacement
increment between critical
point and disturbed state

Ll 2



l/f 9 1 [ 2 ¢ ) (xz,y) = w(G) + ysin¢ =~ w(x) + yo(x)
— EI w.ﬂ' d$+—/ GI f d.T‘l‘/ / Mgw:’ Idm l w\r,y ybnc yC)
2Jo Y 2 Jo 9 JJo Ja ¢ H \ u(: _,_

u(z,y) =0
when shear effects omitted viz,y) =0
(this model is not complete)
¢ ¢ MO 1 1 1. . .
] ] oerd Adz = ] =(7) ] y- w'(@) + - (d (@) + ¢ (2)w' ()] d Ad 2 = 5(w? +w?)
0JA o I. Ja” 2 2 < ! |
= E( U, —u E)2 + (v —uy)
N’ S
=0 =0 =0
£ 0 £ MU 1 .
M d:t:] ydA+2f fySdA+ > = 5('“’..;.-}2-
0 ‘-—-v-—-"
S.=0 =0
w' ¢ dx / 24A
=1

Euler-Lagrange equations
(Field equations):

¢
=] Mo%w' ¢’ dx
0

Stability equation

§(All[w, ¢]) =0, Vow,d¢ kin. admissible —= | —>

Boundary conditions



Lateral-torsional buckling of beams

Pure torsion
1 ff "2 1 ¢ 12 ¢ 0
ATl = - f ELuw"dz + f GIL¢ %z + f f o%esd Ada,
2 Jo 2 Jo 0 JA

I Initial stress:

kinematics of the displacement increments of the mid-plane z = 0: . MQ
| : o, =
w(@,y) =w(G)+ysing~w@) +ypx) |7*T T, 7Y
’UJ(:C’ y) — O: 1
’U(CC, y) = O \ €y = %(wg + {u‘;) T:?*y(:ray)
(e —wa) + 2 (v — g )
2~ 2~~~
=0 =0 =0

e

“ _ %(w@)z. )
v

1 ¢ n2 1 ¢ /2 fr (}"r !
an=§/ ElLw dm+§f Gl,¢ d:c+f (M) w'dz
a 0 ]

-

bendin; & shear

Rectangular narrow
cross-section

I, << I,
no warping I, ~ (0

_ (M (x))
bI, Sj(y) = b—IzS:(

Y)

Sign convention
Lz;';b.)

0.
How we got this term? / Example: Transverse load  7,(z.y) = Q—gf”)s;(y)
This is now a complete model P or distributed load g T —
applied at the centroid < v= Si(y

no warping I, ~ (0

Post-buckled
state
infinitesimal
critical perturbation
equilibrium toward adjacent

equilibrium

; /‘;\%f %

[ AL
Lpu(a)=,acos? P

infinitesimal displacement
increment between critical
point and disturbed state

Ll 2



1 ¢ 2 1t 2 4
_1 f Elw"dz + - f GLédz + f (M) da
2 /o 2 Jo 0

> bendin; & shear

——_

&UN L Iy / / Ty "}(ﬂ:y

How we got this term?
This is now a complete model r

/ b%m'dm/S(y ) +

£Qy
- /ﬂ S0 14 yS.(y)dA

¢ ¢
:+/ﬂ Qgcﬁm’dr = —|—/ﬂ (MY pw'dex.

dAdy C— \NOrKof shearinitial
stressesis nowadded

(AT

(w, ¢]) =0, Vdéw,d¢ kin. admissible =

Euler-Lagrange equations
(Field equations):

Stability equation

Boundary conditions



o - _ when initial shear stress effects omitted,
Deriving the stability loss equations ...  for pedagogical simplicity. They will be

5
added at the end of the derivation Initial equilibrium ~'
(this model is_not complete) Pre-buckled state Ll 9l 2
§(All[w,¢]) =0, Vow,d¢ kin. admissible = Lateral \V\, ‘ e

£ £
S(AIl[w, @) = fn ELw"éw"dx + fﬂ GI:¢'6¢'dx+

¢ ¢

—I—f fMEw’éqb"dm—l—f /Mgéw"cﬁ’dx:ﬂ}
0 JA 0 JA
Véw,d¢ kin. admissible.

§(All[w, ¢]) = fﬂ E :Efy (w")" — (M3¢’) '*] Swdz+

er '
—]ﬂ (GL¢") + (Mzﬂw") ] dpdz+
- [(GLé + M) 5¢]z+

+ (— (EL,w") + Mfd)’) éw]z +

+ jEIyw”c?w’}g =0,
Véw,d¢ kin. admissible.

deflection

no warping I, ~ 0

~
~~~~~

to have a complete model

~ Post-buckled
' state

Rectangular

(i)' "\ narrow cross-

~ section
rotation

Should account for this part: (shear initial stresses)

¢ ¥
Y s(AU,) = + /0 (MOY'w'Spdz + /0 (MO ¢ou/dz.




Deriving the stability loss equations ...

stresses:

|

Should account for this
part: (shear initial stresses)

§(Allfw, ¢]) =0, Vow,d¢ kin. admissible =

L £ [
Only bending initial 6(A1’[[w,¢]) =L Efyw;!fswf’d:E—I—A Gl}qﬁ’ﬁqﬁ’dm—l—

¢ £
+ ] f M2w's¢'dx + f f M%uw'¢/dz = 0,
0JA 0 JA
Véw,d¢ kin. admissible.

v v
Mmmg:+/XMwwww+/XMwwwm.
0 0

|

when shear effects accounted
(this model is complete)

Initial

Lateral T
deflection

no warping I, ~ 0

e_&pilibrium
Pre-buckled state

~ Post-buckled
' state

Rectangular
Narrow Cross-

ow :

¢ :

EL, (w")" - (M%) — ((M0)'g)

(GLe) + (Mgw’)’

)

o, -——_

Vo

0 .
from 73, 5y

— (MYY'w' =0.
R A
from 79 .~*.

oqe . . S section
Stability equation: b tation
El, (w")" — (M2¢)" =0
(GL¢Y + MW" =0
complete model

Boundary conditions:
at x =¢,

GIL,¢' + M w' =0,
—(ELw") + M2’ =0,
EILw" =0,

at =0

.'—
or w =10

w =20

b =0.




From where comes the Standard EN l|ateral torsional buckling stress formula?

This is in the Eng. PRACTICE & +——= <= Thisis given by the THEORY 1o warping I, ~ 0

Critical lateral buckling stress in M(),crr .
EN 1955-1-1 (section 6.3.3) for | Ocr = (e) (e) \/EI GIt
wooden beams Wy W €
M ailn ]

o — L = Wy(e) is the elastic bending resistance.

pelil Ay 1

|

ritical stress in :
C nal buckls It is the solution of the differential equation of
torsiona ucslLLg Stability loss under uniform bending
for a wooden beam
in uniform bending {EIg (w") — (M%) =0,
as given in the (GL) + (MMw')” =0

standard (check
1955!). Let’s derive this formula



Pure bending

Puhdas taivutus

Note that now the shear force is identically zero
since the bending moment is constant
so shear contribution can be simply ignored.

EIL, (w")" — (M) =0,
(GL¢'Y + (M%) =0

incomplete model, no shear

A constant external moment M? = M at both ends

|

{Efyw(4) — Moo

0,
0.

GIL;d" + Myw”
1
w4+ k2w’ = 0,

1 _ _ Mo,,W
Q' = arw’.

ki = Mg /(GI,EI)

OV O
“ A

-
en WA

-

"\

EI, (w")" — (M%)" =0
(GLS) + MOw" =0,

complete model

Solution of the differential

’
¥/
7

i )

no warping [, ~ (

under uniform bending: w,(z) = A, sin (@),

Notice the analogy

l

nmwr

Wit.h Euler buckling of (T)Q (E)z — k2| A, sin(—) — 0,
a simply supported ¢ 4 ¢
cplumn _ o -0 \‘: -
P - = E ir -/ E° — M, = (7) 1{EIyGIt Eigen-values.
Moo = —/EIGI
The buckling (critical) end-moment O,er — / y~ ot
M{],cr T

The critical stress

W Wi

JEL,GI,




A constant external moment M? = Mj at both ends

Pure bending

Puhdas taivutus

El,w® — Myg” =0,
GIthJH + J\ng = 0.

w@) 1 k2 " _— O,

cb” g/z’ﬂ w' L
k2 = M2/(GLEIL) g = gﬁ = ?;2 (%
“ ﬂ The buckling modes
Mo or = %1 JE1yG 1y | Thebuckling (critical) end-moment & /UCT( LE) — A Sin(ﬂ_g”)

N
o M{],cr o ™ qb(l?" (:C) _B SIH(H)
Oer = Wy(ﬂ) N W@EE) A El, Gl The critical stress GIt ‘




Pure bending

Puhdas taivutus

Résumeé:

no warping [, ~ 0

m
Moer = 54/ ELGI,

no warping I, ~ 0

The buckling (critical) end-moment

Mﬂ,cr o m
Wi Wi

The critical stress
/EL,GI |-

For cross-section with non-negligible warping, the critical

moment is

(Timoshenko)

A constant external moment MY = M at both ends

EN Standard Formula:

y.ent

8 - Egos1, Gy 51 i

myerit = W fefﬁ:,;

y

—— Cross-section warping




Rayleigh-Ritz energy method Rayleigh-quotient

P e : - <
The energy criterion in the form §(AIl) = 0 means that solutions of the stability Fer < Per,approx.

problem make the change in the total potential energy (1.407) stationary. This

______

__________________________________________________________________

6(All(a;; P)) =0, Véa; = i&ﬂ(al,ug, ...,an; P) =0, [1.440)

da; —>
where a; are the parameters in the displacements approximation. The ELbD‘VE\
stationarity condition leads to the homogeneous system of equations (Eq. 1.441) l

below: : .
- ( Discrete Eigen-
K- PS =0, value problem ﬁl'ﬁlﬁll),

det|K — PS] =0,

D

geometric-matrix terms S;;

Stiffness-matrix terms K



Rayleigh-Ritz energy method Here we start with no warping case

Approximation of buckling load using Rayleigh-quotient Effect of location

High Cantilever beam of the load

centroid

Two illustrative examples
to study the effect of the

location of the load tension

flange
using the

Rayleigh-quotient

Also called Rayleigh—Ritz ratio
compression
flange




Rayleigh-Ritz energy method High Cantilever beam
§ e

=i 19 l.l( ] )=_ 8
e
T
P !
ending & shear ' - WE=
//g \l// (PC.(‘; ?- {Q,(o)';:b

7
‘H’ MO(;B;P) —pP. MD(.:B) Here no warping case

Stability criteria 9 (AH) - 0 initial bending moment

Approximation of buckling load using Rayleigh-quotient
High Cantilever beam

1 ¢ 12 1 ¢ 12 ¢ R,
All = —f Elyw  dz + —f Gli¢ dm+[ (M, ¢)w'dz
2 Jo 2 Jo Jo

o 1) by approximating separately w(z) ~ w(z) and ¢(x) ~ ¢(z) in the energy
functional (1.444) and using the criticality condition (stationarity). This
is a more general approach.

d(AII) — 0 A more general method

e 2) approximating only w(z) in the Rayleigh-quotient (1.450) after elim- AIl =0 \1 Rayleigh-quotient
inating the second unknown function ¢(x) using the second equilibrium ERT W' d
equation. (not a general method. In general, it may become impossible to P? — f 0 DiyW x

cr

proceed explicitly with the elimination for other types of problem.) fﬂg (M 0) 2w/ 2 /GI; dz




Approximation of buckling load using Rayleigh-quotient
High Cantilever beam

I "2 I 12 ¢ 0 1 !
Aﬂzif(]Efyw d$+§/ﬂ Gl cl::;'—|—/U I’ﬁfzwgﬁdm

M?(z; P) = P- M (x)

High Cantilever beam

eliminate ¢(z) from the energy-functional integrating initial bending moment
Gftqﬁn 4 (an!)! —0 — G1t¢r+ (M[]wf) _C Load P at the torsion centre G: centroid
w'(f) =0,0(f) =0 = C =0, The simplest polynomial
o M, w'(r) = A(l —z) = w'(v) = Azx({ — z/2)
— — — w
Gli Fulfills kinematic boundary conditions: ’w((]) —0
T4 "2 d _ ] w"(O) =0
p2 — Jo EL,w"" dx — P, = \/(35GItEIy)/(2£4) Approximation from $(0) =0
R-quotient

T Jo (M) /Gl dz 4.18
T 7 \|GLEL.

NB. | computed this
example with ignoring

Rayleigh-quotient v
P <P, cr,approx. P =
Exact < Approximation

4 013

shear effect.
Student! Redo the

GftE'Iy Exact analytical solution | [~ “

shear.




Approximation of buckling load using RR-quotient

High Cantilever beam Exam example - 2018

/2
Let L =2/, thus the bending moment due to the own weight is M? = % (1 —(%)2) , when
the origin is located at the mid span. The energy integral is
f
7= J.[Ely (w")? + Gl, (@) + Z(M;’;é)’uf]dx The beam is simply supported at each end
0
when the approximations for the deflection and rotation can be of polynomial form, satisfying

the boundary conditions w/(0) = w(+/) =¢'(0) = ¢(x£¢) =0 andare w=w,(1— (%)2) and

¢=a,(1- (%)2) . Trigonometric functions w=w;, cos(?) and ¢ =¢, CDS(%) give better

approximation.

f 2 '
—2W0 —LX{, 14 X _wao
17 = [| E1, 22y 4 61, (Eoy 2 97 g -y | (B =
) / ¢ 2 ¢ /

(o1 _8EI, 164/

80 mm

1000 mm

e L -

What is the critical length of a simply supported beam with
respect to lateral buckling, when its cross-section is a narrow
rectangle (80 mm x 1000 mm) ? The Young’s modulus and the
shear modulus are E =36kN/mm? and G =15,4kN/mm”
respectively. The loading due to the own weight is

g =24kN/mm’.

1 ¢ n2 1 ¢ 12 ¢ Q \t}
=5 [ Brada+ o [ GReda+ [ (M2¢)wdo
2Jo 2Jo Jo

-

bending & shear

w, +

AEI, AN E I
. 3}M§+4GJ,¢§+16¢;£W0¢0:><6WD / N

/ 3¢ 15 or1 _8Gl, ,  l6ql All

\_a¢0 3€ ° 15 °

[8EI, 16g¢ |

5 e 0 EI GI

£ s L e P o 20=33.0m

16q¢ 8GI, || 4, 0 4 gq
15 3¢




Computational stability analysis

Stability analysis consists of performing next steps:

¢ linear stability analysis to determine the the critical buckling load: buck- Linear buckling Analysis
ling loads and corresponding buckling modes (The homogeneous linearised (you will have a computer exercise on this)
equations of elastic-stability form an Eigen-value problem)

¢ non-linear analysis to study the full post-buckling behaviour and to in- Post-buckling Analysis
vestigate the sensitivity of critical points with respect to imperfections in | - also known as
shape, loading and material, and to determine also limit load. (= a full Non-linear buckling analysis
non-linear problem with non-zero right-hand). - also GNA

(you will have a computer exercise on this)

— 1. Solve initial stress state in the pre-buckled state for
unit loading
Two steps: ~ Linear buckling Analysis
2. Solve the linearized homogeneous equations of (you will have a computer exercise on this)
stability to obtain the critical load and buckling
mode




FE-buckling analysis

_Linear stability analysis
| Model Builder

= = t | v ETEI S~

4 @ Lateral_buckling_|_thin_beam.mph (root)
4 @ Global Definitions
P Parameters
135 Materials
4 M Component 1 (compT)
b = Definitions

4 A |-thin beam - Lateral buckling
(1] THIN-BEAM upper part (blk1)
(1] THIN-BEAM Lower part (blk2)

Computational stability analysis
Lateral torsional beam buckling with
thin cross-section

Computational stability
analysis:
K 1. Solve initial stress state in

YA Plane Geol

g g — the pre-buckled state for Steel:

m Form Union (fin) unit Ioading E =200 GPa
4 € Solid Mechanics (solid) ) _ b= 5.83mm

W Linear Elastic Material : steel 2. Solve the linearized h= 50 mm

& Free 1: traction free faces homogeneous equations of _

W Initial Values (u, v, w) = 0 and d/dt (u, v, w) =0 z .g Sk 9 L= 346.6 mm

@ Prescribed Displacement : (u, v, w) = 0 damped StabllltYZ Mand == r

& Gaos Lond st L t it Tond for pracpiickied sl buckling mode J Critical load factor=7114.8
A Mesh 1 . >

4 & Study 1

'~ Step 1: Stationary (solves stresses of pre-buckled state)
|15, Step 2: Linear Buckling (solves: Linarised Homogeneous Equations of Stability) so

4 ™, Solver Configurations
b [+ Solution 1 (s0l17)

Example using COMSOL

17, Step 1: Stationary (solves stresses of pre-buckled state)
[]5, Step 2: Linear Budkling (solves: Linarised Homogeneous Equations of Stability)
4 ™, Solver Configurations

b_F~3 Solution 1 fsol1)




Experimental Validation of the FE- buckling model

B

1.5

- Critical load factor=93,282

1111111

Ref: Experiments by R. Kouhia & P. Hassinen (TKK)

Critical load factor=-64.651

Material Aluminum: E =70 GPa, v=0.33

 Experiment: 63.5Nand 90.2N

(Southwell-plot)
* FE-model (3-D): 64.6 Nand93.3 N

* Analytical (beam model): 59.8 N and 89.1 N

Experiments 1-D Model

Alumiinisauva, L [mm] Koctulos (N) Laskennallinen
hxb=50x5.83 mm tulos (1) (N)
L=1733
a=0 90.17 89.12
a=50mm 82.98 87.04
a=-50 mm 93.71 91.21
L= 1633
a=0 100.95 100.09
a=50mm 98.71 ‘)Z.(;g
a=-50mm 102.46 102.5
hxb=40x 3,07 mm Koe (N) Laskettu (1) (N)
= :-]-50 4293 41.07
a=50mm 4264 39.76
a=-50mm 44.36 4298
L=725
a=0 63.51 59.82
a=50mm 62.67 52.4;
a = -50 mm 63.99 63.1




FE-post-buckling analysis

E = 70 GPa, v = 0.33
¢=0.5m,b=>5.83
h = 50 mm H = P/1000.

P, = 1.176 kN.

Post-buckling
analysis

i Post-buckled
el P state

perturbation load was at y = h/4 . P
away from the center of mass

0.7p 0.8P 1P

oP 0.4P 0.6
Bi?k;nlgézgli{rlj})ere N.B. displacement scaleis 1:1 P=2kN
0
0.02 |
o |
-0.02
- 0.55P =
w103 m Per = 1.176 kN,

cross-section.

Initial equilibrium
Pre-buckled state

-H = P/1000.
Post-buckled
state

[Post-buckling analysis] A thin aluminium cantilever with a
vertical tip load P = 2 kN and a horizontal perturbation force H = P/1000.
The critical load being P, = 1.176 kN. Simulation data: £ = 0.5m, b = 5.83
mm, h = 50 mm. FE = 70 GPa, v = 0.33. Location of the horizontal
perturbation load was at y = h/4 away from the center of mass of the



FE-post-buckling analysis — bifurcation diagrams

Post-buckling analysis (Lateral torsional buckling of narrow cantilever [Baroudi, 2018]

3.5

Fy = Pr1000

25

Unstable

/\”3_5

cr

P/P

2_
G
o
o
151 Stable
1 ________________________________________
0.5} -
0 | 1 | | |
025 -02 015 -01 -0.05 0 0.05 0.1 0.15 0.2

w (lateral deflection) [m]

Displacement scale in post-buckled
configurationis 1:1

Z, W
X, u “ ‘

Y, Vv

Post-buckled
configuration

0.25

Post-buckling analysis (Lateral torsional buckling of narrow cantilever [Baroudi, 2018]
| | | | |

Fy = Pnooo

;
0 d L L L | |
-0.05 0 0.05 0.1 0.15 0.2 0.25 0.3
v (vertical deflection) [m]
=0
E = 70 GPa, v = 0.33
> 2

¢=0.5m,b=>5.83
h = 50 mm H = P/1000.
P., =1.176 kN.

Post-buckled
state

perturbation load was at y = h/4 . i
away from the center of mass



Lateral-torsional buckling for beams with warping

1 r¢ 1 ¢ 1 r¢
A= [ Bludo+ 5 [ GrPan+ 5 [ BL¢dz +
2 Jo 2 Jo g 0

—_

new contribution to AU

¢ ¢
- "2
v [teywide o+ [ MIB(#)e o
0 0
both bending & sql\lrea,r initial stresses  new contribution to AW(7Y,)

Thin-walled shells shear is
negligible

+Gy : H*dzx
2 J,

- o’

¥ o

new contribution to Wext

Note that in this case we have axial
compression, so it is combined
torsion and flexural buckling

| use this illustration just to
demonstrate restrained warping

stability

\ 4
Narrow rectangular cross-

section with no warping: Restrained warping

4 £ £
AT = % f Efyw”zd;t:-l-% / GI,¢"dzx + / (M2¢)'w'dz + 1/2Pad(£)
0 0 0

Strain energy
fro

2

Lateral-Torsional buckling 1 =£ (.

Singly symmetric cross section

3(7&")\

N warping

A
3 07 -3 3

S- shear center (rotationcenter): (¥s, 2s = 0)

C- center of mass

Moment arm of external force: Ay = (¥ — yo)

warping

Narrow rectangular cross-
section with no warping and
end-point load ata



Stability Equations

1 ¢ "2 1 ¢ 12 1 ¢ /2
AH:—f Eluw da:+—f GIé%dz + —f EL¢"dr +
2 Jo 2 Jo } 0

Showing variation of the new contributions only:

1 ¢ 9 V4
3 / EIL¢"dz) = / EL,4"54"dz,
0 0

—_

new contribution to AU

¢
+ fo (ngb)’w'dx

o, —_

both bending & shear initial stresses  new contribution to AW (79,)

+ay E Pp*dz
2 Jo W

- o’
¥ o

new contribution to Wext

Stability loss criteria:  (AIT) = 0 ﬂ

£ 0 "2
+ \AMzﬁy(cs)d:i +

Y

¢ ¢
o /0 M By(¢)*dx) = /D MOB,¢'5¢ da.

/ Singly symmetric cross section
Y

_(shells) shear is negligible e
/ This term goes to zero
when we ignore the effect s

of initial shear stresses

(ELw")" — (M2¢)" =0,

(E1,¢")" — (GL:¢') — MQw

" — 28, (MP¢') + eygdp =0

(often we can do so)

S- shear center (rotation center): (?/s-, Zg = 0)
C- center of mass

Moment arm of external force: @y = (¥s — vo)

: Ay = €y = Yq — YS

For details in deriving (1.485), refer to the lecture-notes by Prof. J. Paavola




Kinematics of the cross-section for in-plane motion

Kinematics = geometry of the motion

Out-of-plane motion

(= deplanation = warping)
should be added into the axial
components of the motion

Loss of
stability

1-plane small displacement
omponents in a small rigid-

ody rotation
he rotation direction in this subfigure is ~ (P :
o~

ken negative) a

Wq = %+(A3Q—“3s\5’*”‘.f( section plan.
jl Vg = Ve -4 -2 4) 57K
=

Vr} «""

Segment SQ moves as a
rigid-body in the cross-

egment SQ has only rigid-
ody translation and rotation

round he shear center S . . : .
Rotation in this subfigure is correctly positive

warping



Example: edges subjected to constant moment only

Consider such simply supported beam
with singly-symmetric constant cross-
section which is loaded at both ends by a
constant moment MS — ﬂ_,{g

(ELw")" — (M2¢)" =0,

(Elqu”)” — (GLi¢") — MB’{U” “+ shear neglected + engqb =

0

EL,w® — M%" =0,

EI,¢W — GL¢" — M'w" PDE and the BCs

= 0.

These differential equations can be solved in many ways :

1. One way is to eliminate the rotation ¢(x) from the first
equation and insert it in the second equation. Then, one
solves the last PDE in terms of the rotation ¢(z) only.

However, the system of PDE with constant coefficients is

a Trials should fulfill the

Y

w(z) = Asin (mx /),

quit straight-forward to solve by taking trial solutions ¢(z) = Bsin (mz/L).

simply supported beam .7

|

Lateral buckling of
[-beam subject to
end moments.

Boundary conditions:
w(0) = w(?) =0, w'(0) =w"(¢) =0
$(0) = ¢(£) =0, ¢"(0) = ¢"(£) =0
M7
(7 /¢]?E1, + GI;

Ny

The buckling moment

= 0.

M., = %\/Efy [EL,(n/0)? + GI]




Example: Simply supported beam subjected to transversal con-

Simply supported beam
stant load

ey = 0 For cases.where
the load is along

the center-line
(BLw")" — (M29)" = I .
(EL,¢")" — (Gfté’\)’ Mo'w” | n engd) —0 Constant transverse distributed load qy
\ simply supported beam .7

q Insert the pre-
‘U' MB = —yiﬁ(f — il:') stress bending

2 moment

For distributed load acting along the center-
line, we obtain:

4) Gy y Lateral buckling of
Efyw R ? [;I}(f o $)¢] =0 This PDE is not easy to solve. I-beam subject to
Timoshenko solved it using ] b
E‘quﬁ.(‘l) — GItﬁb” — qi"m(f — SE)T.U” = (). | infinite series. CNnd MOImETILS.
—a system of coupled equations 2 Boundary conditions:

w(0) = w(f) =0, w"'(0) = w"(£) =0
$(0) = ¢(£) =0, ¢"(0) = ¢"(£) = 0

The solution was given by Timoshenko

qy0)er = v +/EI,GI,/0? GItEQ Stability
( i ) ’Y\/ Y t/ T = f( ) coefficient




Example: Simply supported beam subjected to transversal con-

stant load

Simply supported beam : | M? =

2

For distributed constant load acting along the center-line

q—ym(f —x)

Some values for a doubly symmetric I-beam cross-
section for various locations (upper flange, centroid
and lower flange) of the loading

Lateral torsional buckling.

EL,¢® — GL,¢" — QQ—%;(E

L~ Blate— o]’ =0

(@y)er = \/ EILGI/ ¢

VALUES OF THE FACTOR 74 FOR SIMPLY SUPPORTED 1 DEAMS
wiTH UNIFORM LOAD

Effect of location

-Load

applied )
Effect of load at A
locations: _ L
upper flange Upper flange 25.8
centroid Centroid 30.1
lower flange Lower flange 351

, GI,(* of the load
Load = [ il )
applied i
at 0.4 4 8 16 24 32 48 centroid
Upper flange 92.9 | 36.3 | 30.4 { 27.5 | 26.6 | 26.1 | 25.9
cf::roid 143 53.0 | 42.6 | 36.3 | 33.8 | 32.6 | 315
Lower flange 223 77.4 59.6 48.0 43.6 40.5 37.8 encion
fl
G, f(GMQ) ol
-Load Y=
applied / El, El,
at Tea”l| s 128 | 200 | 280 | 360 | 400
sy compressi
" fl
Upper flange 25.9 25.8 26.0 | 26.4 | 26.5 26.6 26.7 =
Centroid 30.5 | 30.1 | 29.4 | 29.0 | 28.8 | 28.6 :| 28.6
Lower flange 36.4 | 35.1 | 33.3 | 32.1 | 31.3 | 31.0 | 30.7

I
v 1 (¢0)e =v+/ELGIL/

Timoshenko Flastic Stability of structures.

ic I-beam
s for ~y for a doubly symmetric 1

value




I-beam Cantilever Analytical solution

EL,w® — [P({ - z)¢]" =0,
EL,¢W — GL,¢" — P(£ — 2)w” =0

A

z

Lateral buckling of I-beam cantilever

Timoshenko in 1910.

P., = y2+/ EL,GI;/ ¢
!

Stability

hY

—

l; motion

Lateral torsional
buckling

Clamped cantilever

/

coefficient

2 = 4.013/[1 — \/ EL,/GL)*

; P, = vy +/EL,GI,/ ¢

1o = 4.013/[1 — \/EL,/GLE*?

Varues oF THE FACTOR v: FOR CANTILEVER BEaMs of I Secrion

GI,2

0.1 1 2 3 4 6 8
EI, - ' v :
. “43 | 157 | 122 | 107 | 97 | 86 | 8.03
2
GLt 10 12 14 16 24 32 40
ET, | o o
vs | 7.58 7.20 6.96 6.73 6.19 5.87 | b5.64

Lateral buckling of I-beam cantilever




FE-computational example

- L
The out-of-plane axial L& VZL b /4
. : displacement is bh e Il
FE-Buckling analysis: £
5 Y proportional tothe ~— [~ W fr ~ f;zim
. . ° . V 5 tw -
Lateral-torsional buckling of |-beam sectorial coordinate (W ™ () -
Pcr = 53.4 kN l . t f)
View from top b2

Front view

Top view

{?’I motion
_ : Lateral torsional
. buckling

aluminium with £ = 70 GPa, and v = 0.33. The thickness is constant 1 cm
and the web has @ = 10 cm hight and the flanges of ¢ = 10 cm width

Lateral torsional buckling of dou-
The transversal load is at the cross-section

centroid.P., = 53.4 kN. Note the small amount of distortion of the web
(flexural mode of the web)

bly symmetric I-beam.



Analytical versus FE-solution:

(FE)
Lateral buckling of I-beam cantilever °r

= 53.4 kN
Analytical solution:

Energetic solution .
P = -,fE'IyGIt/fz, where

12 = 4.013/[1 — \/EL,/GL?)’

/

1 [t 12 1 rt "2 0 ; !
= f Eludo+ f GI¢ dz+ - / EL¢"dxt f (M°8)'w'dz+1/2Pad(t)?
0 0
/'

t Nowa=0

The kinematic boundary conditions

Clamped cantilever

= s)ds = (2b+ h)t, R gttt
— ! — / bja
w(0) =w'(0)=0, Nl | | bhya
¢(0) =¢'(0) =0. - / 2dA = f 22(s)t(s)ds ~ th° /6, T
. . 1, ~ th* /6
example of simple candidate — f W2 (s)dA = / 2(5)t(s)ds = b3h2t/24, < MJ_w L 1= By
fulfils the kinematic constraints % E
1 3
{w(m) = wo(1 — cos 57) Z“ h+26) Y,
2
¢(xr) = ¢o(1 — cos zg) ¢ [\
HW: Find the - e
17 . . bh/4 \k
( approximation of the -
w'(x) = wom/2¢ sin % _ _ . bh/4
08} " buckling load using | )
Xos| @' (z) = ¢om/2¢ sin Ty Rayleigh-Ritz and vy
go_aé compare it to analytical
¥ Sectrorial  coordi-
0.2}
ﬂ The shear center and the nate w
4

centroid coincide
doubly symmetric open thin walled cross-section,



Post-buckling analysis

t -0.05
0.1
t -0.15

' 1.15 1:25
Buckling occurs o

somewhere here A=1 0 0.1
m — m i

Post-Buckling
0.1 Lateral-torsional
buckling

1.6 BRI \ N.B. plate buckling starts |- Baroudi, 2019

(ala-laipan lommahdus)

FE-post-buckling analysis of an aluminium I-beam cantilever.
The transversal tip-load is at the centroid. The scalar numbers A = P/P,,
in the sub-figures correspond to the the scaled transversal load. Note that
for A > 1.8 local (plate-)buckling (lommahdus) of the lower flange occurs.




FE- based Post —buckling analysis

|
Computer class HW

for next week #4 L=
« ==
) DO FE-based Post-bulckling alnaIyS|s %ateral 1:orsmna: bucklir:g, force: contrql [Samu:ii, 2019]
. . 15 2 ! e = -
* Buckling analysis
* Post-buckling
analysis
- & 1 |y
a8 5
Pt Q.
_ =
Il o
~< )
Q
0.5F 1 b4
(7]
p
0 1 1 1 1 1 1 L 1
05 04 03 02 01 0 01 02 03 04 05 :
w(l)/h h =10 cm,
Equilibrium paths. FE-post-buckling analysis of an alu-
minium [-beam cantilever. The transversal tip-load is at the centroid.




Model Builder

== T |l &~

4 @ Global Definitions

Pi Parameters
528 Materials

Definitions

4 [@ Component1 (compi)
[
4

}5\ |-thin bearn - Lateral buckling
F) NEW - ylilaippa (levimpi) /2 (bikT)
F[) NEW - yllaippa (levampi) 2/2 (blk3)
) NEW - ala-lappa 1/2 (blk4)
) NEW - ala-lappa 1/2 .1 (blk5)
I:TJ MNEW - uurma 1/2 (blkg)
@ MEW - uurma 1/2 .1 (blk7)
[ 'E- Work Plane 1: vertical mid-plane 2 (wp2)
[ ‘E- Work Plane 1: horizontal mid-plane {wp1)
I ‘E- Work Plane 1: horizontal mid-plane 1 {wp3)
= Point1(0,0,0) (pt1)
Point C (centre of gravity) (pt17)
= CENTROID of I-bearn section (pt18)
Line Segrment 1 wertical G - UP {Is7)
Form Union (fin)
=22 Materials
4 B9 Solid Mechanics (solid)
i Linear Flastic Materidl : Aluminium
Free 1: tractiopAree faces
Initial Valugg (u, v, w) = 0and dfdt (u, v, w)=10
Free 1 »traction free faces
Fix€d Constraint (u=0,4¢=0, w=0) CLAMPED
i 7Lin. BUCKLING] PGint Load Transversal Tip Load P
i [POST-BUCI

(OOl

A Mesh 1

4~ Study JLINEAR BUCKLING AMALYSIS

tep 1: Stationary (solves stresses of pre-buckled state)
Step 2: Linear Buckling (solves: Linarised Homogeneous Equations of Stahility) soly [0 [ ontinuaty

~db Study 2: POST-BUCKLING ANALYSIS

G ANAL, PERTURBATION] Tip-load Horizontal H
= [POST BUCKLING ANALYSIS] transversal load P = O:dP:nx Pcr

[ Step 1: Stationary: [POST-BUCKLING]

b [Pre Solver Configurations

3

I

. A

b B Tables Application
b i Mode Shape (solid) Builder
4§l Stress (solid) Application

a M - e 4

Geometry

P; Parameters
a= Variables ~
Component .

fix) Functions - All

Definitions

W COMSOL

4 4% Cantilever_doubly_symm_|_Bearm__| ateral_Tosional_buckling_and_POST_Buckling__Anal

4 ~db Study 1: LINEAR BUCKLING ANALYSIS
|~ Step 1: Stationary (solves stresses of pre-buckled state)
_ Step 2: Linear Buckling (solves: Linarised Homogeneous Equations of Stability) soh

i B A = ~ Ry -

Add Build  Mesh Cdmpute Study 2: POST- Ady
hysics Mesh 1+ BUCKLING AMALY:
Mesh Study

tings =~ Propgriles

ianary,
Coprpute ' Update Solution

i Stationary: [POST-BUEZKLING]

Study Settings

neclude gesfnetric nonlinearity

Resllts While Solving

Shysics and Variables Selection

viodify model configuration for styly step

Physics interface Sofve for Discretization

==

- ——

4 ~db Study 2: POST-BUCKLING ANALYSIS

Solid Mechanics & | Physics settings

values of Dependent Valiables
Mesh Selection
sdaptation and Erpor Estimate

study Extensionsy

7] Auxiliary swekp

reep type: | Spyéified combinations

N
Parameter name  Pgrameter value list Parameter unit

pararmy - | ange(0,0.05,3)

Materials Physics Mesh Study Results Developer
& Import = ol
— (] % Pl @
L eaLivelink ~ "3 HH
Build Add Solid Add Build  Mesh
Material | Mechanics = Physics Mesh 1~
Geometry Materials Physics Mesh

Step 1: Stationarny: [POST-BUCKLING]
Graphics

Qaa@RE | bk zEE

Z
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@&
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Torsional buckling

J * Lateral-torsional buckling: beams
g loaded transversally with respect to
center-line axis

e Torsional buckling: axial thrust
(compression) normal to the cross-
section

|
‘ For columns with thin-walled open

) cross-sections, the torsional rigidity is
[ dramatically smaller as compared to the
.0

same but closed section. \

CSL‘E" When torsional rigidity is much small as
- compared to flexural rigidity in the

principal directions loss of stability

through torsional mode may occur. L

L

Thin-walled open cross-sections Pure t.or5|onal
buckling mode

A’k r—i I ;l J } } — I L=300cm L =500 cm L = 1000 cm

Torsional Buckling Torsional Buckling Flexural Buckling




Combined torsional and flexural * This expression is general & accounts

buckling for combined torsional and flexural
buckling

* the loading is axial centric thrust Geometry of the
motion of a

material point on
the cross-section

Total potential energy

1 [t N
ATT == ] ELw"dz + - / ELv"dz+
2 Jo 2 Jo

1 [ ] e
4o / GI,¢'%dz + - / EL¢"dx+
2 Jo 2 Jo

£
i ].3 /A ”5%[(%)2 + (vh)?dAdz

Loss of
Restrained warping warping

Pure torsional buckling will be treated as a special case where no flexion occurs



Torsional buckling

1 [t o, L
ATT == / ElLw"dz + = ] ELv"dz+
2 Jo 2 Jo

1 g e
+ - / GI,¢"%dx + ] EI¢"dz+
2 Jo 2 Jo

—————————————

[ [ o2 lwl)? () aAda :
0 JA @/ T

[ —

Total potential energy

this expression is more
general & accounts for
combined torsional
and flexural buckling

the loading is axial
centric thrust

o
The kinematics A/A/' neglecting the work of shear stresses.

arbitrary material point ¢)(y, z) of the cross-section

v

-
<

( R B SNy
,_r{’b_@(.m_ ) - U= yu = 2w = Wi combined motion
1. VQ (.’L“) «‘2/;) — (Z — Zs)gb, tranalati&on
| : . O
uwQ(m):/‘ w+ (Y — ys) o, 534 body sotatio”
ns

Centroid (C) translations
The increment of work due to initial stresses

Kinematics for combined torsional and
flexural buckling

o (AIT) — 0 —> Stability

In-plane small displacement
components in a small rigid-

body rotation

(the rotation direction in this subfigure is ~ (P b
=
taken negative) = G

Segment SQ moves as a
rigid-body in the cross-
S t SQh lv rigid {‘UJQE %-b("&_ﬂés\s’;&f— section plan.
egmen asonlyrigid- | Airs - ar. —(2. -2 .50

C8 c (733:_*3) KR

body translation and rotation
around he shear center S

ey T
Rotation in this subfigure is
correctly positive

equations:

S [ ABlw)? + (v =

¢
— gfg (W) + (V)2 +r2(¢))? — 220" ¢ + 2y’ ¢ ]da

ElLvY + p (V" + (25 —e)9"] =0,
ET,w® 4+ P [w" — (ys — e,)¢"] =0,
EL,¢™W — GLi¢" + P [(zs — e 0" — (ys — e)w" +~4¢"] =0,

Stability criteria

r*=1I,/A= (I, +1I,)/A+ (y3 + z2)

The eccentricities being e, and e,

Pure torsional buckling will be treated as a special case where no flexion occurs




Torsional buck]ing Total potential energy

1 [t o, L[
ATT == / ElLw"dz + = ] ELv"dz+
2 Jo 2 Jo

1 gt |t
1 / GItqb’gd:ch— / EI¢"dz+

_______

. -

4

( N S A
Iy_@(_m_ ) - =y — 2w —wd, combined motion
<§‘UQ (LL“) = — (Z — Zs)qb, transla,tmls
wo()

=lw + (Y — rota®
(v — ys) o, 4 body

Centroid (C) translations
The increment of work due to initial stresses

1 / !
> [ o) + (vp)av =

¢
— g/ﬂ (W) + (V)2 +r2(¢))? — 220" ¢ + 2y’ ¢ ]da

T, JA = (I + 1) /A+ (42 + 22)

Kinematics for combined torsional and
flexural buckling

~
) Y

In-plane small displacement
components in a small rigid-

body rotation
(the rotation direction in this subfigure is ~ (P )

Segment SQ moves ac =

taken negative) a - G rigid-body in the cros
wWaq = QJ)’-{-("AQ ¥ \‘”‘"‘f section plan.
Segment SQ has only rigid- { Vg = Ve '(?q 2 )smcg

body translation and rotation

=3
around he shear center S Rotation in this subfigure is
correctly positive

Stability criteria
O(AIl) =0 ———>-/Stability equations
Solutions of these PDEs (Eigen-value problems) provides

the buckling load and the corresponding mode

Next, we consider symmetry cases of cross-sections
simplifications ——=> a) singly symmetric cross-section ....



Torsional buckling  Combined torsional and flexural buckling (a) P

Singly symmetric cross-section geometric factors of the cross-section %
i _—-ﬁ e
Oy =L Z
the loading acts in the plane of symmetry r? = ly ; L + y§ + zf, = ¢ #
_\"

ez=03/82;=0 ZS=03

1 2 2
A_ S
2Iz[4y(y + 2)dA —y

_ 1 2 2
53—219142(9 +27)dA — z,

I

|

|

I

I

I

I

|

|

I

|

|

4 |

|

Combined torsional and flexural buckling ‘ I J

e

ELw" + P [w" — (ys —le))¢"] =0,
EL,¢W — GIL¢" + P [—(ys —euw” + (r* + 25@)&] — 0,

!

For centric loading, put all the eccentricities equal to zero ... ﬂ,
and ... solve the problem

)By:

Stability criteria

6 (AII) =0 ﬂ Stability equations v = (r® + 28ye, + 2B,¢,).
EIZ’U(4) —+ P’U” — O, Coordinates of the SC s

General illustration
Eccentric loading in this figures



Torsional blle]iIlg Combined torsional and flexural buckling

Singly symmetric cross-section

ELv® 4+ Py =0,
ELw™ 4+ P [w" — (ys — e,)¢"] =0,
El¢® — GL¢" + P |—(ys — ep)w” + (r* + 2Bye,)¢"| =0,

Now centric Ioading Doubly symmetric cross-section & centric thrust
yS:ZSZUj Ey:Ez:U}ﬁy:ﬁz:U

E-E} -z-z-)-(z)“:{-“]-;z;; ’“;“O-: ----------------------------- §<— Flexural buckling - .The
E-;E'-{'-'-"lg-'(-f‘-)'-'j-:-'.:f:'.I:'.?:."z::'.'.'.'.'.'.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-J—.—.:—.—.Q—i—.—.—.;- ————o :r_q [E I_(B_n_é l_ _tz l_J _C_IS l_l_n_g_ _—
EL¢" — GL¢" + P |- + (" )9"] =0,

Decoupled torsion and ﬂ
bending

Buckling load in pure torsional mode

Pure torsional buckling

EL,¢W + (Pr? —GL)¢" =0. | =—> | Po = .

the buckling length L?b should be determined according to the boundary conditions.

Pure torsional buckling

i)
Wi b

b——b-—fﬂ

/] Je
U

0
i HtHtttt

F
F

|

U
L=300cm L=500cm L=1000cm

Torsional Buckling Torsional Buckling Flexural Buckling




Pure torsional blleliIlg Combined torsional and flexural buckling

Doubly symmetric cross-section & centric thrust

..HM
TV (TR

yszzszﬂaeyzez:[}}ﬁy:ﬁz:{] , By
; b

...................................... | i
ELv®W + Py =0, | < Flexural buckling |
i (4) " i Oeco i Jy i
| — i V| e
E:J-_E:I_{-_y_E::::::I-_;:JE:‘EE_}:::::::::;:::{ _______________ l U'O/@o' is%/t{q o
| 4 17 2 1 ] BN
E_J_E_{Lg_?!;’_(__)__:__g{t_‘}?[{'___ﬂ:__EI__Sf_’___f_U';_:‘——— Pure torsional buckling s
u |
|
|
. i Ommmn
Pery = 2EIZ/Lg, The smallest
9 9 critical load is the
\ Pcr,'w T EI!J/L’HH buckling load Centric load with doubly symmetric X-section
1 2 2 v
\ Pcr,c;‘.l — r2 [ﬂ- EIL‘J/ L¢5 + GIﬁ] Pure torsional buckling :
P’F‘g - Gft |

¢'H‘ — 'D.,

buckling length are L?, L? and Lrj) qf;':d‘} -+ %7

Buckling lengths depend on the ~ —
specific boundary conditions k?

L=300cm L=500cm L=1000cm
General solution: !;b(I) — A + Bm + C 1N k_-r + D oS .IIZI, Torsional Buckling Torsional Buckling Flexural Buckling

Determine the critical length for the mode transition



Pure torsional buckling Combined torsional and flexural buckling
Doubly symmetric cross-section & centric thrust

0
T AT

Centric load with doubly symmetric X-section

The smallest critical
load is the buckling
load

. I::‘) o 2 \k Q(‘\‘\ ¢
'Pcr,v:ﬁzEIZ/Lgﬂ J/ ‘ .
{ Pcr,w = 2Efy/L?m L =300cm L =500 cm L = 1000 cm
1 9 9 Torsional Buckling Torsional Buckling Flexural Buckling
\PCT,qb = ﬁ[ﬂ- EIQ_,/LQ& -+ Gft}

- Determine the critical length for the mode transition



Centric loading of beams having symmetric cross-section

ELv® + Py + Pz,¢" =0,
ElLw® + Puw" — y.¢" =0,
EL,¢W — GL¢" + Pzoo" — Pyw” + Pri¢” = 0.

Pcr,v = 7?2313/133? \

1
Pog= T—E[TTQEIM /L7 + GIY,

(v(x) = A1 + Biz + Cy sinr/ L (x — z0)],

\(;’}(.T) = A3z + Bsx + Cssin[n/L,(z — xp)].
Py = TEI, /L2,

Pepy— P 0 —z, P Ch 0
0 Pcr,tu - P ys P Cyl = |0
—zgP P ys TE(PET,qﬁ — P)| |C3 0
A-PB=0, Pcr,u 0 0 1 0 2z
A= 0 P 0 B=|0 1 —Ys
0 0 frng,.,qﬁ Zs —Ys T2

sw(z) = Ag + Box + (Y Siﬂ[?T/Ln(.T — :1‘:0)],

Combined torsional and
flexural buckling

Combined flexural-
torsional  buckling
of a cantilever-
column loaded at
its cross-section
cenroid (FE-Linear
Buckling Analysis.)



Numerical example - centric load column with singly symmetric

T-section

P

4 &

g N

N

> R

¢ = 10a

Torsional-flexural buckling = Combined torsional and flexural buckling

centre of gravity (of area) of the cross-section is C.

G = 04F

e. = 2/3a,

es = 64/65a,

2y = —62/195a = —0.318a
ys =0

I, = 13/2304a" = 5.642 x 10°a*,

I, = a*/45 = 2.222 x 10~ ?a*,

I; = a*/4500 = 2.222 x 10~ *a*(= I,,/100),
I, = a®/11700 = 8.570 x 10~°a®,

r? = (I, + L)/A+ y? + z2 = 0.287a%,
Lp=1L,=Ly =Ly, =2(=20a.

From the modes




Analytical solution

Combined torsional and flexural buckling

22

— 1073

and

0139 O 0

zg —Yg T2 —0.318¢ 0 0.287a2 4

36

sii=
38 -
39 —

. Ea?
0.091 =T

42
43
44 —
45 -

—0.318a il
0 ) =

48

0 0548 0
0 0

1 0
0 1

S50 -
51

Programming the problem®? in MATLAB leads to [C, P] =

52
eig(A, H|s:
54 —
55
56

The smallest o
critical load is the 59 -
buckling load

60
61 —
62 —

63

. — 1.158 x 10" 4Eq?

4,
by,

% Rigidicties ———-
EI z=E * I z;
EL. v-m E &:T V>
EI omega = E *
GI t =G *

I _omega:
Izt

P v & pi”2
Pwigplt2 *
P phi = ( pi“2

* EI z / (L v*2)
EIy / (L_w*2)

* EI_omega / (L _phi®2) + GI_t ) /r2

§F rrm e ——————————— e e e
$ Eigen-value problem
§ ————————————————————
AglIPv 0 0
0 Pw 0
0 0 r2*P _phi]
* ___________________________________________
B=1 0 z s
0 1 -y s
z_s -y s r2]
g ——————

% Solving the three critical forces
[C, P] = eig(A, B) ; % C- the constants
$ the critical loads := Ps
Ps = diag(P)
P_cr = min(Ps) $ THE BUCKLING LOAD
§

~Z Z
B

AL

P, =75 kN (Full 3D FEM)
Think: why the 1D is stiffer than 3D FEM solution?

For F

= 70 GPa and a = 10 cm,

N\

P, =11.6-10"%Fa? = 81 kN,

(this analytical: 1-D Vlassov beam theory)




Torsional-flexural buckling Computational linear buckling analysis

Notice the bending
-mode of the flange i
NB departurefrom\‘
the straightinitial :
shape shown by
white dot-line

S

Computational linear buckling analysis (3D). Flexural-
torsional buckling of axially loaded column at centroid. The cross-section is
simply symmetric thin-walled T cross section. The thrust load P is centric
and applied at the centre of mass C. The obtained P,, = 75 kN.

Let’s illustrate the Eigen-value problem (Eq. 1.548) above with an application
and solve for the critical load (Figure 1.119). Here are the geometry-data: length
of the column is £ = 10a, G = 0.4E, t = a/15. The centre of gravity (of area) of
the cross-section is C'. The thrust load P is centric and applied at centroid C' of
the cross-section.

(3D)






Appendix

In a bit disorder now ... will be updated

e geometric properties of some open cross-sections
(center of shear and warping moment of inertia)

 and many other things ...



Energy criteria for determination of in-
stability of elastic structures

Change of
total
potential
enerqgy

between which
two states?

Post-buckling analysis Lateral Torsional Im$nn‘ Iwe control [Baroudi, 2019]
T T T T —

__:’I ‘;_;‘i;o =4
—
& LA
al _ﬁ_ 5
1] e e
~< T ek
‘ P
0
05 04 03 02 01 0 01 02 03 04 05
w(f)/h h =10 em.

Figure 3.122: Equilibrium paths. FE-post-buckling analysis of an
minium I-heam cantilever. The transversal tip-load is at the centroid.

alu-

“—— SISEIIIUI peo]

No buckling

Buckling just
started

H*

- 1 I _________________ 1
Lateral-torsional i O(AIl) =0 =4 (552H|u0 da ) =0 4"— stability loss

buckling occurs

—

. Primary pre-

N.B. The perturbed configuration [.]* can be thought
achieved keeping the load constant and for instance,
| giving a tiny kinematical (virtual) perturbation to a an

adjacent equilibrium config/u}a}[ion V¥

Torsional
buckling

l

l; motion

buckling state
Lateral torsional
buckling
Lo
AIl =1I* - 11

1
All = H(uo + u) — H(uo) = 011, +§52H|u0 +...
v
General

I

B o o o e - -

\ criterion
Keeping up to
quadratic terms Trefftz
— §(6°II) = 0. <= stability loss
Post- criterion
buckling U
behavior

This criticality condition for
bifurcation provides the
Buckling Equations



Shear center and torsion moment of inertia S S

Poikkileikkaus Poikkileikkaussuureita 6. Hattuprofiili . b* +2bb, e —b 3h°b +6h°b, —8b; The shear center (SC or
1. + -profiili <" h+2b+ Zb’ Y B +6l°b+6h7b, +8b +12hb; . .
b Y - ’ 2 V) is the instantaneous
-t I = Th I = B I, —?+2tb (——e )’ +the +2th(b—e.) . £
) |n, 1 - ) center of rotation for a
3 3 h t b 2 .
N (A 1=t +ht}) L=F++ 2fb(— 2) +26(3) section under pure
- =%(fz+2b+zm torsion or when the
1 &K .
= 3ih+ib J,yz%l resultant of loading
LAY B b does not pass through
' 112 12 22 this center
I = g(brj. +ht) I = 5{2: b+t)h)
e ol th 1 LF o LI I24tbh B * V =shear center =SC
2t h+t b’ 2rh+tJr © theth+th, " th+1h] e
b o . (vdantdkeskio)
I =L +the I = L +1,be. I,= i2l ¥ :;22 G= f [
T 12 T2 . . = center of gravity
b h 1., 3 _t My 2 2
I =~tbec(C - e) =1 ~ecec =1 (bt} + ) L=yt Hhlime b
b? 35 1, ——(r3b +6b, +th)
€= »Ey = 3 2
1= ’2 Zbr( —e.) +the.® f_—ﬁ 2{:1( y i
= 2
L=_m+m}

:3
1,=5@b+h)

b* +2bb, 3h°b+ 6I°b, —8b]
€= e, =b 3 2 2 3 2
h+2b+2b " +6h™b+6h™b +8b —12hb;

v’
1, ?+2.tb (——eE) +thel +2th(b—e.)’

_sina
=

sin¢z —a cosa
=2qg—— "~

a, e, -
o —sing cosa

)

)
sSin-a

I =ta’(a +singcosa -2

3 g3 I. =ta’ (a —sina cosa)
%+‘2 +2rb(———‘) +2rb( 5

I= 2 faq
3

I =Ehe2b42b :
LA Ref: Emir prof. J. Aalto lectures




Shear center and
warping moment of
inertia

Shape of cross section Location J= z":_l, Iw Shape of cross section Location J=Y 4
of shear centre, § i=l of shear centre, § i=l
i 3 3
i Ypmm:=g J=h+h lei‘=1413 Y Yo=20=0 J=2/h+)
=0 Ay iy h= Yo}
B gpe Jy = e,
0
z s 42 I
<+——>
“ Th w
2
Yo = e J=h+h | H6l+b) |——b——| €1,
0=-€ Jy = ib
Jz=§bzl3 Iy —ey I,
yo=2g J=h+h+h
20=0 .h=§b|l?‘
Jz=§bzt?2
J3=§d:3,
3
Yo=—e J=h+h %{-+q—g 2 I’
Lo d* 1
Jz=§bt?
v Yo=2=0 J=2h+h
% 5 = b}
Y “ .’2=§dl=,
A Y
Axis of symmetry m=,(|+d’_n_: J=2h+h q—[lx+ezA
2 2
0 =0 a=do | (1- %) I, $1.°
Jz=§dl‘3, tw

=
o]

2 I, and I, are the moments of inertia of the top and the bottom flanges, respectively, with

respect to the Y-axis

b J, is the moment of inertia of the c1oss-section with respect to the centerline a-a of the

web




Shear stresses from pure torsion

Torsional stresses

« Location of Shear Cenler
uw=Gteo'

(a) Positve Angle of Rotation (b) Shear Stress Due to Pure Torsion
Warping shear Warping normal
stresses stresses

Tot LT
c /‘T‘\‘t Unu,q{
i c
——ESw C compression
Te=—E ; o T
Swo
dndodedng °"°<5’?/Ié;
Ted Twd T‘\_
Tl Uﬂ.ﬂEWr'e'

(c) Shear Stress Due to Warping (d) Normal Stress Due o Warping



Torsional stresses

Pure torsion Pure torsion

Puhdas vaanto Puhdas vaanto

—
d/2 d/2
|
Tt Web
« Location of Shear Center B ) « Location of Shear Center
1w=Gto
(a) Positive Angle of Rotaion (b) Shear Stress Due to Pure Torsion (a) Positive Angle of Rotation (b) Shear Stress Due to Pure Torsion
warping torsion Tl warping torsion
e . T Tw2 ..
o Estetty vaanto two/ __D e Estetty vaanto
~—— ! - Tw2
i S ==
7 ' 4
(Y
C compression . w=—E 5_‘;5 a"
iy
Ow2 g -
&-—- ‘{'—_E;Tug

Co2 Two
to2ll

Cus= EWps @ Tol O us= EWnsb"

(d) Normal Stress Due to Werping {c) Shear Stress Due 1o Warping (d) Normal Stress Due o Warping



warping

warping >

Deplanation = out-of-plane

motion (means the plane of the
cross-section)




Open thin-walled cross-sections

The Sectorial Coordinate

Sectorial coordinate
with respect to A

dE?JA = :thA(S)dS /
d{a:.;A = ('Fp —'FA) x d&

dwsy = —(z — za)dy + (y — ya)dz



Open thin-walled cross-sections The Sectorial Coordinate W Definition
Example: determine the

sectorial coordinate, the shear [ hy(s)
center and Iw 12

arbitrary pole
K

¢B

Sectorial coordinate
with respectto A

dL:)A — ﬂ:hA(S)dS /
|..-—p| d(f;A L (’f—"p = ’FA) x d§

The sectorial coordinate wg(s). X
, . ) o o dop = —(z — za)dy + (y — ya)dz
Let’s use the arbitrary point B as a pole (You will find that, it is
computationally wiser to chose a corner point the cross-section as an initial pole)

P P P
WA = f dwa = iL ha(s)ds = —l) (z — za)dy — (y — ya)dz]

P,
The sectorial coordinate with respect to B as determined from the definition is To be useable, It
aa b should be
A §ds =55 kun 0<s<b 0<s<3b normalised such
s b < > that its static
wp(s) = { wp(b) +/ st = 5% kun b <s<2b moment vanishes
? 3 3b (read the lecture
wp(2b) — Lb Ed,s = 4b% — 55 kun 26<s<3b notes)
\




The sectorial coordinate graph

Definition

Sectorial coordinate
with respectto A

dba = tha(s)ds -~
dda = (Fp — 7a) x d5

p— " The sectorial coordinate wg(s).
Let’s shift or re-allocate the pole B to an other point A.

A

\ 4

dws = —(z — za)dy + (y — ya)dz

@
How the coordinate- () is then transformed?
P
WA = — / [(z — za)dy — (y — ya)dz]
P,
P
:—jl; [(2 — 28 + 2 — 2a)dy — (y — yp + Y — ya)d2
; p S
- / (2 — 2m)dy — (y — ym)dz] — / (28 — za)dy — (y — ya)d2] 2B —zc= 5
P, P,

W — (2B — 2A)(¥ — ¥o) + (yB —ya) (2 — 25) YB — Yc = — %



The sectorial coordinate graph

4 C

Sectorial coordinate wc.

X
b

=]

Let’s re-allocate the pole to the corner paint C of the U-profile.

How the coordinate- () is then transformed?

P
o = — [D [tz = =)y — (v~ a)a]

P A 4
:—/P; [((z — 28 + 2B — za)dy — (y — yB + yB — Ya)dZ]

P P
== [ 16— sm)dy — (v = ym)dz] = [ [(em — 2a)dy — (5 — ya)d)
P, P,

WB — (2B — 2A)(¥ — ¥o) + (B — ya) (2 — 2,)

%3
1-4.&3
3 A :
b P“m o (D A(5)
= < _4_.:.3'!'_
n 147 B 3
24
¥y the
b
. YA = YB + =B2
Coordina I
ZA — ZB — i -

The pdf-material by emeritus prof. J. Paavola
provides detailed illustrative examples.

(b b b

—5 — — ——\)s = <s<

55 20—|—( 2)8 0, kun 0<s<b
gs—g(s—b)-i—(—g)b:(], kun b <s<2b
k4b2—%s—gb+(—g)(3b—s):262—135, kun 2b<s<3b



YA = YB + I,
Iony
A = Zr —
A B i

Normalization of the sectorial coordinate

SWA/wAdAO
A

P P P,
wa(s) = / dwa = / dwa —f dwa = wa(s) — wa(so)
P P P

/

!
o o

S,

wa(s) = wal(s) — %



Example from the past: sectorial coordinate distribution and ...

t
My own exercise-notes from the past... at TKK I r
t

b - 5 vaantSkeskisd A Si\jqitSee(ainqs
Symnedapisteessd (+ai Symm etriaoles.)

” bl | Poikk, lekkau ksen ‘aq.on. sdetoriaali “,t suy reﬁe,_{: <
y >




Homework: a) analytically, b) Rayleigh-Ritz, c) FEA — buckling analysis and

post-buckling analysis

Tension flange

Figure 2.8 Lateral torsional buckling due to bending




Example of table giving shear center and the warping inertia moment [

Shear
Center

J | —T J _ 2&{‘ + M“S If tf = t' = {:
! w '3 : _
Of— A trhtb3 i ¢
¢ h}2 w ™= ’ ] p : = =
N J Co = I, J =2 (2+h
T,
b b, 1 3 .
l[ } Fl] e mh b; Iftf"tg-t.
Tt T by + et
f Of - |
T h J - (b1 + ba)ts® + ht,? J = E:(b; + bs + B)
¢ e | ' 3 , 3
{ C. = trh?  bi3bs? . _
My, Y12 bt 4 bt
3b% Ift, =to = ¢:
— b - ! ! w
_-[ ¢ ﬁbtf + Ms e = 3b=
el ,E, 1 5 _ 200+ hay? 6 + h
O h _ - 3 R J = if (2b + h)
Wy _l_ C. o Lbh? 3bty + 2hty 3 |
T T T2 bty + hte tb%h3 3b + 2h
g PP N ! Co =

12 6b +h

Now to stay
realistic (6 weeks
stability course)
we will use tables
for theses cross-
section constants

Torsion topicis a
wide subject.
Torsion of beams
with thin-walled
Open-cross
sections
deserves, at least,
a full three-weeks
course by itself



_Linear stability analysis Computational stability analysis
Model Builder Lateral torsional beam buckling with

- = t | v ETEIEf~ » i
Py e ——— thin cross-section
4 @ Global Definitions L~
P, Parameters [
13 Materials
4 W Component 1 (comp1) |
b = Definitions b

4 A |-thin beam - Lateral buckling

(@ THIN-BEAM upper part (blk1) CompL.ltatlonaI stability
(1) THIN-BEAM Lower part (blk2) analysis: .
1. Solve initial stress state in
W—— b h buckled f
> I View2 the pre-buckled state for Steel:
4 2 Solid Mechanics (solid) ) . b= 5.83mm 5
W Linear Elastic Material : steel 2. Solve the linearized h= 50 mm “ 002
% Free 1 : traction free faces homogeneous equations of ~
W Initial Values (u, v, w) = 0 and d/dt (u, v, w) =0 ’ .g s q L= 346.6 mm ¥om
O Pisicmsed Displacivgnts KWl =0 daed stability: Critical load and - \ll
® Edge Load at x = L, tip unit load for pre-puckled state buckling mode J Critical load factor=7114.8 | 2%
A Mesh 1 ' ™~
4~ Study 1 ®
'~ Step 1: Stationary (solves stresses of pre-buckled state) '

Ui Step 2: Linear Buckling (solves: Linarised Homogeneous Equations of Stability) sa = = i % Stua
4 ™, 'Solver Configurations ' E Step 1: SMOOOIY (SO'VES stresses of pre-budded state)
b [ Solution 1 sol?) LIS, step 2: Linear Budding (solves: Linarised Homogeneous Equations of Stability)
4 ™, Solver Configurations
b_f~d Solution 1 (sol1)

—

Example using COMSOL




Experimental Validation
of the FE-model

¥

-~

-1
e

1.5

- Critical load factor=93,282

Ref: Experiments by R. Kouhia & P. Hassinen (TKK)

1111111

Critical load factor=-64.651

 Experiment:

FE-model (3-D):
* Analytical (beam model): 59.8 N and 89.1 N

Material Aluminum: E =70 GPa, v=0.33

63.5N and 90.2 N
(Southwell-plot)

64.6 N and 93.3 N

Experiments 1-D Model

Alumiinisauva, L [mm] Koctulos (N) Laskennallinen
hxb=50x5.83 mm tulos (1) (N)
L.=1733
a=0 90.17 89.12
a=50mm 82.98 87.04
a=-50 mm 93.71 91.21
L= 1633
a=0 100.95 100.09
a=50mm 98.71 ‘)Z.(;g
a=-50 mm 102.46 102.5
hxb=40x 3,07 mm Koe (N) Laskettu (1) (N)
= :‘-]-50 4293 41.07
a=50mm 4264 39.76
a=-50mm 44.36 4298
L=725
a=0 63.51 59.82
a=50mm 62.67 5(2-:;
a=-50 mm 63.99 63.

4013 ——[. . a [EI




“igibility mode
Internal Forces M-y [kMm]
CO1 o LCt +LC2

bz M-y 452 65, Min M-y: 0.00 kNm
7 Mode Shape View m] x

LCT1 | Eigengewicht
LCZ | Nutzlast

[ Material Properties - Steel 5 235 | DIN EN 1533-1-1:2010-12 ~
Cross-Section Properties - IPE 550 DIN 1025-5:1994
Design Intemal Forces

| Cross-Section Classification - Class 1

B Design Ratio
" Max_ Cross-Section Check [nutkmsx | 0693 | [Ea. 62
v‘/l\ I:I%’ Ttk I 1.4% I (634
! Ampliier [Goron ¥ | |63.403)

BEE EE O @ E N e me  feEs DAL LLLEL28FITL8TED
Displey foctor: 100 |2 5T [ c [ o E F T G [ 7 ] 1 [ —
Momerts of inertia [om*] Cross-Sectional Areas [om2] Principal Axes | Rotation Overall Dimensions [mm]
TorsionJ | Bending ly | Bendinglz | Adal A | ShearAy | ShearAs al] o[ Widhb | Depthh
124.00| 67120.00 2670.00 134.00 6046 57.57 0.00 0.00 2100 550.0
103.00| 11260.00 3920.00 106.00 68.02 2057 0.00 0.00 2400 .0




Model Builder

== T |l &~

4 @ Global Definitions

Pi Parameters
528 Materials

Definitions

4 [@ Component1 (compi)
[
4

}5\ |-thin bearn - Lateral buckling
F) NEW - ylilaippa (levimpi) /2 (bikT)
F[) NEW - yllaippa (levampi) 2/2 (blk3)
) NEW - ala-lappa 1/2 (blk4)
) NEW - ala-lappa 1/2 .1 (blk5)
I:TJ MNEW - uurma 1/2 (blkg)
@ MEW - uurma 1/2 .1 (blk7)
[ 'E- Work Plane 1: vertical mid-plane 2 (wp2)
[ ‘E- Work Plane 1: horizontal mid-plane {wp1)
I ‘E- Work Plane 1: horizontal mid-plane 1 {wp3)
= Point1(0,0,0) (pt1)
Point C (centre of gravity) (pt17)
= CENTROID of I-bearn section (pt18)
Line Segrment 1 wertical G - UP {Is7)
Form Union (fin)
=22 Materials
4 B9 Solid Mechanics (solid)
i Linear Flastic Materidl : Aluminium
Free 1: tractiopAree faces
Initial Valugg (u, v, w) = 0and dfdt (u, v, w)=10
Free 1 »traction free faces
Fix€d Constraint (u=0,4¢=0, w=0) CLAMPED
i 7Lin. BUCKLING] PGint Load Transversal Tip Load P
i [POST-BUCI

(OOl

A Mesh 1

4~ Study JLINEAR BUCKLING AMALYSIS

tep 1: Stationary (solves stresses of pre-buckled state)
Step 2: Linear Buckling (solves: Linarised Homogeneous Equations of Stahility) soly [0 [ ontinuaty

~db Study 2: POST-BUCKLING ANALYSIS

G ANAL, PERTURBATION] Tip-load Horizontal H
= [POST BUCKLING ANALYSIS] transversal load P = O:dP:nx Pcr

[ Step 1: Stationary: [POST-BUCKLING]

b [Pre Solver Configurations

3

I

. A

b B Tables Application
b i Mode Shape (solid) Builder
4§l Stress (solid) Application

a M - e 4

Geometry

P; Parameters
a= Variables ~
Component .

fix) Functions - All

Definitions

W COMSOL

4 4% Cantilever_doubly_symm_|_Bearm__| ateral_Tosional_buckling_and_POST_Buckling__Anal

4 ~db Study 1: LINEAR BUCKLING ANALYSIS
|~ Step 1: Stationary (solves stresses of pre-buckled state)
_ Step 2: Linear Buckling (solves: Linarised Homogeneous Equations of Stability) soh

i B A = ~ Ry -

Add Build  Mesh Cdmpute Study 2: POST- Ady
hysics Mesh 1+ BUCKLING AMALY:
Mesh Study

tings =~ Propgriles

ianary,
Coprpute ' Update Solution

i Stationary: [POST-BUEZKLING]

Study Settings

neclude gesfnetric nonlinearity

Resllts While Solving

Shysics and Variables Selection

viodify model configuration for styly step

Physics interface Sofve for Discretization

==

- ——

4 ~db Study 2: POST-BUCKLING ANALYSIS

Solid Mechanics & | Physics settings

values of Dependent Valiables
Mesh Selection
sdaptation and Erpor Estimate

study Extensionsy

7] Auxiliary swekp

reep type: | Spyéified combinations

N
Parameter name  Pgrameter value list Parameter unit

pararmy - | ange(0,0.05,3)

Materials Physics Mesh Study Results Developer
& Import = ol
— (] % Pl @
L eaLivelink ~ "3 HH
Build Add Solid Add Build  Mesh
Material | Mechanics = Physics Mesh 1~
Geometry Materials Physics Mesh

Step 1: Stationarny: [POST-BUCKLING]
Graphics

Qaa@RE | bk zEE

Z

-y

@ =

param(25)=1.2 Surface: von Mises stress (N/m?)

— el

@&

Compute Study 2: POST- Add Stress  Add Plot
BUCKLIMNG ANALYSIS ~ Study (solid) ~ Group -
Study Results

B L T T e R T T T T T T T T T T N T ST T T T TR TSI T AT

Nfm?

x10°
5.5

45

35

25

[ [

Windows  Reset
- Desktop ~

Layout



Post-buckling analysis using RFEM

General Calculation Parameters

Method of Analysis

() Geometrically linear analysis

() second-order analysis (P-Delta / P-delta)
() Large deformation analysis

(@) Postcritical analysis

Method for Solving System of
Nonlinear algebraic equations:

Hewton-Raphson

Hewton-Raphson combined with Picard

Picard

Mewton-Raphson with constant stiffness matrix
(@ Modified Newton-Raphson

Dynamic relaxation

Edit Load Cases and Combinations

Load Cases | Load Combinations | Result Combinations

Existing Load Cases

| G2 e P-1
El L C5 P-1500+imp
IEFl 1L C6 P-1+imp

500000

(@) Postcritical analysis

RFEM

by DI Bahram S. using RFEM.

X

LC No. Load Case Description To Solve
[#s00rmp -
General Calculation Parameters

Method of Analysis Options

() Geometrically linear analysis [] Modify loading by factor:

() second-order analysis (P-Delta f P-delta)
() Large deformation analysis
(@ Postritical analysis

Method for Solving System of
Nonlinear algebraic equations:
() Newton-Raphson

) Newton-Raphson combined with Ficard

) Picard
() Newton-Raphson with constant stiffness matrix
(@ Modified Newton-Raphson

() Dynamic relaxation

Incrementally Increasing Loading

[ ] Activate
Initial load factor ko : I:l [-1
Load factor increment Ak |:| [-]

Refinement of the last lnad
inErement 15

Stopping condition for:

[ |use initial load (not increasing):

[ | pivide results by loading factor

Activate stiffness factors of:

[ ] Materials (partial factor yM})

Cross-sections (factor for 1, Iy, Iz, A, Ay, Az)
Members (Definition Type)

Surfaces (Definition Type)

Activate special settings in tab:

[ ] Modify stiffness

[ ] Extra options

[ | Deactivate

Consider favorable effects due to tension of members

Refer internal forces to deformed
structure for:
Mormal forces N
Shear forces YWy and Yz
Moments My, Mz and MT

[ ] Try to calculate kinematic mechanism
(add low stiffness in first iteration)

[ ] Apply separate number of load increments
for this load case: I:l

Save the results of all load increments

D Deactivate nonlinearities for this load case

=

9]




Post-buckling analysis using RFEM by DI Bahram 5. using RFEM.

— General Calculation Parameters
Global Calculation Parameters Calculation Diagrams

tszzNopdseOI?J::.rq%) / Incr. @ Postcritical analysis cb N"; ‘Dziﬂgfﬂm Description 2:;"0‘3 DIA"T;?T"S X
. eometrically linear analysis
18(::‘ Incr. / Loading - () Second-order analysis (P-Delta / P-delta)
86 ——— @ Load case: (O Large deformation analysis
79+ B LC - P-500+imp (@) Postcritical analysis
72t
65T Lgad combination: | Method for Solving System of
:? , Monlinear algebraic equations:
g; 1 Vertical Axis Newton-Raphson
304 _ 10 ‘ » — Result type: Mewton-Raphson combined with Picard
23+ ‘ . TR - Picard
167 - Newton-Raphson with constant stiffness matrix
g ! ! ! ! ! ! ! : UYlmm] | (@ Modified Newton-Raphson
6.8 135 20.3 27.0 338 405 473 540 60.8 Dynamic relaxation

| Values

Incr. lteration |Load Factor uy ~
MNo. MNo. [ [mm]
1 3 0.010 0.0
Result type: Value: 5 3 0,020 00
Modes - Deformation ~ Y M 3 3 0.030 0.0
4 3 0.040 0.0
Location 5 3 0.050 0.0
Node Mo. 6 3 0.060 0.0
7 3 0.070 0.0
13 v 8 3 0.080 00
9 3 0.090 0.0
10 3 0.100 0.0
11 3 0110 0.0
12 3 0.120 0.0 A4
Comment
| v 2q

RFEM




Lateral-torsional buckling

Application example: can you comment on lateral stability of the
nodes of the stiffening truss

Two design solutions for the stiffened-beam (jaykistetty palkki)
* Which one is better? Ass

* Which one need lateral supports for the nodes Sphe“r’?e the hinge
Ca/

| jxj I e

Stable nodes Unstable nodes

Kirste criterion: Tells when the node need lateral support against stability loss

We can also use the general stability criterion Trefftz or the sign of the variation
of the change in total potential energy

Effect of location
of the load

Iid

tension
flange

compression
flange

Elevation
N N
v
My N
e - -
[y C Iy
Ground plan
C
N: i (+)
\ Ilr"ll =V Z I_I_. v
i

Sign positive then stable of




Lateral-torsional buckling

Application example: can you comment on lateral stability of the

nodes of the stiffening truss

Two design solutions for the stiffened-beam

(jaykistetty palkki) SASsum
*  Which one is better? Pheric,

*  Which one need lateral supports for the nodes

Kirste criterion:

We assume that the nodes of the truss have spherical hinges. Let us give a virtual
displacement v to one of the nodes, denoted by C (Fig. 9-10). Supposing that all
neighbouring nodes are rigidly supported against lateral displacement, the restoring

force V acting on the node C is given by the expression
N;
V=v3
7

The original position of the node is stable if 2 P,'f* has a positive sign, since in this case
V becomes a restoring force. If this sum is (:Liual to zero, then the position of the node
is indifferent, and if the sum has a negative sign, then the node is unstable since V
pushes it further in the direction of the displacement.

Stable nodes Unstable nodes Orend plan T

Kirste criterion:

Kirste criterion: Tells when the node need lateral support against stability loss

We can also use the general stability criterion Trefftz



