
• General Energy criteria of loss of stability
• Trefftz stability loss criteria
• Flexural buckling

• Buckling of beam-column
• Timoshenko column
• Buckling of beam-column on elastic foundation

• Effects of imperfections
 Ayreton-Perry formula  &  Eurocode buckling curves

• Linear buckling analysis
• Post-buckling analysis
• Finite element method – a hand version for buckling 

analysis (=  the slope deflection method)
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Soil material instability

The key stability question in 

structural design



(recall) The Fundamental Question Effect of imperfections

All real structural systems are imperfect

 in form, 
 in material properties, 
 in the sense of residual stresses 
 in the way the loads are applied



+ Eurocode 7, geotechnical design
• Slope stability
• Pile stability (foundations) 
• …



Russia, about 1890

2

2

L

EI
Pcr 

crPcrP

buckling

Foot bridge (ramp) collapse in Jiujiang City 
(China's Jiangxi)

Railway bridge collapse, Russia ~1890

The mechanical cause of the 
collapse is the same: flexural 
buckling of compressed upper 
chord of the truss  (yläpaarteen 
nurjahdus)



Flexural buckling

Despite our interest for post-buckling behavior, in structural 

design, stability loss is an unwanted event. 

However, bifurcational buckling exists only for a  non-existing perfect structure and thus GNA should be 

performed to find the limit-load, if  any.



Let's illustrate mathematically the basic stability types 
• stable
• Indifferent                          this will be one condition for loss of stability

• unstable
• keeping a simplified example of the rigid ball (null strain energy)

The total potential energy of the system

potential energy 
of gravitation 

Initial total potential 
energy

perturbed equilibrium 
position

Initial equilibrium 
position

The sign will provides us the nature of stability

… or equivalently

The idea is the make the study of stability in 

terms of variational calculus

Self-reading

x0= 0

The sign of                    

gives the full information  

about the stability behavior 





Self-reading

So, the criticality condition:



Stability theorem of  Lagrange-Dirichlet & Trefftz stability loss criteria

(This theorem is more general than Trefftz stability loss criteria)

Trefftz is a particular case where the total 

potential energy increment is expanded only 

up-to its quadratic terms between the 

initial and perturbed states

Trefftz stability loss
criterion 

Trefftz stability loss
criterion 

More general 
criterion than Trefftz

stability loss criteria

stability loss criteria

It is tis form of  criticality condition that will be used systematically thorough this course to derive the stability  loss equations for all our structures



Leading term for sign change in the 
increment of total potential energy

v

v

The criteria of loss of stability

More suitable form for finite number 

of dofs and continuous case

This is a Taylor expansion of a function

A Taylor expansion of a function

It is tis form of   criticality condition that will be used systematically thorough this course to derive the stability  loss equations for all our structures 

Physically speaking, this condition means simply that the perturbed state is also an equilibrium state; thus an neighboring equilibrium exists 



About the criteria of loss 
of stability – Example with 
two dofs

Self-reading



About the criteria of loss of stability –
Example with two dofs

Self-reading



unstable
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Critical load



Bifurcati
on point
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Equilibrium path 
and stability loss

St
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le

NEW Material starts from here …

Skriiva liitutaululla …



Torsional 
buckling

Trefftz
stability loss
criterion     

General 
stability loss
criterion 

Change of 

total 

potential 

energy 

between which 

two states?

?

N.B. The perturbed configuration [.]* can be thought 

achieved keeping the load constant and  for instance,  

giving a tiny kinematical  (virtual) perturbation to a an 

adjacent equilibrium configuration v* 



Stability (loss) energy criterion 



Energy criterion of loss of stability (Bryan form)

+ should also include increment of work of 
external work not already accounted in by the 

work of initial stresses



- Additional work of 

external force not 
included in the pre-
stress

Initial 

stress
Quadratic 

part of 

the strain

Linear part of 

the strain

Example: Buckling of a column



Finite deformation (strains) What deformations are significant in buckling?

Ex. Plate: quadratic part of strains

quadratic part 



Flexural buckling Equations (of loss) 

of stability

R
ef

:http://perso.ensta-paristech.fr/~touze/PDF/MS205/amphi1_ms205.pdf

N.B. The perturbed 

configuration [.]* can be (also) 

thought achieved keeping 

the load constant and  for 

instance,  giving a tiny 

kinematical  (virtual) 

perturbation to a an adjacent

equilibrium configuration v* 

= v* 

A thought
experiment

Keeping P

constant

P

This difference 

does to zero at 

buckling
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Initial 

stress

Quadratic 

part of the 

strain

Linear part 

of the 

strain

BCs BCsField equation

Stability loss 

criteria 



General solution

The few following slides are a recall form 

Beams and Frames course (2018)

Related to how the stability equations are 

derived by considering equilibrium of a 

deformed differential beam element 

Stability equations 
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v

0P

To account for the second order effects, the 
idea is to write the equilibrium equation in 
the deformed configuration 

/geometrical nonlinearity/ (account for 
the nonlinear part of the strain tensor)

Assumptions:
- Large displacements
- Moderate rotations
- Linear elastic material (Hooke’s law)

,tan1,tan   v



1cos,sin  

‘Moderate’ rotations

QQ  )cos( 

Q



vv 

 
Q Q

QQQQ  )cos()( 

0(          )



Combined flection M + N

The superposition principle does 

not hold anymore

vPPP  sin Equilibrium



v

vv  

0P

To account for the second order effects, the 
idea is to write the equilibrium equation in the 
deformed configuration 

/geometrical nonlinearity/ (accounts for the 
nonlinear part of the strain tensor) and 
membrane forces               from the 
undeformed

The General solution
(for compression case)



)()cos()sin()( 0 xvDCxkxBkxAxv 

v

vv  

0P

The General solution
(for tension case)
NB. The tension have a stiffening effect on 

bending

The General solution
(for compression case)

Combined compression/tension and bending

0P

vv  

)()cosh()sinh()( 0 xvDCxkxBkxAxv 

NB. The compression have a softening (of the 

effective bending rigidity) effect on bending

N.B. for                

0P

 0P )()( 0

32 xvDxCxBxAxv 



Euler's basic buckling cases Eulerin perusnurjahdustapaukset
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Elementary buckling casesFive Fundamental Cases of Column Buckling

Geometric interpretation of the 
effective length

Adapted from the reference: 
STRUCTURAL STABILITY OF STEEL: CONCEPTS AND APPLICATIONS FOR  STRUCTURAL ENGINEERS. THEODORE V. 
GALAMBOS ANDREA E. SUROVEK 
JOHN WILEY & SONS, INC.



Example – rigidly fixed ends column

Non-trivial solution: 
the determinant 
vanishes:

Criticality: or 

The zeros of the determinant:

The critical load is the smallest:

Adapted from ref: prof. Tuomala M. 2

2

cr 4


EI
P


The critical load from 

the Euler’s ‘Table’ :

Cf.



Examples – rigidly fixed ends column

Non-trivial solution: the determinant vanishes:

(Stability loss criterion ) Criticality: or 

The zeros of the determinant:

The critical load is the smallest:

The corresponding Eigen- (buckling) mode:
(insert the solution back and solve the integration 
constants…up to a constant)

Four BCs:



Examples – what is the buckling length?

critical 
load:

corresponding buckling mode:

2

2

cr 4
L

EI
P




buckling mode

2nd derivative 

)()( xvxM 

0)25.0( LM 0)75.0( LM

2///4 buckling

2

buckling

222

cr LEILEIP  

2/buckling L

PP

P 2/buckling L

buckling length

2/buckling L
Obtained from theory

Given by tables
L



1
buckling 



Second-order effects 0P 0P

The stress-problem:  
Solve the deflection v(x) as function of 
the axial load P (the loading parameter)

EI

P
LkL 


















 1/

2
cos/1

8

8/

)2/(
22 E

E

PP
PqL

LM 



Homework: Show* that max. bending moment reduces to:

  
P

Lq
kL

k

q
Lv

2

)2/(
12/cos/1)2/(

2

2




and that maximum deflection is:

Second-order effects = non-linear effects

22 /0 LEIPq E 

EPP  75.0

Compression case



Slope-deflection method – Stiffness-equation

)()()( 0

1221

0

1212

0

1212 kLMKkLCkLAM  

)()()()( PMKPCPBPAM ijijijijijijijij  

Stiffness-coefficients and loading terms 
depend on the member axial force

 21,12ij

EI

P
LkL 

Stiffness-coefficients are 
symmetric with respect to i and j

Case of compression : P > 0012  PNN

Member axial force can be compressive
or tensile. The stiffness-coefficients are 
different in compression and in tension.

Compression : P > 0

12

0P

N

N12

21

12 vv 

  Lvv /1212 

The stiffness equations of the slope-deflection method 
with axial load 
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



However, it is more practical to express 
the stiffness coefficients in terms of 
Berry’s functions as we did till now.

1212 vv  

12M   k

 ),0()(12  kMkA

 
2sincos2

sincos
)(12









A

/)( 211212 LPMMQ 

12M

21M1v

2v

Compression : P > 0

We have earlier established these eqs previously when  using Maxima

Boundary conditions:

The stiffness coefficients – axial compression and 

bending

  k

 

 vy
NB. Notation:

021212  vvv

12Q
21Q

0)()( 2)4(  xvkxv

DCxkxBkxAxv  )cos()sin()(

0)0( 1  vv  2)( vv 

12)0( v
21)(  v



12

21

12
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12
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12
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
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



  /1212 vv 

2

12 )0()0( EIBkvEIMM 
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Formulary

Compression

Extension

Berry’s functions (stability function)

Loading terms

The stiffness coefficients

ijijijijijijijij MCBAM  

(are symmetric) EI constant

ijM

jiij MM 

jiM
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The stiffness coefficients – axial compression and 

bending

Example from exam 2018
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Buckling of Continuous Beam-Columns and Frames
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Buckling of frames - no side sway 

Solution:

 02321 MM

EI

P
LkL 

),()()()( PMKPCPBPAM ijijijijijijijij  

  ,022321  aA

0PCompression:

L

EI4
,

6

)()(4

)(2
22 L

EI

kLkL

kL







0Pcompression

only beam 1-2 is axially 
compressed

normal force = 0

Critical condition = non-trivial solution exists:

 02 ?0)( 2321  kLakLA

no side sway: 

0)(4)(16)(12 22  kLkLkL 

2

288.233.5
L

EI
PkL cr 
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)(

Berry’s stability functions:
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Geometrically non-linear 
analysis of frames
by the Slope-deflection method

Moderate rotations and loads close to 
critical load but not over

Q: DETERMINE THE BENDING MOMENT AT RIGID JOINT #2

N21 + Q32 = 0Iterations are 
needed to solve the 
bending moment:

Express Q32 in 
terms of end-
moments



Geometrically non-linear 
analysis of frames
by the Slope-deflection method

Moderate rotations and loads close to 
critical load but not over

Should be N21

(the normal stress 
resultant in column 12)

Moderate rotations 
and loads close to 
critical load but not 
over



Linear and non-linear 
buckling analysis

Free Exercise  - 20 extra-points  for HW

1. Perform linear buckling analysis for the perfect 
geometry and find the critical load and the 
respective buckling mode 

2. Find the second buckling load and the buckling 
mode

3. Analysis the shape imperfection effect on the 
buckling load (GNA)

For that do: 
• Take the  first buckling mode  and then the 

second one (or their combination) multiplied by 
L/400  (L distance between mode nodes, as in Figs.  on right) 

as a shape imperfection to add for the perfect 
geometry. 

• Determine the load-displacement curve at 
some characteristic points 

• What is the limit load? How much the buckling 
load of  the perfect arch is reduced?

Assume that stresses remains in the elastic range.





Timoshenko
buckling load

Euler buckling 
load

Increment of work of 
external force during 
buckling

Change of strain energy 
during buckling



Timoshenko
buckling load

Euler buckling 
load

Reduction coefficient for 
the Euler buckling load

Reduction coefficient

Boundary 
conditions effects

Cross-section 
geometry 
effects
Quadratic effect

Material effects
Linear effect

Reduction coefficient of the 
Euler buckling load



Built-in columns – ‘ristikkopilari’

Ref. Timoshenko

• Examples displayed for curiosity

• Ourdays, stability of such structures is 
analyzed computationally, especially because 
torsional stability loss is involved which is quite 
complex when not impossible to analyze theoretically
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Mistä nurjahduskäyrät tulevat?







Design formula:

Depends on eccentricity

Eccentricity

Solve  from this:

…
 a

n
d

 o
b

ta
in

s:



External axial load
Action

Resistance

Buckling curves

Ayreton-Perry design formula





Example of a 
design problem

1st mode

2nd mode

Ref: example adapted from RK.



FE- Linear Buckling Analysis

[FE-buckling analysis] 
First three critical loads and 
respective buckling modes

Buckling 
load 

FE-Mesh

2D-elasticity

Euler 
analytical 
1D

FE- Linear Buckling Analysis
• In this FE-analysis, 

the column was treated 

as a two-dimensional 

elastic domain





FE- Post-Buckling Analysis

• analytical approach is used

What to do: at buckling & for 

moderate increments

 estimate the      

displacements/rotation

 Study stability of post-

buckling branch

load increase

few percent
Derive the force-
displacement relation

• we use the Lagrangian formulation

• assume a (bifurcational) flexural 
deflection mode  

How to do it?

Lagrangian 
curvature

Shortening  due to 
flexion



• we use the Lagrangian formulation

• assume a (bifurcational) flexural 
deflection mode  

Lagrangian 
curvature Shortening  due to 

bending

The curvature in the Lagrangian formulation:

The minus sign is because of sign convention for positive 
curvature



What to do: at buckling & for 

moderate increments

 estimate the      

displacements/rotation

 Study stability of post-

buckling branch

Derive the force-
displacement relation

• we use the Lagrangian formulation

• assume a (bifurcational) flexural 
deflection mode  

How to do it?

Lagrangian curvature
Shortening  due to flexion

Exact 
expression

Taylor expansions

Taylor expansions with only two terms



The asymptotic force-displacement relation

Taylor expansions with 
only two terms

Assume a (bifurcational) flexural deflection mode  

Post-buckling behavior

FE-Post-buckling 

behavior



The asymptotic post-buckling analysis 

provides also the value of column shortening and 
rotations at buckling



• Perturbed with tiny 
transversal distributed load

• Can also be given as initial 
shape imperfection

Uses: Finite 

strains and large 

displacements 

theory



• Perturbed with tiny 
distributed load

• Can also be given as initial 
shape imperfection

Linear buckling analysis

Post-buckling behavior

Flexural deflection  v(L/2)  / h Axial shortening  u  / h

• at least, up-to the first mode is stable
• very shallow shape… no much increase in load bearing capacity



Uses: Finite 

strains and large 

displacements 

theory



v

v

Linear Buckling 

analysis

Sensitivity to imperfections

Post-buckling analysis

(Non-linear Buckling analysis)

Application: 1) Buckling in pile 
design

Application: 2) Buckling of rail track

Buckled rail track.  Note the sine-shaped buckles

v

Cf. Eurocode 7



v

Boundary conditionsField equation

v

v

&

Solutions?

Can be used to find exact 
solutions

Can be used to find 
approximate solutions
Rayleigh-Ritz



v

Boundary conditionsField equation

v

v

&



& Boundary conditions

The following trial satisfies the differential 
equations & the boundary conditions

Indeed, this is a 
limit for ‘long’ 
beams for whichv

Constraint: half-

wave number n should 

be an integer

The buckling load is the smallest critical load:

‘Long’ beams: Beams of arbitrary length:

Buckling 

coefficient 

(see graph next slide)

The buckling load:

v

Buckling load

What is the corresponding buckling mode?

depends on



What is the corresponding buckling mode?
Attention: The buckling mode 

corresponding to the 

buckling load  does not 

always the first mode

depends on

R
e
l
a
t
i
v
e
 
b
u
c
k
l
i
n
g
 
l
o
a
d

Relative 

stiffness



• For general types of BCs one should obtain  a 
complete solution of the  ODE

v

v

v

v

v

v



• For general types of BCs one should obtain  a 
complete solution of the  ODE

To obtain from the smallest zero of the determinant

Let’s fix the value
In this example:

• One should consider, 
separately, symmetric 
and asymmetric 
buckling

• The smallest critical 
load  buckling load

Buckling load  (symmetric mode)

Read the details in the 

pdf-notes I provided



& Boundary conditions

Buckling 

coefficient 

(see graph next slide)

The buckling load:

v

Buckling load

What is the corresponding buckling mode?

depends on



Buckles here

(2D elasticity 

solution  with 

tiny initial 

imperfection)

FE-based post-buckling 

analysis
The column-beam is 

simply supported

(kuvasta puuttuu 

nivelet)



Buckles here

(2D elasticity 

solution with 

imperfection)

Buckles here

(1D theoretical  

ideal solution)
The column-beam 

is simply 

supported
(kuvasta puuttuu 

nivelet)



The column-beam 

is simply 

supported
(kuvasta puuttuu 

nivelet)







Euler-Bernoulli beam element

[A result from FEA] The convergence rate k
for Euler-Bernoulli beam element for the 
Eigen-values is k = 4



A
s
s
e
m
b
l
y
:

Buckling 
Load & mode

Initial 

membrane stress

(pre-buckling)

Buckled state

DO: Determine the critical load and the corresponding mode 

by the “handy-FE” method (stiffness method)

NB. On should refine the FE-mesh until 

convergence …



About convergence … and Richardson extrapolation toward the limit

refine the FE-mesh until 

convergence …

• Assume we have an priori knowledge on 
the convergence rate  of some quantity
(can be always estimated)

• The above extrapolated solution is much 
closer to the exact one than the solutions  
1 and 2

The numerical 
solution is 
proportional to

Positive 
constant

h step-size or 
characteristic mesh-size
(length of the largest 
element)

Convergence rate 

e.g.. buckling load

Richardson extrapolation: is a sequence convergence acceleration method

Two solution with two 
different mesh-size: h2 < h1

Accelerating convergence

[A result from FEA] The convergence rate k
for Euler-Bernoulli beam element for the 
Eigen-values is k = 4. (We can also estimate k 

from log-log plot of convergence rate (graph of 
changes in lambda versus changes in h)NB. This extrapolated value is much more accurate 

than if would refine substantially the mesh further

Extrapolated
value



Simplified model of elastically restrained column



(Ref: This problem is provided by R. Kouhia)

Equilibrium pathsSolution



Equilibrium paths

Solution

From this study we conclude that

• the buckling load increases with
the increase of the stiffness of the foundation. 

• However, at the same time, the 
bifurcation switches from stable to becomes of unstable
after a critical value 



Euler's basic buckling cases Eulerin perusnurjahdustapaukset
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Elementary buckling casesFive Fundamental Cases of Column Buckling

Geometric interpretation of the 
effective length

Adapted from the reference: 
STRUCTURAL STABILITY OF STEEL: CONCEPTS AND APPLICATIONS FOR  STRUCTURAL ENGINEERS. THEODORE V. 
GALAMBOS ANDREA E. SUROVEK 
JOHN WILEY & SONS, INC.



Example – rigidly fixed ends column

Non-trivial solution: 
the determinant 
vanishes:

Criticality: or 

The zeros of the determinant:

The critical load is the smallest:

Adapted from ref: prof. Tuomala M. 2

2

cr 4


EI
P


The critical load from 

the Euler’s ‘Table’ :

Cf.



Examples – what is the buckling length?

critical 
load:

corresponding buckling mode:

2

2

cr 4
L

EI
P




buckling mode

2nd derivative 

)()( xvxM 

0)25.0( LM 0)75.0( LM

2///4 buckling

2

buckling

222

cr LEILEIP  

2/buckling L

PP

P 2/buckling L

buckling length

2/buckling L
Obtained from theory

Given by tables
L



1
buckling 



Appendix



• Is a global energy criterion for stability

• will be used systematically to derive the 
all the equations of stability (loss) we 
need for all elastic structure s

Stability theorem of  Lagrange-Dirichlet

(More general than Trefftz)
Trefftz is a particular case where the total potential 

energy increment is expanded only up-to its quadratic 

terms between the initial and perturbed states

Self-reading



Leading term for sign change in the 
increment of total potential energy

v

v

The criteria of loss of stability

More suitable form for finite number 

of dofs and continuous case

This is a Taylor expansion of a function

A Taylor expansion of a function

Self-reading



About the criteria of loss of stability – Example with two dofs

Self-reading



Let's illustrate mathematically the basic stability types 
• stable
• unstable
• Indifferent
keeping a simplified example of the rigid ball (null strain energy)

The total potential energy of the system

potential energy 
of gravitation 

Initial total potential 
energy

perturbed equilibrium 
position

Initial equilibrium 
position

The sign will provides us the nature of stability

… or equivalently

The idea is the make the study of stability in 

terms of variational calculus

Self-reading



Self-reading



Energy criteria for determination loss of stability
of elastic structures

Self-reading



Trefftz stability loss criteria in its canonical form

We will use 

systematically this 

more general energy 

criterion:

Self-reading





+ increment of work of external work 
not accounted in by the work of 
initial stresses

Change of total potential energy – example of a buckling cantilever

Non-linear part
Linear part



Ayreton-Perry design formula

Buckling curves

Ayreton-Perry formula

Euler cubic hyperbola

Eurocode buckling curves

b)
a)

Yielding

Euler cubic 
hyperbola

Yielding

Adapted from 
Eurocode 3

Steel



Equilibrium path, Stability, Instability 

Examples – snap-through
Note that loss of stability may happen also without 
bifurcation through limit points as here

Ref: Bazant’s classical textbook on stability

Energy space 
representation and 
equilibrium paths

Instable 

Stable 

Stable 

0),(Π 21

2 qq

0),(Π 21

2 qq

...ΠΠΠ 2  

snap-through

Limit point



104

The Rayleigh-quotient

https://eductv.enpc.fr/videos/mecanique-des-structures-seance-8/ (5.10.2017)

https://eductv.enpc.fr/videos/mecanique-des-structures-seance-8/
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Homework?

Show the above result. 
All beams and columns elements bending rigidities are 

equal. The height and the span are equal too.

Hint: you can assume the symmetric and the anti-symmetric 
modes of buckling. Think how this hypothesis can simplifies 
or reduces your problem.



• The geometrically non-linear problem (Called also sometime the stress-problem):  

The equilibrium equation should be written in the deformed 
configuration.   The stiffness matrix is now non-linear. As for 
bending without axial load, we here solve the BVP with given 
four boundary conditions at the two nodes (or ends) of the 
beam where nodal deflections and rotations are given.  
Solving for the bending moment at end 1, one obtains again 
the stiffness-equations of the well known & versatile slope-
deflection method 

• Now, in the slope-deflection method the stiffness 
coefficients are magnified by a factor depending on member 
compressive/tensional load which are called Stability or 
Berry’s functions.  

Stiffness coefficients and Berry’s stability functions [1]

Slope-deflection method

[1] Berry, A. (1916). The Calculation of Stresses in Aeroplane Spars. 
Transactions of the Royal Aeronautical Society, 1.



Slope-deflection method – Stiffness-equation

)()()( 0

1221

0

1212

0

1212 kLMKkLCkLAM  

)()()()( PMKPCPBPAM ijijijijijijijij  

Stiffness-coefficients and loading terms 
depend on the member axial force

 21,12ij

EI

P
LkL 

Stiffness-coefficients are 
symmetric with respect to i and j

Case of compression : P > 0012  PNN

Member axial force can be compressive
or tensile. The stiffness-coefficients are 
different in compression and in tension.

Compression : P > 0

12

0P

N

N12

21

12 vv 

  Lvv /1212 

The stiffness equations of the slope-deflection method 
with axial load 







However, it is more practical to express 
the stiffness coefficients in terms of 
Berry’s functions as we did till now.

1212 vv  
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12M

21M1v

2v

Compression : P > 0

We have earlier established these eqs previously when  using Maxima

Boundary conditions:

The stiffness coefficients – axial compression and 

bending

  k
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 vy
NB. Notation:
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a_12(EI, L, k) = -(EI*k*(sin(L*k) - L*k*cos(L*k))) / (2*cos(L*k) + L*k*sin(L*k) - 2)

b_12(EI, L, k) = (EI*k*(sin(L*k) - L*k)) / (2*cos(L*k) + L*k*sin(L*k) - 2)

c_12(EI, L, k) =  (2*EI*k*(k - k*cos(L*k))) / (L*(2*cos(L*k) + L*k*sin(L*k) - 2))

 
2sincos2

sincos
)(12









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Recall: Full displacement 
method with zero axial force 

The slope-deflection method – Stiffness matrix 
(no axial load)

Euler-Bernoulli beam element:
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The stiffness equations of the slope-
deflection method & zero axial load.
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The stiffness equations of the slope-deflection method 
with axial load 

Amplification factor functions depending NONLINEARLY 
on axial load. 
These stiffness coefficients are the elements of the 
elementary  (GL) geometrically nonlinear stiffness matrix 
These are called Berry’s stability functions. They are obtained from 
solutions of the geometrically nonlinear problem of combined bending 
and axial load for a beam. 
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Geometrically nonlinear stiffness equation 
(raw # 2 from the stiffness matrix) 
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Recall: Full displacement 
method with zero axial force 

The slope-deflection method – Stiffness matrix 
(no axial load)

Euler-Bernoulli beam element:
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The stiffness equations of the slope-deflection method with axial load

Amplification factor functions depending NONLINEARLY 
on axial load. 
These stiffness coefficients are the elements of the 
elementary  (GL) geometrically nonlinear stiffness matrix 
These are called Berry’s stability functions. They are obtained from 
solutions of the geometrically nonlinear problem of combined bending 
and axial load for a beam. 
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Dimensionless 
axial load

Geometrically nonlinear stiffness equation 
(raw # 2 from the stiffness matrix) 
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Full displacement method

The slope-deflection method –
Stiffness matrix (no axial load)

Euler-Bernoulli beam element
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The stiffness equations of the slope-
deflection method with axial load

Amplification factor functions depending NONLINEARLY 
on axial load. 
These stiffness coefficients are the elements of the 
elementary  (GL) geometrically nonlinear stiffness matrix 
These are called Berry’s stability functions. They are obtained from 
solutions of the geometrically nonlinear problem of combined bending 
and axial load for a beam. 

:)(iS

Dimensionless 
axial load

Geometrically nonlinear stiffness equation (raw # 2 from the 
stiffness matrix) when accounting  effect of axial force
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The stiffness coefficients – axial compression/tension and bending
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Formulary

Compression

Extension

Berry’s functions (stability function)

Loading terms

The stiffness coefficients

ijijijijijijijij MCBAM  

(are symmetric) EI constant
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jiM
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EI is constant Loading terms: Fixed-End-Moments 112 MKM 

Axial compression



Geometrically non-linear 
analysis of frames
by the Slope-deflection method

Moderate rotations and loads close to 
critical load but not over

Q: DETERMINE THE BENDING MOMENT AT RIGID JOINT #2

N21 + Q32 = 0Iterations are 
needed to solve the 
bending moment:

Express Q32 in 
terms of end-
moments



Geometrically non-linear 
analysis of frames
by the Slope-deflection method

Moderate rotations and loads close to 
critical load but not over

Should be N21

(the normal stress 
resultant in column 12)

Moderate rotations 
and loads close to 
critical load but not 
over



Linear and non-linear 
buckling analysis

Free Exercise  - 20 extra-points  for HW

1. Perform linear buckling analysis for the perfect 
geometry and find the critical load and the 
respective buckling mode 

2. Find the second buckling load and the buckling 
mode

3. Analysis the shape imperfection effect on the 
buckling load (GNA)

For that do: 
• Take the  first buckling mode  and then the 

second one (or their combination) multiplied by 
L/400  (L distance between mode nodes, as in Figs.  on right) 

as a shape imperfection to add for the perfect 
geometry. 

• Determine the load-displacement curve at 
some characteristic points 

• What is the limit load? How much the buckling 
load of  the perfect arch is reduced?

Assume that stresses remains in the elastic range.



1) One way to think 

how form the 

increment of total 

potential energy is

through a real  

loading sequence 

where the load 

increases quasi-

statically and 

monotonically from 

zero to the buckling 

load PE
+ = PE + e

where it buckles 

where  e being 

infinitesimally small 

> 0. The primary non-

buckled configuration 

(primary equilibrium) 

corresponds to PE
- = 

PE - e. Now one can 

form the increment of 

the total potential 

energy between these 

two real states and 

takes the limit when 

e  0  to say that we 

are at the 

bifurcation or limit-

point where now the 

critical load being 

PE.

Equations (of loss) 

of stability

N.B. The perturbed 

configuration [.]* can be (also) 

thought achieved keeping the 

load constant and  for instance,  

giving the primary equilibrium 

configuration v0 a tiny 

kinematical  (virtual) perturbation

to a an adjacent equilibrium 

configuration v* 

= v* 

This is a 
thought
experiment

Keeping P

constant

P

Zoom
(linear 

buckling 

analysis)

Keeping P

constant

PE

2) the other more 

classical way how 

form the 

increment of 

total potential 

energy is by a 

thought 

experiment where 

we give an 

infinitesimal 

virtual 

perturbation to 

the primary 

equilibrium 

configuration to 

an adjacent 

neighbor 

equilibrium 

configuration 

while keeping all 

the loads 

unchanged. Then 

we write the 

increment od 

total potential 

energy between 

these to states 

of equilibrium.

A Finite element post-buckling analysis of a 


