CIV-E4100 - Stability of Structures L, 24.02.2020-09.04.2020

Content of the $2^{\text {nd }}$ week lectures:

Content

0. Basic concepts

Equilibrium, Stability
The energy criterion of stability

1. Flexural buckling (nurjahdus)
2. Torsional buckling (vääntönurjahdus)
3. Buckling of thin plates
4. Buckling of shells (lommahdus)

Lecturer

Djebar Baroudi, Dr.
Civil Engineering Department
Aalto University

- General Energy criteria of loss of stability
- Trefftz stability loss criteria
- Flexural buckling
- Buckling of beam-column
- Timoshenko column
- Buckling of beam-column on elastic foundation
- Effects of imperfections
\square Ayreton-Perry formula \& Eurocode buckling curves
- Linear buckling analysis
- Post-buckling analysis
- Finite element method - a hand version for buckling analysis(= the slope deflection method)

Elastic Stability of Structures

Content

The key stability question in structural design

(recall) The Fundamental Question

Effect of imperfections

Here the content of this course in four points through questions that will be addressed:

1. can we predict the buckling (critical) load?
2. what happens at the bifurcation (or limit) point? (i.e., after the buckling)
3. can we determine the post-critical branches? What would be their shape? Nature of stability?
4. what imperfection-sensitive is the structure under study?

All real structural systems are imperfect
\checkmark in form,
\checkmark in material properties,
\checkmark in the sense of residual stresses
\checkmark in the way the loads are applied

Structural design and stability

Standards: design of steel structures

- Lotal buckling

EN 1993-1-5

- Flexural buckling . EN 1993-1-1 hot rolled columns
- Lateral torsional buckling . EN 1993-1-1 bearms
- Lateral
- Flexural torsional buckling
- Local-global
EN 1993-1-3
- Distortional EN 1993-1-5
- Shear buckling
- Shell buckling
- Linear elastic Bifurcation Analysis (LBA) ($=$ linear buckling analysis)
- Geometrically Non-linear Analysis (GNA)
- Geometrically Non-linear Analysis with Imperfections
... LA, LBA , GNA , GNIA. ... (= post-buckling analysis for ** * perfect structure and
Standards: design of wood structures
- Stability issues \& imperfections..

EN 1995-1-1
Standards: design of concrete structures

- Sect. 5.8 Second order effects with axial load..... EN 1992-1-1

Some standards related to stability issues in structural design.

+ Eurocode 7, geotechnical design

- Slope stability
- Pile stability (foundations)

Example of initial shape imperfections in wooden arches to be accounted in the structural analysis.

Foot bridge (ramp) collapse in Jiujiang City
Railway bridge collapse, Russia ~1890 (China's Jiangxi)

Structural design and stability

Flexural buckling

Energy criteria for determination of instability of elastic structures

```
Self-reading
```


Let's illustrate mathematically the basic stability types

- stable
- Indifferent $\Delta \Pi=0 . \leftarrow$ this will be one condition for loss of stability
- unstable
- keeping a simplified example of the rigid ball (null strain energy)

The total potential energy of the system $\quad \Pi(x)=\Pi_{0}+m g a x^{2}$
perturbed equilibrium
Initial total potential
potential energy of gravitation
position

$$
\text { position } \equiv \Pi\left(x_{0}\right)+\left.\delta \Pi\right|_{x_{0}}+\left.\frac{1}{2} \delta^{2} \Pi\right|_{x_{0}}+\left.\frac{1}{3!} \delta^{3} \Pi\right|_{x_{0}}+\ldots
$$

$\Pi^{\prime \prime}=2 m g a$.
Since x_{0} is an equilibrium then $\left.\delta \Pi\right|_{x_{0}}=0$.

The sign of $\Delta \Pi$

 gives the full information about the stability behavior$\Delta \Pi=\Pi\left(x_{0}+\delta x\right)-\Pi\left(x_{0}\right)=\left.\frac{1}{2} \delta^{2} \Pi\right|_{x_{0}}+\left.\frac{1}{3!} \delta^{3} \Pi\right|_{x_{0}}+\ldots$
The sign will provides us the nature of stability The idea is the make the stydy of stability in

Why saying that $f^{\prime}\left(x_{0}\right)=0$ is equivalent to say that $\left.\Delta f\right|_{x_{0}}=0$.
$\Delta \Pi=0$.

Energy criteria for determination of instability of elastic structures

$$
\Delta \Pi=\left.\frac{1}{2} \frac{\mathrm{~d}^{2} \Pi(x)}{\mathrm{d} x^{2}}\right|_{x_{0}}(\delta x)^{2}=m g a(\delta x)^{2}+O(\delta x)^{3}
$$

Consequently, the initial equilibrium x_{0} is stable when $a>0$ (locally convex surface), unstable for $a<0$ (locally concave surface) and indifferent when $a=0$.

Bellow follows a résumé: At the critical points (equilibrium points), studying the sign of the increment of total potential energy $\Delta \Pi$, makes it possible to make statements on the nature of the actual equilibrium:

1. stable: (stabiili) $\Delta \Pi>0$
2. indifferent : (indiferentti) $\Delta \Pi=0$. Often, the total potential energy increment $\Delta \Pi$ is expanded to second order only (squares of small displacements). In this case, $\delta^{2} \Pi=0$ and therefore, higher order terms should be included in the Taylor expansion to decide of the sign of $\Delta \Pi$ to disclose the character of indifferent equilibrium.
3. unstable: (labiili, epästabiili) $\Delta \Pi<0$

Stability theorem of Lagrange-Dirichlet \& Trefftz stability loss criteria

Lagrange-Dirichlet Theorem: Assuming the continuity of the to-

tal potential energy, the equilibrium of a system containing only con-
servative and dissipative forces is stable if the total potential energy
of the system has a strict minimum (i.e., is positive-definite)
Trefftz stability loss criterion

$$
\delta\left(\delta^{2} \Pi\right)=0 .
$$

(This theorem is more general than Trefftz stability loss criteria)
$\Delta \Pi=\Pi\left(u^{0}+\delta u\right)-\Pi\left(u^{0}\right)=\underbrace{\left.\delta \Pi\right|_{u_{0}}}_{=0}+\left.\frac{1}{2} \delta^{2} \Pi\right|_{u_{0}}+\left.\frac{1}{3!} \delta^{3} \Pi\right|_{u_{0}}+\ldots$

$$
\begin{aligned}
& \text { stability loss criteria } \\
& \Pi^{\prime \prime}=0 \Longrightarrow \delta(\Delta \Pi)=0=0
\end{aligned}
$$

$\delta \Pi^{0}=\left.\delta \Pi\right|_{u_{0}}=0\left(u^{0}\right.$-equilibrium initial state $)$
keeping only the quadratic terms one obtains the energy criterion

$$
\delta(\Delta \Pi)=0 \Longrightarrow \delta\left(\delta^{2} \Pi\right)=0
$$

Trefftz stability loss criterion

Trefftz is a particular case where the tota
potential energy increment is expanded only

The criteria of loss of stability

This is a Taylor expansion of a function

at equilibrium $(\delta \Pi=0)$

$$
\Delta \Pi=\delta^{\delta^{2} \prod_{1}+\mathcal{O}\left(\|\delta \mathbf{q}\|^{3}\right) \sim \frac{1}{2!} \delta \mathbf{q}^{\mathrm{T}}\left[\mathbf{H}\left(\mathbf{q}^{0}\right)\right] \delta \mathbf{q}} \begin{aligned}
& \text { More suitable form for finite number } \\
& \text { of dofs and continuous case }
\end{aligned}
$$

Leading term for sign change in the increment of total potential energy

$$
\Pi^{\prime \prime}(u ; P)=0 \text { or more generally, } \delta(\Delta \Pi)=0,
$$

It is tis form of criticality condition that will be used systematically thorough this course to derive the stability loss equations for all our structures
Physically speaking, this condition means simply that the perturbed state is also an equilibrium state; thus an neighboring equilibrium exists

Linear buckling analysis

About the criteria of loss of stability - Example with $\Delta \Pi\left(\epsilon_{1}, \epsilon_{2}\right)=\frac{1}{2} k \ell^{2}\left(\epsilon_{1}^{2}+\epsilon_{2}^{2}\right)-P \ell \cdot\left(\left[1-\sqrt{1-\epsilon_{1}^{2}}\right]+\left[1-\sqrt{1-\left(\epsilon_{2}-\epsilon_{1}\right)^{2}}\right]+\left[1-\sqrt{1-\epsilon_{2}^{2}}\right]\right)$ two dofs

$$
\text { the relative shortenings are defined as } \epsilon_{1}=v_{1} / \ell \text { and } \epsilon_{2}=v_{2} / \ell
$$

Figure 1.42: A simple system having two degrees of

1) Linear buckling analysis: We want to determine the Euler buckling load. In such analysis we have, by definition, both relative shortening of the column $\epsilon_{1} \ll 1$ and $\epsilon_{2} \ll 1$, so as the reader may recall, one expands the total potential energy increment into Taylor expansion up-to quadratic terms in v_{1} / ℓ and v_{2} / ℓ (or ϵ_{1} and ϵ_{2}). So,

$$
\Delta \Pi\left(v_{1}, v_{2}\right)=\frac{1}{2} k\left(v_{1}^{2}+v_{2}^{2}\right)-P \ell\left[\frac{1}{2}\left(\frac{v_{1}}{\ell}\right)^{2}+\frac{1}{2}\left(\frac{v_{2}-v_{1}}{\ell}\right)^{2}+\frac{1}{2}\left(\frac{v_{2}}{\ell}\right)^{2}\right]
$$

the loss of stability condition in its variational

Linear buckling analysis

About the criteria of loss of stability Example with two dofs

$$
\Delta \Pi\left(v_{1}, v_{2}\right)=\frac{1}{2} k\left(v_{1}^{2}+v_{2}^{2}\right)-P \ell\left[\frac{1}{2}\left(\frac{v_{1}}{\ell}\right)^{2}+\frac{1}{2}\left(\frac{v_{2}-v_{1}}{\ell}\right)^{2}+\frac{1}{2}\left(\frac{v_{2}}{\ell}\right)^{2}\right]
$$

fing the nee 1.42: A simple system having two degrees of freedom. veutral equin

$$
\Delta \Pi\left(v_{1}, v_{2}\right)=\frac{1}{2}\left[\begin{array}{ll}
v_{1} & v_{2}
\end{array}\right] \underbrace{(\underbrace{\left[\begin{array}{ll}
k & 0
\end{array}\right]}_{\mathbf{K}}-\underbrace{\frac{P}{\ell}\left[\begin{array}{cc}
2 & -1 \tag{1.68}\\
-1 & 2
\end{array}\right]}_{\mathbf{S}(P)})}_{\mathbf{H}(0,0)}\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]
$$

o, one obtains the quadratic form

$$
\begin{equation*}
\Delta \Pi(\mathbf{q})=\frac{1}{2} \mathbf{q}^{\mathrm{T}} \mathbf{H q} \tag{1.69}
\end{equation*}
$$

here \mathbf{q} being a tiny deviation from trivial equilibrium configuration $\mathbf{q}^{0}=\mathbf{0}$ nd

$$
\mathbf{H}=\left[\begin{array}{cc}
\lambda-2 P & P \tag{1.70}\\
P & \lambda-2 P
\end{array}\right] .
$$

We can also write directly the loss of stability condition in its variational form $\delta(\Delta \Pi)=0$ and obtain

$$
\begin{align*}
& \delta(\Delta \Pi)=\frac{1}{2} \delta \mathbf{q}^{\mathrm{T}} \mathbf{H} \mathbf{q}+\frac{1}{2} \mathbf{q}^{\mathrm{T}} \mathbf{H} \delta \mathbf{q}=\delta \mathbf{q}^{\mathrm{T}} \mathbf{H} \mathbf{q}=0, \forall \delta \mathbf{q} \Longrightarrow \tag{1.71}\\
& \Longrightarrow \mathbf{H q}=\mathbf{0}, \text { which is linear Eigen-value problem. } \tag{1.72}
\end{align*}
$$

Self-reading
Note that the coefficient matrix of the associated Eigen-value problem (Equation 1.66) is the same ${ }^{60}$ than our Hessian matrix So loss of stability occurs when

$$
\begin{equation*}
\Pi^{\prime \prime}=0 \sim \operatorname{det}\{\mathbf{H}\}=0 \tag{1.73}
\end{equation*}
$$

Post-buckling analysis:

Post-buckling analysis: What is the nature of the bifurcated branch just in the near neighbourhood of the bifurcation point $P_{1, E}=k \ell / 3$? For that, we do an asymptotic analysis and take up-to the fourth-order in the Taylor expansion of $\Delta \Pi$. In addition, since we are in the neighbourhood of the buckling load, the ratio $v_{1}=-v_{2}$ as given by the corresponding buckling mode, remains unchanged if we limit ourselves to very small additional deflections v_{1} and v_{2} from the neutral configuration. (so ratios $v_{1} / \ell \ll 1$ and $v_{2} / \ell \ll 1$). Consequently,

$$
\begin{aligned}
\Delta \Pi\left(v_{1}, v_{2}\right)=\frac{1}{2} k\left(v_{1}^{2}+v_{2}^{2}\right)-P \ell & {\left[\frac{1}{2}\left(\frac{v_{1}}{\ell}\right)^{2}+\frac{1}{8}\left(\frac{v_{1}}{\ell}\right)^{4}+\right.} \\
& +\frac{1}{2}\left(\frac{v_{2}-v_{1}}{\ell}\right)^{2}+\frac{1}{8}\left(\frac{v_{2}-v_{1}}{\ell}\right)^{4}+ \\
& \left.+\frac{1}{2}\left(\frac{v_{2}}{\ell}\right)^{2}+\frac{1}{8}\left(\frac{v_{2}}{\ell}\right)^{4}\right] .
\end{aligned}
$$

Inserting the relation $v \equiv v_{1}=-v_{2}$, one finally obtains

$$
\Delta \Pi(v)=k \ell^{2}\left(\frac{v}{\ell}\right)^{2}-3 P \ell\left(\frac{v}{\ell}\right)^{2}-\frac{9}{4} P \ell\left(\frac{v}{\ell}\right)^{4}
$$

$$
\delta[\Delta \Pi(v)]=0 \Longrightarrow[\Delta \Pi]^{\prime}=0
$$

$\Longrightarrow k \ell\left(\frac{v}{\ell}\right)\left[1-\frac{P}{P_{1, E}}\left(1+\frac{3}{2}\left(\frac{v}{\ell}\right)^{2}\right)\right]=0$

Equilibrium path (asymptotic post-buckling analysis)

NEW Material starts from here ...

Euler-Lagrange equations stability of a column

$$
\left(E I v^{\prime \prime}\right)^{\prime \prime}+P v^{\prime \prime}=0 \quad \& \quad 4 \quad \text { BCs. }
$$

Energy criteria for determination of instability of elastic structures
N.B. The perturbed configuration [.] ${ }^{*}$ can be thought achieved keeping the load constant and for instance, giving a tiny kinematical (virtual) perturbation to a an

Change of

```
total
potential
energy
```

between which
two states?

Figure 3.122: Equilibrium paths. FE-post-buckling analysis of an alu-
minium I-beam cantilever. The transversal tip-load is at the centroid.

Example of use of stability criteria in the form $\delta(\Delta \Pi)=0$
$\Delta \Pi[v]=\frac{1}{2} \int_{0}^{\ell} E I v^{\prime \prime 2} \mathrm{~d} x-P \int_{0}^{\ell} \frac{1}{2} v^{\prime 2} \mathrm{~d} x=$
Stability (loss) energy criterion

$$
\left(E I v^{\prime \prime}\right)^{\prime \prime}+P v^{\prime \prime}=0 \quad \& \quad 4 \quad \mathrm{BCs} .
$$

The above homogeneous differential equation describes the stability problem and its solution provides us the critical buckling load together with the associated buckling-modes once the relevant four boundary conditions are specified.

Critical condition for loss:
Euler-Lagrange equations stability of a column
$\delta(\Delta \Pi[v])=0, \forall \delta u \Longrightarrow \delta\left(\frac{1}{2} \int_{0}^{\ell} E I v^{\prime \prime 2} \mathrm{~d} x-P \int_{0}^{\ell} \frac{1}{2} v^{2} \mathrm{~d} x\right)=0, \forall \delta u$

$$
=\int_{0}^{\ell} E I v^{\prime \prime} \delta v^{\prime \prime} \mathrm{d} x-P \int_{0}^{\ell} v^{\prime} \delta v^{\prime} \mathrm{d} x=0
$$

Energy criterion of loss of stability (Bryan form)

The homogeneous equations of the elastic-stability can be derived based on the following three basic methods ${ }^{73}$:

1. applying, systematically, the energy criteria ${ }^{74}$ for bifurcation stability loss; $\delta(\Delta \Pi)=0$ at the critical (equilibrium) point. Note that the increment of the total potential energy $\Delta \Pi$ should be, at least, expanded to the accuracy up-to second ${ }^{75}$ order (the squares ${ }^{76}$.
2. directly writing the equilibrium equations in the deformed configuration which stability we are investigating and adjacent to the initial equilibrium state.
3. of course, one can derive first the full (geometrically) non-linear equations in the vicinity of the critical point and then linearise them near the initial equilibrium point.

As seen previously, the linear strain-displacement relation is not sufficient for stability analysis. It come out that non-linear effect up to second order should be accounted for.

$$
\Delta \Pi=\frac{1}{2} \int_{V} \epsilon_{1}{ }^{\mathrm{T}} \epsilon_{1} \mathrm{~d} V+\int_{V} \epsilon_{2}{ }^{\mathrm{T}} \sigma^{0} \mathrm{~d} V
$$

[^0]

linear part of strain increments in $\Delta U \quad$ quadratic part of strain increments in $\Delta W\left(\sigma^{0}\right)$

- Additional work of external force not included in the prestress

Example: Buckling of a column

$$
\text { end-thrust }-P=N^{0}(x)<0
$$

The total potential energy increment in Bryan form was

$$
\begin{array}{ccc}
\Delta \Pi=\frac{1}{2} \int_{0}^{\ell} E I\left(v^{\prime \prime}\right)^{2} \mathrm{~d} x+\frac{1}{2} \int_{0}^{\ell} N^{0}(x)\left(v^{\prime}\right)^{2} \mathrm{~d} x \\
\epsilon_{1}=-y v^{\prime \prime}(x) & \sigma_{x}^{0} A=N^{0}(x) & \epsilon_{2}=\frac{1}{2}\left(v^{\prime}\right)^{2} \\
\text { Linear part of } & \text { Initial } & \text { Quadratic } \\
\text { the strain } & \text { stress } & \text { part of } \\
& & \text { the strain }
\end{array}
$$

The strain energy change between reference equilibrium state \mathbf{u}^{0} and a perturbed neighbouring (equilibrium) state \mathbf{u}. The change in strains being $\epsilon^{*}=\Delta \epsilon=\epsilon-\epsilon^{0}$ and in stresses $\sigma^{*}=\Delta \sigma=\sigma-\sigma^{0}$

Finite deformation (strains)

$$
\epsilon_{i j}^{*}=\frac{1}{2}\left(u_{i, j}+u_{j, i}+u_{k, i} u_{k, j}\right)
$$

What deformations are significant in buckling?

After order of magnitude analysis for the strain increment, and keeping only up-to second order terms (the non-linear (quadratic) part can expressed in terms of rotations) one finally obtains

$$
\begin{aligned}
& \epsilon_{x}=e_{x} \\
& \epsilon_{y}=e_{y} \\
& \epsilon_{z}=e_{z}\left(\omega_{z}^{2}+\omega_{y}^{2}\right) \\
& \frac{1}{2}\left(\omega_{x}^{2}+\omega_{z}^{2}\right) \\
& \gamma_{x y}\left.=2 e_{x y}-\omega_{x}^{2}\right) \\
& \gamma_{y z}=2 e_{y z}-\omega_{y} \omega_{z} \\
& \gamma_{z x}=2 e_{z x}-\omega_{z} \omega_{x}
\end{aligned}
$$

The rotation component

$$
\begin{aligned}
& \omega_{x}=\frac{1}{2}\left(\frac{\partial w}{\partial y}-\frac{\partial v}{\partial z}\right) \\
& \omega_{y}=\frac{1}{2}\left(\frac{\partial u}{\partial z}-\frac{\partial w}{\partial x}\right) \\
& \omega_{z}=\frac{1}{2}\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right)
\end{aligned}
$$

quadratic part
the linear part

$$
\begin{aligned}
e_{x} & =\frac{\partial u}{\partial x}, \quad e_{y}=\frac{\partial v}{\partial y}, \quad e_{z}=\frac{\partial v}{\partial z} \\
e_{x y} & =\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y} \\
e_{y z} & =\frac{\partial w}{\partial y}+\frac{\partial v}{\partial z} \\
e_{z x} & =\frac{\partial u}{\partial z}+\frac{\partial w}{\partial x}
\end{aligned}
$$

$$
\begin{gathered}
\epsilon_{x x}^{\epsilon_{z}^{*}} \frac{1}{2}[\underbrace{u_{, x}^{2}+v_{, x}^{2}}_{\approx 0 \ll w_{, x}^{2}}+w_{, x}^{2}] \approx \frac{1}{2} w_{, x}^{2}, \\
\epsilon_{y y}^{*}=\frac{1}{2}[\underbrace{u_{, y}^{2}+v_{, y}^{2}}_{\approx 0}+w_{, y}^{2}] \approx \frac{1}{2} w_{, y}^{2},
\end{gathered}
$$

Ex. Plate: quadratic part of strains

- In stability analysis while deriving the linear stability loss equations (the linear Eigen-value problem) the amplitude of the linear part e_{i} of the strains, during the infinitesimal perturbation of the initial equilibrium to the (bifurcated) adjacent one, remains small ${ }^{a}$ as compared to changes in the rotation components of ω_{i}
- Consequently, the quadratic terms in terms in strains e_{i}^{2} and $\omega_{i} e_{j}$ are of second order increments as compared to changes in the rotation components, and for that reason will be dropped (ignored). In the above strain increments expressions, only terms shown in the above strains are retained for stability analysis.
- In addition to that, ($C f$. Alfutov), terms containing the derivatives of initial primary displacements can be neglected (this, their contribution to the increment of total potential energy $\Delta \Pi$ can be neglected) too.
${ }^{a}$ As a consequence of the choice of the initial primary equilibrium and the close neighbouring adjacent (bifurcated) equilibrium. These two states are infinitesimally close.

7

|
tinitesimally close.

$$
\gamma_{x y}^{*}=2 \epsilon_{x y}^{*}=\underbrace{u_{, x} u_{, y}+v_{, x} v_{, y}}_{\approx 0}+w_{, x} w_{, y} \approx w_{, x} w_{, y} .
$$

Flexural buckling

$$
\delta(\Delta \Pi)=0 \Longrightarrow
$$

Equations (of
of stability

Estimate the critical load!

1) One way to think how form the increment of total potential energy is through a real loading sequence where the load increases quasistatically and monotonically from zero to the buckling load $\mathrm{P}_{\mathrm{E}}{ }^{+}=\mathrm{P}_{\mathrm{E}}+\varepsilon$ where it buckles where ε being infinitesimally small >0. The primary nonbuckled configuration (primary equilibrium) corresponds to $\mathrm{P}_{\mathrm{E}}{ }^{-}=$ $\mathrm{P}_{\mathrm{E}}-\varepsilon$. Now one can form the increment of the total potential energy between these two real states and takes the limit when $\varepsilon \rightarrow 0$ to say that we are at the
bifurcation or limitpoint where now the critical load being P_{E}.

A Finite element post-buckling analysis of a simply supported column under axial thrust. This shows how 'sallow' is the critical point infinitesimal neighborhood

2) the other more classical way how form the
increment of
total potential energy is by a thought experiment where we give an infinitesimal virtual perturbation to the primary equilibrium configuration to an adjacent neighbor equilibrium configuration while keeping all the loads unchanged. Then we write the increment od total potential energy between these to states of equilibrium.

Buckling of a beam-column

Solutions for some classical cases

$$
\begin{gathered}
P_{c r}=\mu \pi^{2} \frac{E I}{\ell^{2}} \equiv P_{E} \\
\sigma_{c r} \equiv \sigma_{E}=\frac{P_{E}}{A}=\mu \pi^{2} \frac{E I}{A \ell^{2}}=\mu \pi^{2} E\left(\frac{r_{\min }}{\ell}\right)^{2}=\mu \pi^{2} E / \lambda_{\min }^{2},
\end{gathered}
$$

Critical strain

$$
\epsilon_{c r}^{0} \equiv \epsilon_{E}=\frac{\sigma_{E}}{E}=\mu \pi^{2}\left(\frac{r_{\min }}{\ell}\right)^{2}=\mu \pi^{2} / \lambda_{\min }^{2}
$$

Effects of boundary conditions - experimental evidence for Euler's buckling formulas

Rudimentary experimental evidence for Euler's basic buckling formulas and the effect of boundary conditions on the buckling load.

Buckling of a beam-column

$\Delta \Pi=\frac{1}{2} \int_{0}^{\ell} E I\left(v^{\prime \prime}\right)^{2} \mathrm{~d} x-\frac{1}{2} P \int_{0}^{\ell}\left(v^{\prime}\right)^{2} \mathrm{~d} x$.

$$
\delta(\Delta \Pi)=0
$$

This criticality condition for bifurcation provides the Buckling Equations

Equilibrium paths

started
$\Delta \Pi=\Pi^{*}-\Pi^{0}$ Π^{*}

p

Combined compression and bending

Linearised theory of buckling

The transition from the straight stretched beam-column equilibrium initial configuration to the neighbour adjacent buckled (flexural) equilibrium state occurs with no additional stretching for very small bifurcational deflection v. Therefore, it is assumed that the changes in length are of higher order. Consequently, the axial force does not changes $N \approx N_{0}$ from the axial force obtained in the straight state of equilibrium.

In the linearisation, we keep, in the Taylor's series, the first terms and higher terms are ignored. All the external loads are assumed constant in amplitude and direction.

All the external loads are assumed constant in amplitude and direction.

Linearisation:

$$
\theta=v^{\prime}, \sin (\theta) \approx \theta, \sin (\theta+\mathrm{d} \theta) \approx \theta+\mathrm{d} \theta, \cos (\theta) \approx 1, \cos (\theta+\mathrm{d} \theta) \approx 1
$$

Application examples of stability study

using energy principles

Buckling of a beam-column
The total potential energy increment in Bryan form was

$$
\begin{aligned}
\Delta \Pi= & \frac{1}{2} \int_{0}^{\ell} E I\left(v^{\prime \prime}\right)^{2} \mathrm{~d} x+\frac{1}{2} \int_{0}^{\ell} N^{0}(x)\left(v^{\prime}\right)^{2} \mathrm{~d} x, \\
& \epsilon_{1}=-y v^{\prime \prime}(x) \\
& \sigma_{x}^{0} A=N^{0}(x)
\end{aligned} \epsilon_{2}=\frac{1}{2}\left(v^{\prime}\right)^{2},
$$

Additional work $\Delta W_{\text {ext }}=P \cdot \Delta$ (Flexural buckling)
which gives after twice integration by parts

$$
\begin{aligned}
& \Delta \Pi=\frac{1}{2} \int_{0}^{\ell} E I\left(v^{\prime \prime}\right)^{2} \mathrm{~d} x-\frac{1}{2} P \int_{0}^{\ell}\left(v^{\prime}\right)^{2} \mathrm{~d} x . \\
& \text { end-thrust }-P=N^{0}(x)<0^{4}
\end{aligned}
$$

criteria

Taking the variation $\delta(\Delta \Pi)=0 \Longrightarrow \int_{0}^{\ell} E I v^{\prime \prime} \delta v^{\prime \prime}-P \int_{0}^{\ell} v^{\prime} \delta v^{\prime} \mathrm{d} x=0, \forall \delta v$

Buckling of a beam-column

General solution

Stability equations

$$
\left(E I v^{\prime \prime}\right)^{\prime \prime}+P v^{\prime \prime}=0
$$

\& four boundary conditions.

general solution $v(x)$ for the buckling of such column-beam :

$$
v(x)=A \sin (k x)+B \cos (k x)+C x+D+v_{0}(x), \quad P>0 \text { compression }
$$

$$
v(x)=A \sinh (k x)+B \cosh (k x)+C x+D+v_{0}(x), \quad P<0 \text { tension }
$$

where $k^{2}=P / E I$

```
The few following slides are a recall form
Beams and Frames course (2018)
Related to how the stability equations are
derived by considering equilibrium of a
deformed differential beam element
```


Combined compression and bending

Linearised theory of buckling

Writing the equilibrium equations (both vertical and horizontal resultant vanish - FBD and equilibrium as during our $1^{\text {st }}$ lecture for a differential material element ds one obtains the basic equation of stability theory for a straight beam-column as

$$
\begin{equation*}
\left(E I v^{\prime \prime}\right)^{\prime \prime}-\left(N v^{\prime}\right)^{\prime}=q \tag{38}
\end{equation*}
$$

Accounting for the linearisation around the initial equilibrium, we have $N \approx N_{0}$ and in our case only external compressive load $P>0$ at the tip

$$
\left(E I v^{\prime \prime}\right)^{\prime \prime}-\left(N v^{\prime}\right)^{\prime}=q
$$

$$
\begin{equation*}
\left(E I v^{\prime \prime}\right)^{\prime \prime}-\left(N_{0} v^{\prime}\right)^{\prime}=q \tag{39}
\end{equation*}
$$

Assuming $N \approx N_{0}$ and for external compressive load $P>0, N_{0}=-P_{0}$ at one end of the column-beam is acting, and accounting for $M^{\prime}=Q$ together with the constitutive relation $M=-E I v^{\prime \prime}$ we obtain

Combined compression and bending
To account for the second order effects, the
idea is to write the equilibrium equation in
the deformed configuration
/geometrical nonlinearity/ (account for
the nonlinear part of the strain tensor)

Assumptions:

- Large displacements
- Moderate rotations
- Linear elastic material (Hooke's law)
'Moderate' rotations

$$
\tan \theta=v^{\prime},|\theta| \ll 1 \Rightarrow \tan \theta \approx \theta
$$

$$
\sin \theta \approx \theta, \quad \cos \theta \approx 1
$$

$$
\begin{aligned}
& \downarrow Q \cos (\Delta \theta) \approx \Delta Q \quad P \sin \theta \approx P \theta=P \nu^{\prime} \\
& \quad(O+\Delta O) \cos (\Delta \theta) \approx O+\Delta O
\end{aligned}
$$

$$
\begin{aligned}
& (Q+\Delta Q) \cos (\Delta \theta) \approx Q+\Delta Q \\
& -Q+(Q+d Q)+P v^{\prime}-P\left(v^{\prime}+d v^{-1}\right)+q d x=0
\end{aligned}
$$

Combined compression and bending
Linearised theory of buckling

To account for the second order effects, the
idea is to write the equilibrium equation in the

/geometrical nonlinearity/ (accounts for the nonlinear part of the strain tensor) and membrane forces $N \approx N_{0}$ from the undeformed

$$
\theta+\Delta \theta=v^{\prime}+\Delta v^{\prime}
$$

$$
v(x)=A \sin (k x)+B \cos (k x)+C x+D+\bar{v}(x)
$$

Combined compression/tension and bending

The General solution

(for compression case)
NB. The compression have a softening (of the $P>0$ effective bending rigidity) effect on bending

The General solution
(for tension case)
$N B$. The tension have a stiffening effect on bending

$$
v(x)=A \sin (k x)+B \cos (k x)+C x+D+v_{0}(x) \quad v(x)=A \sinh (k x)+B \cosh (k x)+C x+D+v_{0}(x)
$$

$\boldsymbol{N} . \boldsymbol{B}$. for $P=0 \rightarrow v(x)=A+B x+C x^{2}+D x^{3}+v_{0}(x)$

Five Fundamental Cases of Column Buckling
Elementary buckling cases

Case	Boundary Conditions		Buckli Determin	$\begin{aligned} & \text { ling } \\ & \text { inant } \end{aligned}$	Eigenfunction Eigenvalue Buckling Load	Effective Length Factor
I	$\begin{aligned} & v(0)=v^{\prime \prime}(0)=0 \\ & v(L)=v^{\prime \prime}(L)=0 \end{aligned}$	$\left\lvert\, \begin{array}{ll}1 & 0 \\ 0 & 0 \\ 1 & L \\ 0 & 0\end{array}\right.$	0 0 $\sin k L$ $-k^{2} \sin k L$	1 $-k^{2}$ $\cos k L$ $-k^{2} \cos k L$	$\begin{aligned} & \sin k L=0 \\ & k L=\pi \\ & P_{\mathrm{cr}}=P_{\mathrm{E}} \end{aligned}$	1.0
II	$\begin{aligned} & v(0)=v^{\prime \prime}(0)=0 \\ & v(L)=v^{\prime}(L)=0 \end{aligned}$	$\left\lvert\, \begin{array}{ll}1 & 0 \\ 0 & 0 \\ 1 & L \\ 0 & 1\end{array}\right.$	0 0 $\sin k L$ $k \cos k L$	1 $-k^{2}$ $\cos k L$ $-k \sin k L$	$\begin{aligned} & \tan k l=k l \\ & k l=4.493 \\ & P_{\mathrm{cr}}=2.045 \mathrm{P}_{\mathrm{E}} \end{aligned}$	0.7
III	$\begin{aligned} & v(0)=v^{\prime}(0)=0 \\ & v(L)=v^{\prime}(L)=0 \end{aligned}$	$\left\lvert\, \begin{array}{ll}1 & 0 \\ 0 & 1 \\ 1 & L \\ 0 & 1\end{array}\right.$	$\begin{gathered} 0 \\ k \\ \sin k L \\ k \cos k L \end{gathered}$	$\begin{gathered} 1 \\ 0 \\ \cos k L \\ -k \sin k L \end{gathered}$	$\begin{aligned} & \sin \frac{k L}{2}=0 \\ & k L=2 \pi \\ & P_{\mathrm{cr}}=4 P_{\mathrm{E}} \end{aligned}$	0.5
IV	$\begin{aligned} & v^{\prime \prime \prime}(0)+k^{2} v^{\prime}=v^{\prime \prime}(0)=0 \\ & v(L)=v^{\prime}(L)=0 \end{aligned}$	$\left\lvert\, \begin{array}{ll}0 & 0 \\ 0 & k^{2} \\ 1 & L \\ 0 & 1\end{array}\right.$	$\begin{gathered} 0 \\ 0 \\ \sin k L \\ k \cos k L \end{gathered}$	$\begin{gathered} -k^{2} \\ 0 \\ \cos k L \\ -k \sin k L \end{gathered}$	$\begin{aligned} & \cos k L_{\pi}=0 \\ & k L=\frac{\pi}{2} \\ & P_{\mathrm{cr}}=\frac{P_{\mathrm{E}}}{4} \end{aligned}$	2.0
V	$\begin{aligned} & v^{\prime \prime \prime}(0)+k^{2} v^{\prime}=v^{\prime}(0)=0 \\ & v(L)=v^{\prime}(L)=0 \end{aligned}$	$\left\lvert\, \begin{array}{ll}0 & 1 \\ 0 & k^{2} \\ 1 & L \\ 0 & 1\end{array}\right.$	k 0 $\sin k L$ $k \cos k L$	$\begin{gathered} 0 \\ 0 \\ \cos k L \\ -k \sin k L \end{gathered}$	$\begin{aligned} & \sin k L=0 \\ & k L=\pi \\ & P_{\mathrm{cr}}=P_{\mathrm{E}} \end{aligned}$	1.0

Adapted from the reference:
STRUCTURAL STABILITY OF STEEL: CONCEPTS AND APPLICATIONS FOR STRUCTURAL ENGINEERS. THEODORE V
GALAMBOS ANDREA E. SUROVEK
JOHN WILEY \& SONS, INC.

Geometric interpretation of the effective length

Example - rigidly fixed ends column

$$
\begin{aligned}
v(x) & =A \sin k x+B \cos k x+C x+D \\
v^{\prime}(x) & =A k \cos k x-B k \sin k x+C .
\end{aligned}
$$

$$
v(0)=v^{\prime}(0)=v(L)=v^{\prime}(L)=0
$$

Non-trivial solution:

the determinant
vanishes: $\operatorname{det}\{\mathbf{H}\}=0$

$$
\left[\begin{array}{cccc}
0 & 1 & 0 & 1 \\
k & 0 & 1 & 0 \\
\sin k L & \cos k L & L & 1 \\
k \cos k L & -k \sin k L & 1 & 0
\end{array}\right]\left[\begin{array}{l}
A \\
B \\
C \\
D
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

$$
\mathbf{H}
$$

$$
4 k \sin \frac{k L}{2}\left(\sin \frac{k L}{2}-\frac{k L}{2} \cos \frac{k L}{2}\right)=0
$$

Cf.

$\Longrightarrow \mathbf{H q}=\mathbf{0}$,
$\operatorname{det}\{\mathbf{H}\}=0$
\Longrightarrow Criticality:
The zeros of the determinant:

$$
\frac{k L}{2}=n \pi, \quad n=1,2, \ldots
$$

$$
\frac{k L}{2} \approx 4.493 .
$$

The critical load is the smallest:

$$
k_{1}=\frac{2 \pi}{L}, \quad(n=1)
$$

$$
P_{1} \equiv P_{k r}=\frac{4 \pi^{2} E I}{L^{2}}
$$

The critical load from
the Euler's 'Table':

$$
P_{\mathrm{cr}}=4 \frac{\pi^{2} E I}{\ell^{2}}
$$

Examples - rigidly fixed ends column

$$
v^{\prime}(x)=A k \cos k x-B k \sin k x+C .
$$

Four BCs: $\quad v(0)=v^{\prime}(0)=v(L)=v^{\prime}(L)=0$.

Non-trivial solution: the determinant vanishes:
$\left[\begin{array}{cccc}0 & 1 & 0 & 1 \\ k & 0 & 1 & 0 \\ \sin k L & \cos k L & L & 1 \\ k \cos k L & -k \sin k L & 1 & 0\end{array}\right]\left[\begin{array}{c}A \\ B \\ C \\ D\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]$

(Stability loss criterion) Criticality:

$$
\sin \frac{k L}{2}=0
$$

or $\tan \frac{k L}{2}=\frac{k L}{2}$,
The zeros of the determinant:

$$
\frac{k L}{2}=n \pi, \quad n=1,2, \ldots
$$

$$
\frac{k L}{2} \approx 4.493
$$

Examples - what is the buckling length?
corresponding buckling mode:
\xrightarrow{Q} $\Rightarrow v(x)=B\left(\cos \frac{2 \pi x}{L}-1\right) . \quad \stackrel{P_{1}}{r_{v}} \stackrel{x}{ }$
critical $\quad P_{\text {cr }}=4 \frac{\pi^{2} E I}{L^{2}} \quad P_{1} \equiv P_{k r}=\frac{4 \pi^{2} E I}{L^{2}}$.

Second-order effects

The stress-problem:

Solve the deflection $v(x)$ as function of the axial load P (the loading parameter)

$$
E I v^{\prime \prime}(x)+P v(x)=-\frac{q L^{2}}{2} \frac{x}{L}\left(1-\frac{x}{L}\right)
$$

$$
v(x)=\frac{q L^{2}}{P}\left[\frac{\sin k(L-x)+\sin k x}{(k L)^{2} \sin k L}-\frac{1}{(k L)^{2}}-\frac{1}{2} \frac{x}{L}-\frac{1}{2}\left(\frac{x}{L}\right)^{2}\right]
$$

$$
\downarrow
$$

Homework: Show* that max. bending moment reduces to:

$$
\Rightarrow \frac{M(L / 2)}{q L^{2} / 8}=\frac{8}{\pi^{2} P_{E}}\left(1 / \cos \left(\frac{\pi}{2} \sqrt{P / P_{E}}\right)-1\right)
$$

and that maximum deflection is:

$$
q=0 \rightarrow P_{E}=\pi^{2} E I / L^{2}
$$

$$
\Rightarrow v(L / 2)=\frac{q}{\pi k^{2}}[1 / \cos (k L / 2)-1]-\frac{q(L / 2)^{2}}{2 P}
$$

Second-order effects = non-linear effects

Slope-deflection method - Stiffness-equation

The stiffness equations of the slope-deflection method with axial load

Compression : $\mathrm{P}>0$
Stiffness-coefficients are symmetric with respect to i and j

Member axial force can be compressive or tensile. The stiffness-coefficients are different in compression and in tension.

The stiffness coefficients - axial compression and bending

Compression : $\mathrm{P}>0 \quad \psi_{12} \equiv\left[v_{2}-v_{1}\right] / \ell$

However, it is more practical to express the stiffness coefficients in terms of Berry's functions as we did till now.
$M_{12}=M(0)=-E I \nu^{\prime \prime}(0)=E I B k^{2} \quad \beta \equiv k \ell \equiv \lambda$

$$
=\left[\frac{E \pi k^{2}}{k(2 \cos \beta+\beta \sin \beta-2)}\right]\left[(\beta \cos \beta-\sin \beta) \varphi_{12}+(\sin \beta-\beta) \varphi_{21}\right.
$$

$$
+(k-k \cos \beta) \Delta]
$$

$$
=\left[\frac{E I \beta}{\ell(2 \cos \beta+\beta \sin \beta-2)}\right]\left[(\beta \cos \beta-\sin \beta) \varphi_{12}+(\sin \beta-\beta) \varphi_{21}\right.
$$

$$
A_{12}(\lambda)=\frac{\lambda(\lambda \cos \lambda-\sin \lambda)}{2 \cos \lambda+\lambda \sin \lambda-2}
$$

$$
\sin \beta=2 \sin (\beta / 2) \cos (\beta / 2)
$$

$$
\beta \equiv k \ell \equiv \lambda
$$

Formulary

Frames - recall from 'beams and frames course
Puristettu ja taivutettu sauva:
Kulmanmuutosmenetelmä
$M_{i j}=A_{i j} \varphi_{i j}+B_{i j} \varphi_{j i}-C_{i j} \psi_{i j}+\overline{M K_{i j}}$

Tasajäykkä sauva :

Leikkausvoima:

The stiffness coefficients (are symmetric)
$M_{i j}=A_{i j}^{0} \varphi_{i j}-C_{i j}^{0} \psi_{i j}+\overline{M K}_{i j}^{0} \quad$ (sauvan päässä j on nivel)
$A_{i j}=A_{j i}=\frac{2 \psi(k L)}{4 \psi^{2}(k L)-\phi^{2}(k L)} \frac{6 E I}{L}, \quad B_{i j}=B_{j i}=\frac{\phi(k L)}{4 \psi^{2}(k L)-\phi^{2}(k L)} \frac{6 E I}{L}$ ja $C_{i j}=A_{i j}+B_{i j}$

$$
\begin{aligned}
& M_{i j}=A_{i j} \varphi_{i j}+B_{i j} \varphi_{i j}-C_{i j} \psi_{i j}+\bar{M}_{i j} \\
& \text { El constant } \\
& A_{12}=\frac{2 \psi(k L)}{4 \psi^{2}(k L)-\phi^{2}(k L)} \frac{6 E I}{L}=A_{21} \\
& B_{12}=\frac{\phi(k L)}{4 \psi^{2}(k L)-\phi^{2}(k L)} \frac{6 E I}{L}=B_{21}
\end{aligned}
$$

$\phi(\lambda)=\frac{6}{\lambda}\left(\frac{1}{\sin \lambda}-\frac{1}{\lambda}\right), \psi(\lambda)=\frac{3}{\lambda}\left(\frac{1}{\lambda}-\frac{1}{\tan \lambda}\right)$, ja $\chi(\lambda)=\frac{24}{\lambda^{3}}\left(\tan \frac{\lambda}{2}-\frac{\lambda}{2}\right)$,
Vedetty sauva:
$\phi(\lambda)=\frac{6}{\lambda}\left(-\frac{1}{\sinh \lambda}+\frac{1}{\lambda}\right), \psi(\lambda)=\frac{3}{\lambda}\left(-\frac{1}{\lambda}+\frac{1}{\tanh \lambda}\right)$, да $\chi(\lambda)=\frac{24}{\lambda^{3}}\left(-\tanh \frac{\lambda}{2}+\frac{\lambda}{2}\right)$,

Extension

$$
C_{12}=A_{12}+B_{12}, \quad C_{21}=A_{21}+B_{21}
$$

$\overline{M K}_{i j}=-A_{j j} \bar{\alpha}_{i j}^{0}-B_{j} \bar{\alpha}_{j i}^{0}, \quad \overline{M K}_{j i}=-A_{j} \bar{\alpha}_{j i}^{0}-B_{i j} \bar{\alpha}_{j j}^{0}$,
$A_{i j}^{0}=C_{i j}^{0}=\frac{1}{\psi(k L)} \frac{3 E I}{L}, \quad \overline{M K_{i j}^{0}}=-A_{i j} \bar{\alpha}_{i j}^{0}$
$Q_{i j}=Q_{i j}^{0}-\left(M_{i j}+M_{j i}\right) / L-N \psi_{i j} \quad(N$ positiivinen, kun sauva puristettu)

$$
\text { Loading terms } \quad \bar{M}_{i j}=-\bar{M}_{j i}
$$

N:o	Kuormitus	
1		$\begin{aligned} \overline{M K}_{1} & =-\overline{M K}_{2} \\ & =-\frac{q L^{2}}{12} \frac{\chi(k L)}{\tan \left(\frac{k L}{2}\right) /\left(\frac{k L}{2}\right)} \end{aligned}$

Berry's functions (stability function)

Berryn funktiot:

Olkoon $\lambda \equiv k L$,
Puristettu sauva: Compression

The stiffness coefficients - axial compression and

bending

1. Easiest way is to apply the slope-deflection method. Thus the

Example from exam 2018

A straight beam is simply supported at one end, and supported by a rotational spring, with spring constant $c=\alpha E I / a$, at the other. Its length is a, and bending stiffness $E I$. Determine the critical compressive load of the beam, when $\alpha=1$. Show further that the result is covering the cases where the right hand end of the beam is simply supported and clamped by varying the coefficient α. equilibrium equation is $M_{21}+M_{2 s}=0 \Rightarrow\left(A_{21}^{0}+c\right) \varphi_{2}=0$.
$A_{21}^{o}+c=-\frac{1}{\Psi(k a)} \frac{3 E I}{a}+\alpha \frac{E I}{a}=0 \Rightarrow \Psi(k a)=\frac{3}{\alpha} . \operatorname{Jos} \Psi(k a)=\frac{3}{k a}\left(\frac{1}{k a}-\frac{1}{\tan k a}\right)$
$\Rightarrow \tan k a=\frac{\alpha k a}{\alpha+(k a)^{2}}$ If $\alpha=1 \Rightarrow \tan k a=\frac{k a}{1+(k a)^{2}} \Rightarrow k a=3.405 \Rightarrow P_{c r}=1.175 \frac{\pi^{2} E I}{a^{2}}$
If $\alpha=0 \Rightarrow \tan k a=0 \Rightarrow k a=n \pi \Rightarrow P_{c r}=\frac{\pi^{2} E I}{a^{2}}$. If $\alpha=\infty \Rightarrow \tan k a=k a \Rightarrow P_{c r}=2.046 \frac{\pi^{2} E I}{a^{2}}$.
From differential equation, the solution is $v(x)=C_{1} \sin k x+C_{2} \cos k x+C_{3} x+C_{4}$ where $k^{2}=P / E I$ and the boundary conditions $v(0)=v^{\prime \prime}(0)=v(a)=0, c v^{\prime}(a)=-E I v^{\prime \prime}(a)$ yielding $C_{2}=C_{4}=0$, $C_{3}=-C_{1} \sin k a / a$ and the condition $c(k \cos k a-\sin k a / a)=P \sin k a$, yielding the same result.

Buckling of Continuous Beam-Columns and Frames

Solution: $\quad \varphi_{21}=\varphi_{23} \equiv \varphi_{2}$,
$M_{21}+M_{23}=0 \Rightarrow\left(A_{21}+a_{23}\right) \varphi_{2}=0$, compression $P>0 /$ normal force $=0$

$$
\frac{2 \psi(k L)}{4 \psi^{2}(k L)-\phi^{2}(k L)} \frac{6 E I}{L}, \quad \frac{4 E I}{L}
$$

Critical condition $=$ non-trivial solution exists:

$$
\begin{gathered}
\phi_{2} \neq 0 \Rightarrow A_{21}(k L)+a_{23}=0 \Rightarrow k L=? \\
\downarrow \\
12 \psi(k L)+16 \psi^{2}(k L)-4 \phi^{2}(k L)=0 \\
k L=5.33 \Rightarrow P_{c r}=2.88 \pi^{2} \frac{E I}{L^{2}}
\end{gathered}
$$

Berry's stability functions:

$$
\lambda \equiv k L
$$

$$
\psi(\lambda)=\frac{3}{\lambda}\left(\frac{1}{\lambda}-\frac{1}{\tan \lambda}\right), \quad \phi(\lambda)=\frac{6}{\lambda}\left(\frac{1}{\sin \lambda}-\frac{1}{\lambda}\right)
$$

$$
M_{i j}=A_{i j}(P) \varphi_{i j}+B_{i j}(P) \varphi_{i j}-C_{i j}(P) \psi_{i j}+M K_{i j}(P),
$$

no side sway:
$\psi_{i j}=0$

->plot(LAM, y_critical)

Geometrically non-linear analysis of frames by the Slope-deflection method

Moderate rotations and loads close to critical load but not over

$$
\varphi_{21}=\varphi_{23} \Rightarrow \frac{L}{3 E I} \Psi(k L) M_{21}+\psi_{21}=\frac{L}{6 E I} M_{23}+\frac{q L^{3}}{48 E I}
$$

$$
(1+2 \Psi(k L)) M_{2}+\frac{6 E I}{L} \psi_{21}=\frac{q L^{2}}{8}
$$

$$
Q_{21}=0 \Rightarrow-\frac{M_{2}}{L}-P \psi_{21}=0 \Rightarrow \psi_{21}=-\frac{M_{2}}{P L}
$$

$$
(1+2 \Psi(k L)) M_{2}-\frac{3 M_{2}}{k^{2} L^{2}}=\frac{q L^{2}}{8}
$$

Q: DETERMINETHEBENDING MOMENTATRIGIDJOINT \#2
 Q. DEIERMINE THEBENDING MOMENT AT RIGIDJOINT \#2

Iterationsare
needed to solve the bending moment:

Geometrically non-linear analysis of frames by the Slope-deflection method

Moderate rotations and loads close to critical load but not over

Imperfection, eccentricity

$$
\begin{aligned}
& M_{21}+M_{23}-P e=0 \Rightarrow \varphi_{2}=\frac{P e}{\left(A_{21}+a_{23}\right)} \\
& \left\{\begin{array}{l}
M_{21}=A_{21} \varphi_{2}=P e \frac{A_{21}}{\left(A_{21}+a_{23}\right)} \\
M_{23}=a_{23} \varphi_{2}=P e \frac{a_{23}}{\left(A_{21}+a_{23}\right)} \\
M_{32}=b_{32} \varphi_{2}=\frac{M_{23}}{2}
\end{array}\right.
\end{aligned}
$$

 resultant in column 12)

$$
Q_{23}=-\frac{M_{23}+M_{32}}{T}=-\frac{3}{\tau} \frac{M_{23}}{T}=-P e \frac{3 a_{23}}{r 1+\sim}
$$

If now the eccentritcity e is negative, the value of the compressive load P is increasing all the time, and no convergence will be reached. If positive, the convergence is reached.

Linear and non-linear buckling analysis

Free Exercise - 20 extra-points for HW

1. Performlinear buckling analysisfor the perfect geometry and find the critical load and the respective buckling mode
2. Find the second buckling load and the buckling mode
3. Analysis the shape imperfection effect on the buckling load (GNA)

For that do:

- Take the first buckling mode and then the second one (or their combination) multiplied by L/400 (Ldistance between mode nodes, as in Figs. on right) as a shape imperfection to add for the perfect geometry.
- Determine the load-displacement curve at some characteristic points
- What is the limit load? How much the buckling load of the perfect arch is reduced?

Assume that stresses remains in the elastic range.
a) loading is symmetric

Example of initial shape imperfections in an
arch (Standards: design of wood structures - EN 1995-1-1)

Timoshenko column

There is cases when the effect of shear deformation should be considered.

$$
\gamma=-\theta+v^{\prime}
$$

$\Delta \Pi=\frac{1}{2} \int_{\ell} E I \kappa^{2} \mathrm{~d} x+\frac{1}{2} \int_{\ell} k_{s} G A \gamma^{2} \mathrm{~d} x-\frac{1}{2} P \int_{\ell}\left(v^{\prime}\right)^{2} \mathrm{~d} x$
the curvature

$$
\begin{gathered}
\kappa=-v^{\prime \prime}(1-\alpha P) \quad \gamma=\alpha P v^{\prime} \\
\delta(\Delta \Pi)=0 \\
\Downarrow
\end{gathered}
$$

linearised buckling equation

$$
(1-\alpha P)\left[E I v^{\prime \prime}\right]^{\prime \prime}+P v^{\prime \prime}=0
$$

mean shear stress $\bar{\tau}=Q_{y}(x) / A$:
ξ being the shear correction coefficient

$$
\begin{aligned}
& Q_{y}(x)=k_{s} G A \gamma=\frac{G A}{\xi} \gamma \\
& \gamma \equiv \gamma_{x y}=\frac{\tau_{x y}}{G}=\xi \frac{Q_{y}}{G A} \equiv \alpha Q_{y} \\
& \gamma(x) \equiv \gamma_{x y}=u_{y}+v_{x}=-\theta(x)+v^{\prime}(x) \\
& \gamma=\alpha P v^{\prime} \\
& \quad \begin{array}{l}
M=E I \theta^{\prime}=E I \kappa=E I\left(\gamma^{\prime}-v^{\prime \prime}\right) \\
Q=G A \gamma / \xi=\gamma / \alpha
\end{array}
\end{aligned}
$$

$$
\begin{cases}Q-P v^{\prime} & =0 \\ M^{\prime \prime}-P v^{\prime \prime} & =0\end{cases}
$$

Timoshenko column

There is cases when the effect of shear deformation should be considered.

linearised buckling equation

$$
\begin{aligned}
& v^{(4)}+k^{2} v^{\prime \prime}=0 \\
& k^{2}=\frac{P}{E I} \frac{1}{1-\alpha P} \\
& \alpha=\frac{\xi}{G A}
\end{aligned}
$$

buckling of a cantilever column

Timoshenko buckling load

Euler buckling load

Timoshenko column

Reduction coefficient of the

Engesser (1891)

Euler buckling load

Analysis of the results

all end-conditions excepts for fixed-pinned.

$$
P^{\mathrm{T}}=P^{\mathrm{E}} \frac{1}{1+\overline{P^{-}}-}=P^{\mathrm{E}} \frac{1}{1+\alpha A P^{\mathrm{E}}}
$$

fixed-pinned ends

$$
P^{\mathrm{T}}=P^{\mathrm{E}} \frac{1}{1+1.1 \frac{P^{\mathrm{E}}}{k_{s} G A}}=P^{\mathrm{E}} \frac{1}{1+1.1 \alpha P^{\mathrm{E}}}
$$

Reduction coefficient for the Euler buckling load

Reduction coefficient

Cross-section geometry effects Quadratic effect
buckling of a cantilever column

Material effects Linear effect

Boundary conditions effects

Timoshenko buckling load

Euler buckling load

Usually the decrease of the buckling load due to transverse shear effects is negligible for bars with solid cross-section. On the contrary, for some open-cross sections, the reduction may be of 50% even.

Timoshenko column

There is cases when the effect of shear deformation should be considered.

- Examples displayed for curiosity
- Ourdays, stability of such structures is analyzed computationally, especially because torsional stability lossis involved which is quite complex when not impossible to analyze theoretically
(c)

$$
\begin{gathered}
P_{o r}=\frac{\pi^{2} E I}{l^{2}} \frac{1}{1+\frac{\pi^{2} E I}{l^{2}}\left(\frac{1}{A_{d} E \sin \phi \cos ^{2} \phi}+\frac{1}{a}\right.} \\
P_{\text {or }}=\frac{\pi^{2} E I}{l^{2}} \frac{1}{1+\frac{\pi^{2} E I}{l^{2}}\left(\frac{a b}{12 E I_{b}}+\frac{a^{2}}{24 E I_{c}}\right)} \\
P_{\text {oar }}=\frac{\pi^{2} E I}{l^{2}} \frac{1}{1+\frac{\pi^{2} E I}{l^{2}}\left(\frac{a b}{12 E I_{b}}+\frac{a^{2}}{24 E I_{e}}+\frac{n a}{b A_{b} G}\right)}
\end{gathered}
$$

(a)

Effects of imperfections

The well-known Ayreton-Perry design formula

(Eurocode 3)

Mistä nurjahduskäyrät tulevat?

Effects of imperfections

Ayreton-Perry design formula

6.3.1.2 Nurjahduskäyrät \quad Buckling curves

(Eurocode 3)
(1) Aksiaalisesti puristetuille sauvoille muunnettua hoikkuutta $\bar{\lambda}$ vastaava pienennystekijä χ lask seuraavasta kaavasta käyttäen kyseeseentulevaa nurjahduskäyrää:

$$
\chi=\frac{\mathrm{T}^{-}}{\Phi+\sqrt{\Phi^{2}-\bar{\lambda}^{2}}} \text { muta } \chi \leq 1,0
$$

missä $\quad \Phi=0,5\left\lfloor 1+\alpha(\bar{\lambda}-0,2)+\bar{\lambda}^{2}\right\rfloor$

$$
\begin{aligned}
& \bar{\lambda}=\sqrt{\frac{\mathrm{Af}_{\mathrm{y}}}{\mathrm{~N}_{\mathrm{cr}}}} \quad \text { poikkileikkausluokille 1, } 2 \text { ja 3; } \\
& \bar{\lambda}=\sqrt{\frac{\mathrm{A}_{\mathrm{eff}} \mathrm{f}_{\mathrm{y}}}{\mathrm{~N}_{\mathrm{cr}}}} \quad \text { poikkileikkausluokalle 4; }
\end{aligned}
$$

$\alpha \quad$ on epätarkkuustekijä;
N_{cr} on kimmoteorian mukainen bruttopoikkileikkauksen mukaan laskettu kriittinen voima kyseeseen tulevassa nurjahdusmuodossa.

Nurjahduskäyrä	a_{0}	a	b	c	d
Epätarkkuustekijä α	0,13	0,21	0,34	0,49	0,76

6.3.1.1 Nurjahduskestävyys
(1) Puristetut sauvat mitoitet $\frac{\mathrm{N}_{\mathrm{Ed}}^{\leftarrow}}{\mathrm{N}_{\mathrm{b}, \mathrm{Rd}}} \leq 1,0 \quad \begin{gathered}\text { External axial load } \\ \text { Action } \\ \end{gathered}$

Resistance

Initial shape imperfection $w_{0}(x)=$ $e_{0} \sin (\pi x / \ell)$.

Effects of imperfections

The well-known Ayreton-Perry design formula (Eurocode 3)

$$
\begin{aligned}
& \left(E I v^{\prime \prime}\right)^{\prime \prime}+P v^{\prime \prime}=0 \\
& \text { \& four boundary conditions. }
\end{aligned} \Longrightarrow \quad w(x)=\frac{e_{0}^{\downarrow}}{1-(\lambda / \pi)^{2}} \sin (\pi x / \ell), \quad \lambda^{2}=\frac{P \ell^{2}}{E I}
$$

$$
\begin{aligned}
& \sigma_{x}^{\max }=\frac{N_{\max }}{A}+\frac{M_{\max }}{W} \leq \sigma_{y} \\
& \Downarrow=\frac{P}{A}+\frac{M_{\max }}{I} \frac{h}{2} \leq \sigma_{y} . \\
& \text { (of Eurocode 3) } \\
& \bar{\lambda}=\sqrt{A \sigma_{y} / N_{E}} . \\
& M_{\text {max }}=M(\ell / 2)=-E I\left(v^{\prime \prime}(\ell / 2)-v_{0}^{\prime \prime}(\ell / 2)\right), \\
& =P_{c r} e_{0} \frac{(\lambda / \pi)^{2}}{1-(\lambda / \pi)^{2}}, \\
& =P_{c r} e_{0} \frac{P / P_{c r}}{1-P / P_{c r}} . \\
& \begin{aligned}
& a \bar{\prime}=\left[e_{0} h / 2\right] / i^{2} \\
& a=\pi \sqrt{E / \sigma_{y}} \frac{e}{\ell} \frac{h / 2}{i} \frac{\stackrel{\rightharpoonup}{\pi}}{\stackrel{0}{0}} \\
& \frac{0}{0}
\end{aligned} \\
& \chi=P / P_{y} . \\
& N_{s}=P \leq N_{R}=\chi \sigma_{y} A .
\end{aligned}
$$

Initial shape imperfection $w_{0}(x)=$ $e_{0} \sin (\pi x / \ell)$.
where $\bar{\lambda}$ is the column relative slenderness. How this formula the possible imperfections are now accounted through this buckling resistance reduction factor χ such that the inequality

Ayreton-Perry design formula

(1) Aksiaalisesti puristetuille sauvoille muunnettua hoikkuutta $\bar{\lambda}$ vastaava pienennystekijä χ lask seuraavasta kaavasta käyttäen kyseeseentulevaa nurjahduskäyrää:

 poikkileikkan luokille 1, 2 ja 3;

$\alpha \quad$ on epätarkkuustekijä;
kimmoteorian mukainen
kyseeseen tulevassa nur

$$
\chi=\frac{1}{\phi+\sqrt{\phi^{2}-\bar{\lambda}^{2}}}, \quad \text { where } \phi=\frac{1}{2}\left[1+a \bar{\lambda}+\bar{\lambda}^{2}\right]
$$

6.3.1.1 Nurjahduskestävyys

(1) Puristetut sauvat mitoitet

Resistance

$$
N_{s}=P \leq N_{R}=\chi \cdot \frac{\sigma_{y} A}{\gamma}
$$

Ayreton-Perry design formula

Buckling curves
$i=0.1714 \mathrm{~m}, h=0.2 \mathrm{~m}$,
$e_{0} / \ell=[1 / 400,1 / 300,1 / 400]$

Eurocode buckling curves

Yielding

b)

$$
\begin{aligned}
a \lambda & =\left[e_{0} h / 2\right] / i^{2} \\
a & =\pi \sqrt{E / \sigma_{y}} \frac{e_{0}}{\ell} \frac{h / 2}{i} \\
\chi & =P / P_{y} .
\end{aligned}
$$

Adapted from Eurocode 3

$$
N_{s}=P \leq N_{R}=\chi \cdot \frac{\sigma_{y} A}{\gamma}
$$

$$
\chi=\frac{1}{\phi+\sqrt{\phi^{2}-\bar{\lambda}^{2}}}, \quad \text { where } \phi=\frac{1}{2}\left[1+a \bar{\lambda}+\bar{\lambda}^{2}\right]
$$

Example of a design problem

Linear buckling analysis of simply supported column

FE- Linear Buckling Analysis

Model Builder

- 2 1_D_column_2D_Example_POST_Buckling_F_red_10000

4 $(\underset{\circ}{ }$ Global Definitions
Pi Parameters
Materials
4 (9) Component 1 (comp 1)
$\triangleright \equiv$ Definitions

- A Beam

Hill Materials
-号 Solid Mechanics (solid)
 A Mesh 1
4) Study 1: [Lin- Buckling Analysis]
E Step 1: Stationary
15 Step 2: Linear Buckling
$4 \sim$ Study 2
Step 1: Study 2: POST-BUCKLING ANALYSIS
$\triangle / i=$ Solver Configurations

- 涫 Results

FE-Mesh

FE- Linear Buckling Analysis

[FE-buckling analysis]

First three critical loads and respective buckling modes

$$
\begin{gathered}
{ }^{P_{\mathrm{E}}}=719.66 \mathrm{kN} \text { (analytical } 1 \mathrm{D} \text {) } \\
P_{E}=720 \mathrm{kN}(1-\mathrm{D}),
\end{gathered}
$$

Asymptotic post-buckling analysis of simply

 supported column

Roller 'buckling' displacement.

$$
\kappa=-\frac{v^{\prime \prime}}{\sqrt{1-v^{\prime 2}}}
$$

$$
\mathrm{d} u=\left[1-\sqrt{1-v^{\prime 2}}\right] \mathrm{d} x
$$

Asymptotic post-buckling analysis of simply
and column supported column

What to do: at buckling \& for moderate increments

$$
\begin{aligned}
& \checkmark \text { estimate the } \\
& \text { displacements/rotation } \\
& \checkmark \text { Study stability of post- } \\
& \text { buckling branch }
\end{aligned}
$$

- analytical approach is used

$$
\text { load increase } P=P_{E}+\Delta P
$$

How to do it?
few percent

- we use the Lagrangian formulation
- assume a (bifurcational) flexural deflection mode

$$
v(x)=v_{0} \sin (\pi x / \ell)
$$

$$
\Delta \Pi=\frac{1}{2} \int_{0}^{\ell} E I \kappa^{2} \mathrm{~d} x-P \int_{0}^{\ell}\left[1-\sqrt{1-\left(v^{\prime}\right)^{2}}\right] \mathrm{d} x
$$

FE- Post-Buckling Analysis

$\lambda=P / P_{E} \quad$ loading increases \qquad

Lagrangian

$$
\kappa=-\frac{v^{\prime \prime}}{\sqrt{1-v^{\prime 2}}}
$$

Shortening due to flexion $\quad \mathrm{d} u / \mathrm{d} x=1-\sqrt{1-\left(v^{\prime}\right)^{2}}$

Asymptotic post-buckling analysis of simply

supported column

The curvature in the Lagrangian formulation:

- we use the Lagrangian formulation
- assume a (bifurcational) flexural deflection mode

$$
\Delta \Pi=\frac{1}{2} \int_{0}^{\ell} E I \kappa^{2} \mathrm{~d} x-P \int_{0}^{\ell}\left[1-\sqrt{1-\left(v^{\prime}\right)^{2}}\right] \mathrm{d} x
$$

Lagrangian

 curvature$\kappa=-\frac{v^{\prime \prime}}{\sqrt{1-v^{\prime 2}}}$

The minus sign is because of sign convention for positive curvature

$$
\kappa=-\frac{v^{\prime \prime}}{\sqrt{1-v^{\prime 2}}}
$$

right-angle triangle (1.74) and using Pythagoras one obtains the shortening

$$
\mathrm{d} u=\left[1-\sqrt{1-v^{\prime 2}}\right] \mathrm{d} x
$$

Asymptotic post-buckling analysis of simply supported column

What to do: at buckling \& for
moderate increments
\checkmark estimate the
displacements/rotation
\checkmark Study stability of post $-\Longrightarrow$ buckling branch

How to do it?

- we use the Lagrangian formulation
- assume a (bifurcational) flexural $v(x)=v_{0} \sin (\pi / x \ell)$ deflection mode

Derive the forcedisplacement relation

$$
\Delta \Pi=\frac{1}{2} \int_{0}^{\ell} E I \kappa^{2} \mathrm{~d} x-P \int_{0}^{\ell}\left[1-\sqrt{1-\left(v^{\prime}\right)^{2}}\right] \mathrm{d} x
$$

Lagrangian curvature
Shortening due to flexion
$\kappa=-\frac{v^{\prime \prime}}{\sqrt{1-v^{\prime 2}}} \approx-v^{\prime \prime}\left[1+\frac{1}{2} v^{\prime 2}+\frac{3}{8} v^{\prime 4}+\ldots\right]$
$\mathrm{d} u / \mathrm{d} x=1-\sqrt{1-\left(v^{\prime}\right)^{2}} \approx 1-\left[1-\frac{1}{2} v^{\prime 2}\right]=\frac{1}{2} v^{\prime 2}$

Taylor expansions

Taylor expansions with only two terms
$\Longrightarrow \Delta \Pi \approx \frac{1}{2} \int_{0}^{\ell} E I v^{\prime \prime 2}\left[1+\frac{1}{2} v^{\prime 2}\right]^{2} \mathrm{~d} x-\frac{1}{2} P \int_{0}^{\ell}\left(v^{\prime}\right)^{2} \mathrm{~d} x$,

Asymptotic post-buckling analysis of simply supported column

Assume a (bifurcational) flexural deflection mode $v(x)=v_{0} \sin (\pi x / \ell)$
$\Delta \Pi \approx \frac{1}{2} \int_{0}^{\ell} E I v^{\prime \prime 2}\left[1+\frac{1}{2} v^{\prime 2}\right]^{2} \mathrm{~d} x-\frac{1}{2} P \int_{0}^{\ell}\left(v^{\prime}\right)^{2} \mathrm{~d} x$,
$\Delta \Pi=-\frac{\pi^{2}}{4} P \ell\left(\frac{v_{0}}{\ell}\right)^{2}+\frac{\pi^{2} E I}{\ell^{2}} \cdot \frac{\pi^{2}}{128}\left(\frac{v_{0}}{\ell}\right)^{2} \cdot \ell\left[32+8 \pi^{2}\left(\frac{v_{0}}{\ell}\right)^{2}+\pi^{4}\left(\frac{v_{0}}{\ell}\right)^{4}\right]$
$\Downarrow=-\frac{\pi^{2}}{4} P \ell \delta^{2}+P_{E} \cdot \frac{\pi^{2} \ell}{128} \delta^{2}\left[32+8 \pi^{2} \delta^{2}+\pi^{4} \delta^{4}\right] \equiv \Delta \Pi(\delta, \lambda ; \ell)$,

$$
\delta\left(\Delta \Pi\left(v_{0} ; P\right)\right)=0 \Longrightarrow \mathrm{~d} \Delta \Pi\left(v_{0} ; P\right) / \mathrm{d} v_{0}=0 \Longrightarrow
$$

\downarrow

$$
\begin{aligned}
\Longrightarrow P & =\frac{\pi^{2} E I}{\ell^{2}}+\frac{1}{2} \frac{\pi^{2} E I}{\ell^{2}} \cdot \pi^{2}\left(\frac{v_{0}}{\ell}\right)^{2}+\frac{3}{32} \frac{\pi^{2} E I}{\ell^{2}} \cdot \pi^{4}\left(\frac{v_{0}}{\ell}\right)^{4} \\
P & =P_{E}\left[1+\frac{1}{2} \cdot \pi^{2}\left(\frac{v_{0}}{\ell}\right)^{2}+\frac{3}{32} \cdot \pi^{4}\left(\frac{v_{0}}{\ell}\right)^{4}\right]
\end{aligned}
$$

The asymptotic force-displacement relation

$$
\lambda \approx 1+\frac{1}{2} \pi^{2} \delta^{2}+\frac{3}{32} \pi^{4} \delta^{4}=1+\frac{1}{2} \pi^{2} \delta^{2}\left[1+\frac{2 \cdot 3}{32} \pi^{2} \delta^{2}\right]
$$

[^1]only two terms

Post-buckling behavior

Asymptotic post-buckling analysis of simply supported column

The asymptotic post-buckling analysis provides also the value of column shortening and rotations at buckling
$u(\ell) \approx \frac{\ell}{2}\left(\frac{P}{P_{E}}-1\right) \cdot\left(P \geq P_{E}\right)+\frac{P_{E} \ell}{E A}$,
logical proposition $\left(P \geq P_{E}\right)=1$ when true, otherwise, zero.

Roller 'buckling' displacement.

FE－based post－buckling analysis of axially compressed column

－Perturbed with tiny transversal distributed load
－Can also be given as initial shape imperfection

Model Builder

 【 《 1＿D＿column＿2D＿Example＿POST＿Buckling＿F＿red＿10000＿disp
 4 $\#$ Global Definitions

P_{i} Parameters
明 Materials
4 Component 1 （comp 1）
$\triangleright \equiv$ Definitions
－A Beam潩 Materials
D 吕 Solid Mechanics（solid） Mesh 1
$4 \sim_{\infty}$ Study 1：［Lin－Buckling Analysis］
\rightleftharpoons Step 1：Stationary
IS，Step 2：Linear Buckling
D lif＝Solver Configurations
$4 \infty^{\infty}$ Study 2 $\bar{\sigma}$ Step 1：Study 2：POST－BUCKLING ANALYSIS
4 $\|_{\mathrm{F}}$ Solver Configurations
D 畨 Solution
4 随 Results
D 嚁 DataSets
（b）${ }_{8}^{8.85}$ ．12 Derived Valu
－Study Extensions
（ Auxiliary sweep
Sweep type：

param（param）	param（param ${ }^{\prime}-$ range $(0,0.02,15)$

－Study Settings
－Include geometric nonlinearity
 strains and large displacements theory

FE-based post-buckling analysis of axially compressed column

- Perturbed with tiny distributed load
- Can also be given as initial shape imperfection

Post-buckling behavior

Flexural deflection $v(L / 2) / h$
Axial shortening u / h

- at least, up-to the first mode is stable
- very shallow shape... no much increase in load bearing capacity

Buckling of columns on elastic foundation

Application: 1) Buckling in pile design

Application: 2) Buckling of rail track

Buckled rail track. Note the sine-shaped buckles

Linear Buckling analysis

Liikenneviraston ohjeita 13/2017 Eurokoodin soveltamisohje Geotekninen suunnittelu - NCCI 7 (21.4.2017)

Shematic of foundation pile under axial thrust which is elastically restrained by the soil (geotechnical design; Eurocode 7).
5.3.4 Nurjahduskestävyys STR/GEO

Nurjahdustarkastelu voidaan suorittaa rakennemallilla, jøssa maan paalua tukeva vaikutus kuvataan jousilla.|

Sensitivity to imperfections Post-buckling analysis

Rakennemallissa (yleensä FEM) tulee paalun alkukaarevuus ja kuorman epäkeskisyys mallintaa. Jos paalu mallinnetaan suorana ja kuorma keskeisenä se ei laskennallisesti nurjahda.

[^2]
Buckling of columns on elastic foundation

$v(0)=v^{\prime \prime}(0)=0$,

$$
v(\ell)=v^{\prime \prime}(\ell)=0
$$

$$
\Delta \Pi=\frac{1}{2} \int_{0}^{\ell} E I\left[v^{\prime \prime}(x)\right]^{2}+k[v(x)]^{2} \mathrm{~d} x-P \int_{0}^{\ell} \frac{1}{2}\left[v^{\prime}(x)\right]^{2} \mathrm{~d} x
$$

Euler-Bernoulli beam

Can be used to find approximate solutions

Rayleigh-Ritz

$$
\text { energy criterion } \delta(\Delta \Pi)=0
$$

$$
\Downarrow
$$

$$
\int_{0}^{\ell} E I v^{\prime \prime} \delta v^{\prime \prime}+k v \delta v \mathrm{~d} x-P \int_{0}^{\ell} v^{\prime} \delta v^{\prime} \mathrm{d} x=0, \forall \delta v
$$

$$
\delta\left(\frac{1}{2} \int_{0}^{\ell} k v(x)^{2} \mathrm{~d} x\right)=\int_{0}^{\ell} \underbrace{k v}_{\text {new add to ODE }} \delta v \mathrm{~d} x
$$

\qquad
which becomes after twice integration by parts

$$
\int_{0}^{\ell} \underbrace{[E I v^{(4)}+\underbrace{+\cdots v+1}_{-}+P v^{\prime \prime}]}_{=0} \delta v \mathrm{~d} x+[\underbrace{E I v^{\prime \prime}}_{-M} \delta v^{\prime}]_{0}^{\ell}-[\underbrace{E I v^{\prime \prime \prime}}_{-Q}+P v^{\prime}) \delta v]_{0}^{\ell}=0, \forall \delta v
$$

Boundary conditions
The linearised buckling equation

$$
E I v^{(4)}+P v^{\prime \prime}+\bar{k} v=0
$$

Buckling of columns on elastic foundation

$$
v(0)=v^{\prime \prime}(0)=0,
$$

$$
v(\ell)=v^{\prime \prime}(\ell)=0
$$

$$
\Delta \Pi=\frac{1}{2} \int_{0}^{\ell} E I\left[v^{\prime \prime}(x)\right]^{2}+k[v(x)]^{2} \mathrm{~d} x-P \int_{0}^{\ell} \frac{1}{2}\left[v^{\prime}(x)\right]^{2} \mathrm{~d} x
$$

Shematic of simply supported axially compressed column on elastic
Euler-Bernoulli beam foundation
energy criterion $\delta(\Delta \Pi)=0$

which becomes after twice integration by parts

$$
\int_{0}^{\ell} \underbrace{[E I v^{(4)} \underbrace{+1} \underbrace{---v^{\prime}}+P v^{\prime \prime}]}_{=0} \delta v \mathrm{~d} x+[\underbrace{E I v^{\prime \prime}}_{-M} \delta v^{\prime}]_{0}^{\ell}-[(\underbrace{E I v^{\prime \prime \prime}}_{-Q}+P v^{\prime}) \delta v]_{0}^{\ell}=0, \forall \delta v
$$

\|. Field equation
The linearised buckling equation
$E I v^{(4)}+P v^{\prime \prime}+{ }_{2}^{\prime} v^{\prime}=0$

Boundary conditions
\&

Buckling modes of beams on elastic foundation

Buckling of columns on elastic foundation

$$
v(0)=v^{\prime \prime}(0)=0,
$$

$$
v(\ell)=v^{\prime \prime}(\ell)=0
$$

The linearised buckling equation

$$
E I v^{(4)}+P v^{\prime \prime}+k v=0
$$

\& Boundary conditions

The following trial satisfies the differential equations \& the boundary conditions

$$
v_{n}(x)=\sin \frac{n \pi x}{\ell}, \quad n=1,2,3, \ldots
$$

The buckling load is the smallest critical load:
The smallest critical load $P_{c r}=P_{n}$ depends on the half-wave number n.

$$
\frac{d P_{n}}{d n}=0 \Rightarrow n^{2}=\sqrt{\beta}
$$

$$
P_{c r}=2 P_{\mathrm{E}} \sqrt{\beta}=2 \sqrt{k E I}
$$

$$
\Uparrow \quad \beta=\frac{k \ell^{4}}{\pi^{4} E I}
$$

The buckling load:

'Long' beams:

$$
\begin{aligned}
& P_{c r} \approx 2 \sqrt{k E I} \\
& \bar{\ell} \equiv \beta^{1 / 4} \geq 3
\end{aligned}
$$

Buckling load

Beams of arbitrary length:

Buckling
depends on coefficient

$$
\beta=\frac{k \ell^{4}}{\pi^{4} E I}
$$

Buckling of columns on elastic foundation
What is the corresponding buckling mode?

Attention: The buckling mode corresponding to the
buckling load does not
always the first mode

$$
\bar{P}_{n}=n^{2}+\frac{\beta}{n^{2}}
$$

b)

$$
\bar{\ell}=\frac{\ell}{\pi}\left[\frac{k}{E I}\right]^{1 / 4}
$$

Buckling of axially compressed column on elastic foundation

depends on
$\beta=\frac{k \ell^{4}}{\pi^{4} E I}$

Buckling of a column on elastic foundation - a summary

Other types of boundary conditions

- For general types of BCs one should obtain a complete solution of the ODE

$$
\begin{aligned}
v^{(4)}+\frac{P}{E I} v^{\prime \prime}+\frac{k}{E I} v & =0 \\
v^{(4)}+\lambda_{P}^{2} v^{\prime \prime}+\frac{\beta_{k}^{4}}{4} v & =0
\end{aligned}
$$

$$
\begin{array}{|l}
\hline \lambda_{P}^{2} \equiv P / E I\left(=p^{2}\right) \\
\hline \beta_{k}^{4} \equiv 4 k / E I\left(=4 b^{4}\right)
\end{array}
$$

The general solution

$$
v(x)=A \mathrm{e}^{r x}
$$

- $\lambda_{P}>\beta_{k}$,

$$
v(x)=C_{1} \cos p x+C_{2} \sin p x+C_{3} \cos q x+C_{4} \sin q x
$$

$$
p=\frac{1}{2} \sqrt{\lambda_{P}^{2}+\beta_{k}^{2}}+\frac{1}{2} \sqrt{\lambda_{P}^{2}-\beta_{k}^{2}} \& q=\frac{1}{2} \sqrt{\lambda_{P}^{2}+\beta_{k}^{2}}-\frac{1}{2} \sqrt{\lambda_{P}^{2}-\beta_{k}^{2}}
$$

- $\lambda_{P}<\beta_{k}$,

$$
v(x)=C_{1} \cosh p x+C_{2} \sinh p x+C_{3} \cosh q x+C_{4} \sinh q x
$$

$$
p=\frac{1}{2} \sqrt{\lambda_{P}^{2}+\beta_{k}^{2}}+\frac{1}{2} \sqrt{\beta_{k}^{2}-\lambda_{P}^{2}} \& q=\frac{1}{2} \sqrt{\lambda_{P}^{2}+\beta_{k}^{2}}-\frac{1}{2} \sqrt{\beta_{k}^{2}-\lambda_{P}^{2}}
$$

- $\lambda_{P}=\beta_{k}$,

$$
v(x)=\left(C_{1}+C_{2} x\right) \cos \left(\lambda_{k} / \sqrt{2}\right)+\left(C_{3}+C_{4} x\right) \sin \left(\lambda_{k} / \sqrt{2}\right)
$$

- For general types of BCs one should obtain a

$$
\beta_{k}^{4} \equiv 4 k / E I\left(=4 b^{4}\right) \quad \lambda_{P}^{2} \equiv P / E I\left(=p^{2}\right)
$$ complete solution of the ODE

$$
\begin{aligned}
v^{(4)}+\frac{P}{E I} v^{\prime \prime}+\frac{k}{E I} v & =0 \\
v^{(4)}+\lambda_{P}^{2} v^{\prime \prime}+\frac{\beta_{k}^{4}}{4} v & =0
\end{aligned}
$$

$v(x)=C_{1} \cos k_{1} x+C_{2} \sin k_{1} x+C_{3} \cos k_{2} x+C_{4} \sin k_{2} x$

$$
\left(k_{1}, k_{2}\right)=\sqrt{a^{2} \pm \sqrt{\Delta}} \quad \begin{aligned}
v(-L)=v(L) & =0 \\
v^{\prime}(-L)=v^{\prime}(L) & =0
\end{aligned}
$$

$$
\left[\begin{array}{cccc}
\cos k_{1} L & \sin k_{1} L & \cos k_{2} L & \sin k_{2} L \\
\cos k_{1} L & -\sin k_{1} L & \cos k_{2} L & -\sin k_{2} L \\
-k_{1} \sin k_{1} L & k_{1} \cos k_{1} L & -k_{2} \sin k_{2} L & k_{2} \cos k_{2} L \\
k_{1} \sin k_{1} L & k_{1} \cos k_{1} L & k_{2} \sin k_{2} L & k_{2} \cos k_{2} L
\end{array}\right.
$$

$$
P_{c r}=\mu \cdot 2 \sqrt{k E I}
$$

$$
\beta=\frac{k \ell^{4}}{\pi^{4} E I}
$$

To obtain from the smallest zero of the determinant \qquad \longrightarrow

Buckling load (symmetric mode)

$$
P_{c r}=P_{0} / \eta_{c r} \approx \underbrace{2.4}_{\mu} \cdot \underbrace{2 \sqrt{k E I}}_{P_{0}}
$$

Let's fix the value In this example:

- One should consider, separately, symmetric and asymmetric buckling
- The smallest critical load \rightarrow buckling load

The zeros of the determinant for the buckling of a column on elastic foundation.

Buckling of columns on elastic foundation
 $n=1$

In the following, for illustrative pedagogical purposes, we analyse a simply supported column on elastic foundation with centric axial compressive load P. Simulation data: $\ell=1 \mathrm{~m}, b=\ell / 10, h=50 \mathrm{~mm} . E=70 \mathrm{GPa}(\nu=0.33)$. We investigate, how the relative 'stiffness number' $\beta \equiv k \ell^{2} /\left(\pi^{4} E I\right)$ determine the number n of half-waves of the buckling modes corresponding to the (smallest) buckling load $P_{c r}$,

Linear FE-buckling analysis. Buckling of axially compressed

Table 1.1: FE-linear buckling analysis. The loads are given in [MN] units.

β	$\bar{\ell}$	n	$P_{c r}^{\text {lim. }}$	$k_{c r}$	$P_{c r}^{\text {(theor.) }}$	$P_{c r}^{F E M}$	$P_{c r}^{\text {(theor.) }} / P_{E}$	$k\left[\mathrm{~N} / \mathrm{m}^{2}\right]$
2	1.189	1	2.04	2.121	2.159	2.162	3	14.2
5	1.495	2	3.22	2.348	3.778	3.717	5.3	35.5
40	2.515	3	9.10	2.126	9.675	9.816	13.4	284.1

$$
v(0)=v^{\prime \prime}(0)=0
$$

$$
v(\ell)=v^{\prime \prime}(\ell)=0
$$

The buckling load:

The linearised buckling equation

$$
E I v^{(4)}+P v^{\prime \prime}+k v=0
$$

\& Boundary conditions

Post-buckling analysis of columns on elastic foundation

```
FE-based post-buckling
``` analysis


Figure 1.89: Post-buckling displacements in 1:1 scale (FE simulation). The perturbation scale \(\epsilon=1 / 1000\). After \(\lambda / \lambda_{c r, F E}>0.991\), the behaviour seems (in this simulation) to become unstable and could not be captured because of force control approach used (I will do a displacement control soon). (\(E I=\) 72917 N. \(\mathrm{m}^{2}, \beta=5(n=2)\)), theoretical 1-D value for \(P_{\mathrm{cr}}=3.778 \mathrm{MN}(2 \mathrm{D}-\) elasticity FE based linear buckling analysis gave \(\left.P_{\mathrm{cr}, \mathrm{FE}}=3.720 \mathrm{MN}\right)\). .

\section*{Effect of foundation stiffness on post-buckling behaviour}

Figure 1.93: Post-buckling equilibrium paths (FE-simulation, displacementcontrol) of a uniformly compressed column on elastic foundation. The endsload is centric. The parameters \(\ell, k\) and \(E I\) are such that \(\beta=3\) and the initial post-buckling mode corresponds to one-half waves \((n=1)\). The perturbation scale for the transverse loads was \(\epsilon=1 / 1000\).

\section*{Effect of foundation stiffness on post-buckling behaviour}

The column-beam is simply supported (kuvasta puuttuu nivelet)

Figure 1.91: Post-buckling equilibrium paths; \(v(\ell / 4)\) versus \(P / P_{c r}\), (FEsimulation, displacement-control). The parameters \(\ell, k\) and \(E I\) are such that \(\beta=5\) and the initial post-buckling mode corresponds to two-half waves (\(n=2\)). The perturbation scale for the transverse loads was \(\epsilon=1 / 10000\). (the post-buckled displacements are in scale 1:1 in the deformed column).

\section*{Discrete energy method - FEM}

The starting point for deriving the elementary matrices above is the total potential energy functional (1.233) or more directly, its variation which is known as Virtual Work Principle. The idea is the write the variation of the total functional as a sum over the elements
\[
\begin{gathered}
v^{(e)}(x)=\sum_{i=1}^{M} \phi_{i}(x) a_{i}^{(e)} \equiv \mathbf{N}(x) \mathbf{a}^{(e)}, \\
\mathbf{a}^{(e)}=\left[\begin{array}{llll}
v_{1} & \theta_{1} & v_{2} & \theta_{2}
\end{array}\right]^{\mathrm{T}} \\
\delta v(x)=\mathbf{N}(x) \delta \mathbf{a}^{(e)}
\end{gathered}
\]
\(N_{j}(x)\) are the shape functions
\[
\delta(\Delta \Pi)=\sum_{e=1}^{N}\left[\int_{0}^{\ell(e)} E I v^{\prime \prime}(x) \delta v^{\prime \prime}+k v(x) \delta v(x) \mathrm{d} x-P^{(e)} \int_{0}^{\ell^{(e)}} v^{\prime}(x) \delta v^{\prime}(x) \mathrm{d} x\right]=0
\]
\[
=\sum_{e=1}^{N}\left(\delta \mathbf{a}^{(e)}\right)^{\mathrm{T}}[\underbrace{\int_{0}^{\ell(e)} \mathbf{N}^{\prime \prime \mathrm{T}}(x) \cdot E I \cdot \mathbf{N}^{\prime \prime}(x) \mathrm{d} x}_{\mathbf{K}_{\mathrm{L}}^{(B)}}+\underbrace{\int_{0}^{\ell(e)} \mathbf{N}^{\mathrm{T}}(x) \cdot k \cdot \mathbf{N}(x) \mathrm{d} x}_{\mathbf{K}_{\mathrm{L}}^{(F)}}+
\]
\[
\underbrace{-\int_{0}^{\ell^{(e)}} \mathbf{N}^{\prime \mathrm{T}}(x) \cdot P^{(e)} \cdot \mathbf{N}^{\prime}(x) \mathrm{d} x}_{\mathbf{K}_{\mathbf{G}}}] \mathbf{a}^{(e)}=0, \forall \delta \mathbf{a}^{(e)}
\]
where \(P^{(e)}=-N^{0}(x)\) and \(N^{0}(x)\) being the membrane stress-resultant

\section*{Discrete energy method - FEM}

The starting point for deriving the elementary matrices above is the total potential energy functional (1.233) or more directly, its variation which is known as Virtual Work Principle. The idea is the write the variation of the total functional as a sum over the elements
\[
\begin{aligned}
\delta(\Delta \Pi) & =\sum_{e=1}^{N}\left[\int_{0}^{\ell^{\ell(e)}} E I v^{\prime \prime}(x) \delta v^{\prime \prime}+k v(x) \delta v(x) \mathrm{d} x-P^{(e)} \int_{0}^{\ell^{(e)}} v^{\prime}(x) \delta v^{\prime}(x) \mathrm{d} x\right]=0 \\
& =\sum_{e=1}^{N}\left(\delta \mathbf{a}^{(e)}\right)^{\mathrm{T}}[\underbrace{\int_{0}^{\ell^{(e)}} \mathbf{N}^{\prime \prime \mathrm{T}}(x) \cdot E I \cdot \mathbf{N}^{\prime \prime}(x) \mathrm{d} x}_{\mathbf{K}_{\mathrm{L}}^{(B)}}+\underbrace{\int_{0}^{\ell^{(e)}} \mathbf{N}^{\mathrm{T}}(x) \cdot k \cdot \mathbf{N}(x) \mathrm{d} x}_{\mathbf{K}_{\mathrm{L}}^{(F)}}+ \\
& \underbrace{-\int_{0}^{\ell^{(e)}} \mathbf{N}^{\prime \mathrm{T}}(x) \cdot P^{(e)} \cdot \mathbf{N}^{\prime}(x) \mathrm{d} x}_{\mathbf{K}_{\mathrm{G}}}] \mathbf{a}^{(e)}=0, \forall \delta \mathbf{a}^{(e)}
\end{aligned}
\]
where \(P^{(e)}=-N^{0}(x)\) and \(N^{0}(x)\) being the membrane stress-resultant

\section*{Discrete energy method - FEM}

\section*{Euler-Bernoulli beam element}
linearised stiffness matrix for bending ,
\[
\mathbf{K}_{\mathrm{L}}^{(B)}=\frac{E I}{\ell^{3}}\left[\begin{array}{cccc}
12 & 6 \ell & -12 & 6 \ell \\
6 \ell & 4 \ell^{2} & -6 \ell & 2 \ell^{2} \\
-12 & -6 \ell & 12 & -6 \ell \\
6 \ell & 2 \ell^{2} & -6 \ell & 4 \ell^{2}
\end{array}\right]
\]
\[
\begin{aligned}
& N_{1}(x)=1-3(x / \ell)^{2}+2(x / \ell)^{3}, \\
& N_{2}(x)=x(1-x / \ell)^{2}, \\
& N_{3}(x)=3(x / \ell)^{2}-2(x / \ell)^{3}, \\
& N_{4}(x)=x\left((x / \ell)^{2}-x / \ell\right)
\end{aligned}
\]
consistent stiffness matrix from the elastic foundation
\[
\mathbf{K}_{\mathrm{L}}^{(F)}=\frac{k \ell}{70}\left[\begin{array}{cccc}
26 & 11 \ell / 3 & 9 & -13 \ell / 6 \\
11 \ell / 3 & 2 \ell^{2} / 3 & 13 \ell / 6 & -\ell^{2} / 2 \\
9 & 13 \ell / 6 & 26 & -11 \ell / 3 \\
-13 \ell / 6 & -\ell^{2} / 2 & -11 \ell / 3 & 2 \ell^{2} / 3
\end{array}\right]
\]
geometric elementary matrix is
Diagonalized foundation stiffness matrix:
\[
\mathbf{K}_{\mathrm{L}}^{(F)}=\frac{k \ell}{2}\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\]
\[
\mathbf{K}_{\mathrm{G}}=-\frac{P}{30 \ell}\left[\begin{array}{cccc}
36 & 3 \ell & -36 & 3 \ell \\
3 \ell & 4 \ell^{2} & -3 \ell & -\ell^{2} \\
-36 & -3 \ell & 36 & -3 \ell \\
3 \ell & -\ell^{2} & -3 \ell & 4 \ell^{2}
\end{array}\right]
\]
\[
\text { compression load } P=-N^{0}(x)>0
\]

\[
\begin{aligned}
& \mathbf{K}_{\mathrm{L}}^{(\mathbf{B})}=\int_{0}^{\ell^{(e)}} \mathbf{N}^{\prime \prime \mathrm{T}}(x) \cdot E I \cdot \mathbf{N}^{\prime \prime}(x) \mathrm{d} x \\
& \mathbf{K}_{\mathrm{L}}^{(F)}=\int_{0}^{\ell^{(e)}} \mathbf{N}^{\mathrm{T}}(x) \cdot k \cdot \mathbf{N}(x) \mathrm{d} x \\
& \mathbf{K}_{\mathrm{G}}=-\int_{0}^{\ell^{(e)}} \mathbf{N}^{\prime \mathrm{T}}(x) \cdot P^{(e)} \cdot \mathbf{N}^{\prime}(x) \mathrm{d} x
\end{aligned}
\]
[A result from FEA] The convergence rate \(k\) for Euler-Bernoulli beam element for the Eigen-values is \(k=4\)

\section*{Application example}

DO: Determine the critical load and the corresponding mode by the "handy-FE" method (stiffness method)
\begin{tabular}{lll|}
\cline { 2 - 3 } & \multicolumn{1}{|c}{} & \(K_{11}=K_{44}^{(1)}=\frac{E I}{\ell^{3}} 4 \ell^{2}-\frac{P}{30 \ell} 4 \ell^{2}\)
\end{tabular}\(P^{(1)}=P\)
The global linearised stiffness and geometric matrices
\[
\Downarrow \mathbf{K}_{\mathrm{L}}=\frac{2 E I}{\ell}\left[\begin{array}{ll}
2 & 1 \\
1 & 6
\end{array}\right], \quad \mathbf{K}_{\mathrm{G}}=-\frac{P \ell}{30}\left[\begin{array}{cc}
4 & -1 \\
-1 & 16
\end{array}\right]
\]
\[
\left(\frac{2 E I}{\ell}\left[\begin{array}{ll}
2 & 1 \\
1 & 6
\end{array}\right]-\frac{P \ell}{30}\left[\begin{array}{cc}
4 & -1 \\
-1 & 16
\end{array}\right]\right)\left[\begin{array}{l}
\phi_{1} \\
\phi_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\]
\[
P_{1, c r}=1.62 \pi^{2} \frac{E I}{\ell^{2}} \quad \quad \text { Load \& mode } \longrightarrow \quad \phi_{1}=\left[\begin{array}{c}
0.266 \\
-0.196
\end{array}\right]
\]
\[
P_{2, c r}=3.97 \pi^{2} \frac{E I}{\ell^{2}}
\]
\[
\phi_{2}=\left[\begin{array}{l}
-0.428 \\
-0.159
\end{array}\right]
\]

Buckled state

Initial
membrane stress
(pre-buckling)
\[
\mathbf{a}=\left[\phi_{1}, \phi_{2}\right]^{\mathrm{T}}
\]

\section*{Accelerating convergence}
- Assume we have an priori knowledge on the convergence rate of some quantity (can be always estimated)

e.g.. buckling load

The numerical solution is proportional to

Positive constant

Convergence rate
- The above extrapolated solution is much closer to the exact one than the solutions 1 and 2

Richardson extrapolation: is a sequence convergence acceleration method
\[
\begin{gathered}
C=\left(\lambda_{1}-\lambda_{e x}\right) h_{1}^{-k} \\
\lambda_{2}=\lambda_{e x}+\left(\lambda_{1}-\lambda_{e x}\right)\left(\frac{h_{2}}{h_{1}}\right)^{k}
\end{gathered}
\]
\[
\lambda_{e x}=\frac{\lambda_{2}-\lambda_{1}\left(\frac{h_{2}}{h_{1}}\right)^{k}}{\substack{\text { Extrapolated } \\ \text { value }}}
\]
\(\Longleftarrow\)

Two solution with two different mesh-size: \(\quad h_{2}<h_{1}\)
\[
\left\{\begin{array}{l}
\lambda_{1}=\lambda_{e x}+C h_{1}^{k}=\lambda\left(h_{1}\right) \\
\lambda_{2}=\lambda_{e x}+C h_{2}^{k}=\lambda\left(h_{2}\right)
\end{array}\right.
\]
[A result from FEA] The convergence rate \(k\) for Euler-Bernoulli beam element for the
Eigen-values is \(k=4\). (We can also estimate \(k\) for Euler-Bernoulli beam element for the
Eigen-values is \(k=4\). (We can also estimate \(k\) from log-log plot of convergence rate (graph of changes in lambda versus changes in \(h\))
wo solution with two

\section*{Physical discrete model based post-buckling analysis}

Simplified model of elastically restrained column
\[
\begin{aligned}
& \text { translational spring } \\
& k_{T}=k \ell / 2 \\
& \begin{array}{l}
\text { rotational spring } \\
k_{R}=1 / 4 \pi^{2} E I / \ell
\end{array} \\
& \beta=k \ell^{4} /\left[\pi^{2} E I\right]
\end{aligned}
\]

Solution
\[
u=2 \cdot \frac{L}{2}(1-\cos (\varphi / 2)), \quad v=\frac{L}{2} \sin (\varphi / 2)
\]
\[
\begin{aligned}
\Pi= & \frac{1}{2} k_{\mathrm{R}} \varphi^{2}+\frac{1}{2} k_{\mathrm{T}} v^{2}-P u \\
& =\frac{1}{8} \pi^{2} \frac{E I}{L} \varphi^{2}+\frac{1}{16} \beta \pi^{2} \frac{E I}{L} \sin ^{2}(\varphi / 2)-P L(1-\cos (\varphi / 2)\rangle
\end{aligned}
\]
\[
\varphi=0
\]
\[
\lambda=\frac{\varphi / 2}{\sin (\varphi / 2)}+\frac{1}{8} \beta \cos (\varphi / 2) \quad \varphi=0, \lambda=1+\frac{1}{8} \beta,
\]
\[
P_{c r}(\beta)=\left(1+\frac{\beta}{8}\right) \frac{\pi^{2} E I}{\ell^{2}}
\]
\[
\text { (Ref: This problem is provided by R. Kouhia) } \quad P=\lambda \frac{\pi^{2} E I}{L^{2}} \quad \frac{d^{2} \tilde{\Pi}}{d{ }^{2}}=\frac{\mathrm{d}}{\mathrm{~d}}\left(\frac{1}{4} \varphi+\frac{1}{16} \beta \sin (\varphi / 2) \cos (\varphi / 2)-\frac{1}{2} \lambda \sin (\varphi / 2)\right)
\]

\section*{Equilibrium paths}

From this study we conclude that
- the buckling load increases with the increase of the stiffness of the foundation.
- However, at the same time, the
bifurcation switches from stable to becomes of unstable
after a critical value \(\beta>8 / 3\)
\[
\beta=k \ell^{4} /\left[\pi^{2} E I\right]
\]

What to take with you? From the above study we can conclude that: the buckling load increases with the increase of the stiffness of the foundation. However, at the same time, the bifurcation switches from stable to becomes of unstable-type after a critical value for \(\beta>8 / 3\).

Five Fundamental Cases of Column Buckling
Elementary buckling cases
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Case & Boundary Conditions & & Buckli Determin & \[
\begin{aligned}
& \text { ling } \\
& \text { inant }
\end{aligned}
\] & Eigenfunction Eigenvalue Buckling Load & \begin{tabular}{l}
Effective Length \\
Factor
\end{tabular} \\
\hline \(I\) & \[
\begin{aligned}
& v(0)=v^{\prime \prime}(0)=0 \\
& v(L)=v^{\prime \prime}(L)=0
\end{aligned}
\] & \(\left\lvert\, \begin{array}{ll}1 & 0 \\ 0 & 0 \\ 1 & L \\ 0 & 0\end{array}\right.\) & 0
0
\(\sin k L\)
\(-k^{2} \sin k L\) & 1
\(-k^{2}\)
\(\cos k L\)
\(-k^{2} \cos k L\) & \[
\begin{aligned}
& \sin k L=0 \\
& k L=\pi \\
& P_{\mathrm{cr}}=P_{\mathrm{E}}
\end{aligned}
\] & 1.0 \\
\hline II & \[
\begin{aligned}
& v(0)=v^{\prime \prime}(0)=0 \\
& v(L)=v^{\prime}(L)=0
\end{aligned}
\] & \(\left\lvert\, \begin{array}{ll}1 & 0 \\ 0 & 0 \\ 1 & L \\ 0 & 1\end{array}\right.\) & 0
0
\(\sin k L\)
\(k \cos k L\) & 1
\(-k^{2}\)
\(\cos k L\)
\(-k \sin k L\) & \[
\begin{aligned}
& \tan k l=k l \\
& k l=4.493 \\
& P_{\mathrm{cr}}=2.045 \mathrm{P}_{\mathrm{E}}
\end{aligned}
\] & 0.7 \\
\hline III & \[
\begin{aligned}
& v(0)=v^{\prime}(0)=0 \\
& v(L)=v^{\prime}(L)=0
\end{aligned}
\] & \(\left\lvert\, \begin{array}{ll}1 & 0 \\ 0 & 1 \\ 1 & L \\ 0 & 1\end{array}\right.\) & \[
\begin{gathered}
0 \\
k \\
\sin k L \\
k \cos k L
\end{gathered}
\] & \[
\begin{gathered}
1 \\
0 \\
\cos k L \\
-k \sin k L
\end{gathered}
\] & \[
\begin{aligned}
& \sin \frac{k L}{2}=0 \\
& k L=2 \pi \\
& P_{\mathrm{cr}}=4 P_{\mathrm{E}}
\end{aligned}
\] & 0.5 \\
\hline IV & \[
\begin{aligned}
& v^{\prime \prime \prime}(0)+k^{2} v^{\prime}=v^{\prime \prime}(0)=0 \\
& v(L)=v^{\prime}(L)=0
\end{aligned}
\] & \(\left\lvert\, \begin{array}{ll}0 & 0 \\ 0 & k^{2} \\ 1 & L \\ 0 & 1\end{array}\right.\) & \[
\begin{gathered}
0 \\
0 \\
\sin k L \\
k \cos k L
\end{gathered}
\] & \[
\begin{gathered}
-k^{2} \\
0 \\
\cos k L \\
-k \sin k L
\end{gathered}
\] & \[
\begin{aligned}
& \cos k L_{\pi}=0 \\
& k L=\frac{\pi}{2} \\
& P_{\mathrm{cr}}=\frac{P_{\mathrm{E}}}{4}
\end{aligned}
\] & 2.0 \\
\hline V & \[
\begin{aligned}
& v^{\prime \prime \prime}(0)+k^{2} v^{\prime}=v^{\prime}(0)=0 \\
& v(L)=v^{\prime}(L)=0
\end{aligned}
\] & \(\left\lvert\, \begin{array}{ll}0 & 1 \\ 0 & k^{2} \\ 1 & L \\ 0 & 1\end{array}\right.\) & \(k\)
0
\(\sin k L\)
\(k \cos k L\) & \[
\begin{gathered}
0 \\
0 \\
\cos k L \\
-k \sin k L
\end{gathered}
\] & \[
\begin{aligned}
& \sin k L=0 \\
& k L=\pi \\
& P_{\mathrm{cr}}=P_{\mathrm{E}}
\end{aligned}
\] & 1.0 \\
\hline
\end{tabular}

Adapted from the reference:
STRUCTURAL STABILITY OF STEEL: CONCEPTS AND APPLICATIONS FOR STRUCTURAL ENGINEERS. THEODORE V
GALAMBOS ANDREA E. SUROVEK
JOHN WILEY \& SONS, INC.

Geometric interpretation of the effective length

Example - rigidly fixed ends column
\[
\begin{aligned}
v(x) & =A \sin k x+B \cos k x+C x+D \\
v^{\prime}(x) & =A k \cos k x-B k \sin k x+C .
\end{aligned}
\]

\[
v(0)=v^{\prime}(0)=v(L)=v^{\prime}(L)=0
\]

\section*{Non-trivial solution:}
the determinant
vanishes: \(\operatorname{det}\{\mathbf{H}\}=0\)
\[
\left[\begin{array}{cccc}
0 & 1 & 0 & 1 \\
k & 0 & 1 & 0 \\
\sin k L & \cos k L & L & 1 \\
k \cos k L & -k \sin k L & 1 & 0
\end{array}\right]\left[\begin{array}{l}
A \\
B \\
C \\
D
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
\]
\[
\mathbf{H}
\]
\[
4 k \sin \frac{k L}{2}\left(\sin \frac{k L}{2}-\frac{k L}{2} \cos \frac{k L}{2}\right)=0
\]

\section*{Cf.}
\(\Longrightarrow \mathbf{H q}=\mathbf{0}\),
\(\operatorname{det}\{\mathbf{H}\}=0\)
\(\Longrightarrow\) Criticality:
The zeros of the determinant:
\[
\frac{k L}{2}=n \pi, \quad n=1,2, \ldots
\]
\[
\frac{k L}{2} \approx 4.493 .
\]

The critical load is the smallest:
\[
k_{1}=\frac{2 \pi}{L}, \quad(n=1)
\]
\[
P_{1} \equiv P_{k r}=\frac{4 \pi^{2} E I}{L^{2}}
\]

The critical load from
the Euler's 'Table':
\[
P_{\mathrm{cr}}=4 \frac{\pi^{2} E I}{\ell^{2}}
\]

Examples - what is the buckling length?
corresponding buckling mode:
\(\xrightarrow{Q}\) \(\Rightarrow v(x)=B\left(\cos \frac{2 \pi x}{L}-1\right) . \quad \stackrel{P_{1}}{r_{v}} \stackrel{x}{ }\)
critical \(\quad P_{\text {cr }}=4 \frac{\pi^{2} E I}{L^{2}} \quad P_{1} \equiv P_{k r}=\frac{4 \pi^{2} E I}{L^{2}}\).

Appendix

\section*{Stability theorem of Lagrange-Dirichlet}

Lagrange-Dirichlet Theorem: Assuming the continuity of the total potential energy, the equilibrium of a system containing only conservative and dissipative forces is stable if the total potential energy of the system has a strict minimum (i.e., is positive-definite).

Trefftz condition
for stability of an equilibrium:
- Is a global energy criterion for stability
- will be used systematically to derive the all the equations of stability (loss) we need for all elastic structure s

Lagrange-Dirichlet theorem and investigate the sign of the
increment
\(\Delta \Pi=\delta \Pi+\delta^{2} \Pi+\delta^{3} \Pi+\delta^{4} \Pi+\ldots\)
(More general than Trefftz)
\[
\begin{aligned}
& \text { Trefftz is a particular case where the total potential } \\
& \text { energy increment is expanded only up-to its quadratic } \\
& \text { terms between the initial and perturbed states }
\end{aligned}
\]

The criteria of loss of stability

Lagrange-Dirichlet Theorem: Assuming the cor/inuity of
the total potential energy, the equilibrium of a sys contain-
ingA Taylor expansion ofe arfunction if the total
\(f(x)=f(a)+\frac{f^{\prime}(a)}{1!}(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{3!}(x-a)^{3}+\cdots\),

Self-reading
\[
\left\{\begin{array}{l}
\delta^{2} \Pi(u)>0, \quad \text { stable } \\
\delta^{2} \Pi(u)=0, \quad \text { neutral } \\
\delta^{2} \Pi(u)<0, \quad \text { unstable }
\end{array}\right.
\]
\[
\Delta \Pi=\delta^{2} \Pi+\mathcal{O}\left(\|\delta \mathbf{q}\|^{3}\right) \sim \frac{1}{2!} \delta \mathbf{q}^{\mathrm{T}}\left[\mathbf{H}\left(\mathbf{q}^{0}\right)\right] \delta \mathbf{q}
\]

More suitable form for finite number of dofs and continuous case

\section*{Leading term for sign change in the increment of total potential energy}
\[
\Pi^{\prime \prime}(u ; P)=0 \text { or more generally, } \delta(\Delta \Pi)=0
\]

\section*{About the criteria of loss of stability - Example with two dofs}

quiring2: A simple system having two degrees of freedom.
quiring the: A

where \(\mathbf{q}\) being a tiny deviation from trivial equilibrium configuration \(\mathbf{q}^{0}=\mathbf{0}\)
\[
\mathbf{H}=\left[\begin{array}{cc}
\lambda-2 P & P \tag{1.70}\\
P & \lambda-2 P
\end{array}\right] .
\]

We can also write directly the loss of stability condition in its variational form \(\delta(\Delta \Pi)=0\) and obtain
\[
\begin{align*}
& \delta(\Delta \Pi)=\frac{1}{2} \delta \mathbf{q}^{\mathrm{T}} \mathbf{H} \mathbf{q}+\frac{1}{2} \mathbf{q}^{\mathrm{T}} \mathbf{H} \delta \mathbf{q}=\delta \mathbf{q}^{\mathrm{T}} \mathbf{H} \mathbf{q}=0, \forall \delta \mathbf{q} \Longrightarrow \tag{1.71}\\
& \Longrightarrow \mathbf{H} \mathbf{q}=\mathbf{0}, \text { which is linear Eigen-value problem. } \tag{1.72}
\end{align*}
\]

Note that the coefficient matrix of the associated Eigen-value problem (Equation 1.66) is the same \({ }^{60}\) than our Hessian matrix So loss of stability occurs when
\[
\begin{equation*}
\Pi^{\prime \prime}=0 \sim \operatorname{det}\{\mathbf{H}\}=0 \tag{1.73}
\end{equation*}
\]

Energy criteria for determination of instability of elastic structures

\section*{Let's illustrate mathematically the basic stability types}
- stable
- unstable
- Indifferent
keeping a simplified example of the rigid ball (null strain energy)
The total potential energy of the system \(\quad \Pi(x)=\Pi_{0}+m g a x^{2}\)
Initial total potential
potential energy
energy of gravitation
of gravitation

> perturbed equilibrium
> position
\[
\begin{aligned}
& \text { position } \equiv \Pi\left(x_{0}\right)+\left.\delta \Pi\right|_{x_{0}}+\left.\frac{1}{2} \delta^{2} \Pi\right|_{x_{0}}+\left.\frac{1}{3!} \delta^{3} \Pi\right|_{x_{0}}+\ldots
\end{aligned}
\]
\[
\Pi^{\prime \prime}=2 m g a
\]

Since \(x_{0}\) is an equilibrium then \(\left.\delta \Pi\right|_{x_{0}}=0\).
\[
\begin{aligned}
& \Longrightarrow \\
& \Delta \Pi=\Pi\left(x_{0}+\delta x\right)-\Pi\left(x_{0}\right)=\left.\frac{1}{2} \delta^{2} \Pi\right|_{x_{0}}+\left.\frac{1}{3!} \delta^{3} \Pi\right|_{x_{0}}+\ldots \\
& \begin{cases}\Pi^{\prime \prime}>0, & \text { stable } \\
\Pi^{\prime \prime}=0, & \text { neutral, } \\
\Pi^{\prime \prime}<0, & \text { unstable }\end{cases}
\end{aligned}
\]

Energy criteria for determination of in-

First, keep only up-to the second order \({ }^{21}\) term:
\[
\Delta \Pi=\left.\frac{1}{2} \frac{\mathrm{~d} \mathrm{~d}^{2} \Pi(x)}{\mathrm{d} x^{2}}\right|_{x 0}(\delta x)^{2}=m g a(\delta x)^{2}+O(\delta x)^{3}
\]

Consequently, the initial equilibrium \(x_{0}\) is stable when \(a>0\) (locally convex surface), unstable for \(a<0\) (locally concave surface) and indifferent when \(a=0\).

Bellow follows a résumé: At the critical points (equilibrium points), studying the sign of the increment of total potential energy \(\Delta \Pi\), makes it possible to make statements on the nature of the actual equilibrium:
1. stable: (stabiili) \(\Delta \Pi>0\)
2. indifferent : (indiferentti) \(\Delta \Pi=0\). Often, the total potential energy increment \(\Delta \Pi\) is expanded to second order only (squares of small displacements). In this case, \(\Delta \Pi=0\) and therefore, higher order terms should be included in the Taylor expansion to decide of the sign of \(\Delta \Pi\) to disclose the character of indifferent equilibrium.
3. unstable: (labiili, epästabiili) \(\Delta \Pi<0\)

\section*{Energy criteria for determination loss of stability} of elastic structures

The general \({ }^{64}\) Trefftz (1930, 1933) criterion says that the loss or change in stability of an elastic structure occurs when the variation of the second variation \(^{65}\) of the total potential energy \(\Pi\) of the structure vanishes, i.e.,
\[
\delta\left(\delta^{2} \Pi\right)=0 .
\]

Later, while discussing about bifurcational loss of stability, it will be shown that Trefftz stability condition (Eq. 1.85) is essentially an energetic criterion saying that during loss of stability and for the critical load, the equilibrium holds also in the perturbed state \(u^{*}=u^{0}+\delta u\), i.e, then \(\delta(\Delta \Pi)=0\). It will be discussed later that, indeed all these energy criteria for loss of stability: \(\left(\Delta \Pi=0 ; P_{\text {min }}=P_{c r}\right), \delta(\Delta \Pi)=0\) and \(\delta\left(\delta^{2} \Pi\right)=0-\) which look at first glad different, are indeed equivalent \({ }^{66}\)
\[
\begin{equation*}
\Pi^{*}=\Pi\left[u^{0}+\delta u, P^{0}\right]=\Pi\left[u^{0}, P^{0}\right]+\underbrace{\left.\delta \Pi\right|_{u^{0}}}_{=0}+\left.\frac{1}{2} \delta^{2} \Pi\right|_{u^{0}}+\left.\frac{1}{3!} \delta^{3} \Pi\right|_{u^{0}}+\ldots \tag{1.125}
\end{equation*}
\]

The idea is now to develop the increment of total potential energy up-to second or higher when the second, third and so on, variation vanishes.

Then the energy criterion for the stability loss is unchanged and is (physically, an equilibrium condition for the perturbed state \(u^{*}=u^{0}+\delta u \equiv\) \(\left.u^{0}+\hat{u}\right):\)
\(\delta\left(\Delta \Pi^{*}\right)=0, \forall \delta u \quad\) kin. admissible
\(\delta(\Pi\left[u^{0}+\delta u, P^{0}\right]=\delta[\Pi\left[u^{0}, P^{0}\right]+\underbrace{\left.\delta \Pi\right|_{u^{0}}}_{=0}+\left.\frac{1}{2} \delta^{2} \Pi\right|_{u^{0}}+\left.\frac{1}{3!} \delta^{3} \Pi\right|_{u^{0}}+\ldots)]=0, \forall \delta u\)
\(\delta\left(\Pi\left[u^{0}+\delta u, P^{0}\right]\right)=\underbrace{\delta\left[\Pi\left[u^{0}, P^{0}\right]\right]}_{=0}+\delta\left[\left.\frac{1}{2} \delta^{2} \Pi\right|_{u^{0}}\right]+\delta\left[\left.\frac{1}{3!} \delta^{3} \Pi\right|_{u^{0}}\right]+\delta[\ldots]=0, \forall \delta u\)
\(\underbrace{\left.\delta\left(\Pi\left[u^{0}+\delta u, P^{0}\right]\right)-\Pi\left[u^{0}, P^{0}\right]\right)}_{\delta(\Delta \Pi)=0}=\underbrace{\delta\left[\left.\frac{1}{2} \delta^{2} \Pi\right|_{u^{0}}\right]+\left[\left.\frac{1}{3!} \delta^{3} \Pi\right|_{u^{0}}\right]+\delta[\ldots]}_{=0}=0, \forall \delta u\).

When we keep terms only up-to the second order we obtain the energy

\section*{We will use systematically this more general energy criterion:}

Effects of boundary conditions - experimental evidence for Euler's buckling formulas

\(P_{c r}=\frac{\pi^{2} E I}{l^{2}} \quad \frac{4 \pi^{2} E I}{l^{2}} \quad \frac{2 \pi^{2} E I}{l^{2}} \quad \frac{\pi^{2} E I}{4 l^{2}}\)
1
\(2 \quad 1 / 4\)

\section*{Change of total potential energy - example of a buckling cantilever}

Bryan form
\(\Delta \Pi=\frac{1}{2} \int_{V} \epsilon_{1}{ }^{\mathrm{T}} \mathbf{E} \epsilon_{1} \mathrm{~d} V+\int_{V} \epsilon_{2}{ }^{\mathrm{T}} \sigma^{0} \mathrm{~d} V\).
+ increment of work of external work not accounted in by the work of initial stresses
\[
\begin{aligned}
& \Delta \Pi=\frac{1}{2} \int_{0}^{\ell} E I\left(v^{\prime \prime}\right)^{2} \mathrm{~d} x+\int_{0}^{\ell} \sigma_{x}^{0} A \underbrace{\left[\frac{1}{2}\left(v^{\prime}\right)^{2}\right]} \mathrm{d} x \\
& \Delta \Pi=\frac{1}{2} \int_{0}^{\ell} E I\left(v^{\prime \prime}\right)^{2} \mathrm{~d} x-P \underbrace{\int_{0}^{\ell}\left[\frac{1}{2}\left(v^{\prime}\right)^{2}\right]}_{\Delta} \mathrm{d} x \\
& \Delta V=-\Delta W_{\text {ext }}=-P \int_{0}^{\ell}\left[\frac{1}{2}\left(v^{\prime}\right)^{2}\right] \mathrm{d} x
\end{aligned}
\]
\[
\begin{aligned}
& \mathbf{u}^{*}=\mathbf{u}^{0}+\delta \mathbf{u} \\
& \epsilon_{i j}^{*}=\frac{1}{2}\left(u_{i, j}+u_{j, i}+u_{k, i} u_{k, j}\right)
\end{aligned}
\]

Linear part

\section*{Ayreton-Perry design formula}
\(i=0.1714 \mathrm{~m}, h=0.2 \mathrm{~m}\),
\(e_{0} / \ell=[1 / 400,1 / 300,1 / 400]\)

\section*{Eurocode buckling curves}

\[
N_{s}=P \leq N_{R}=\chi \cdot \frac{\sigma_{y} A}{\gamma}
\]
b)
\[
a \bar{\lambda}=\left[e_{0} h / 2\right] / i^{2}
\]
\[
a=\pi \sqrt{E / \sigma_{y}} \frac{e_{0}}{\ell} \frac{h / 2}{i}
\]
\[
\chi=P / P_{y} .
\]

Adapted from Eurocode 3

Equilibrium path, Stability, Instability

\section*{Examples - snap-through}

Note that loss of stability may happen also without bifurcation through limit points as here

\section*{The Rayleigh-quotient}

Problème eulerien : la condition de Legendre s'écrit toujours dans la forme d'un problème de type :
\[
E l v^{\prime \prime \prime \prime}-P_{c r} v^{\prime \prime}=0
\]

D'après le lemme fondamental de la mécanique on peut aussi écrire
\[
\int_{0}^{1} E l v^{\prime \prime \prime \prime} \psi d x-P_{c r} \int_{0}^{l} v^{\prime \prime} \psi d x=0 \forall \psi
\]
et donc en particulier
\[
\int_{0}^{l} E l v^{\prime \prime \prime \prime} v d x-P_{c r} \int_{0}^{l} v^{\prime \prime} v d x=0
\]

En intégrant par parties et pour n'importe quelles conditions au bord de liaison parfaite,
\[
\int_{0}^{l} E l\left(v^{\prime \prime}\right)^{2} d x-P_{c r} \int_{0}^{l}\left(v^{\prime}\right)^{2} d x=0
\]
\[
P_{a r}=\frac{\int_{0}^{l} E l\left(v^{\prime \prime}\right)^{2} d x}{\int_{0}^{\prime}\left(v^{\prime}\right)^{2} d x}
\]

Condition nécessaire pour que \(P_{c r}\) soit la charge critique de la structure, avec \(v\) déformée en équilibre avec \(P_{c r}\).

\section*{Show the above result.}

All beams and columns elements bending rigidities are equal. The height and the span are equal too.

Hint: you can assume the symmetric and the anti-symmetric modes of buckling. Think how this hypothesis can simplifies or reduces your problem.
\[
P_{\mathrm{cr}}=12.9 \frac{\mathrm{EI}}{\mathrm{~L}^{2}}
\]
\[
P_{\mathrm{cr}}=1.82 \frac{E I}{L^{2}}
\]

(a)

framed systems: (a) no side-sway and (b) side-sway allowed

\section*{Slope-deflection method}

\section*{Stiffness coefficients and Berry's stability functions [1]}
- The geometrically non-linear problem (Called also sometime the stress-problem): The equilibrium equation should be written in the deformed configuration. The stiffness matrix is now non-linear. As for bending without axial load, we here solve the BVP with given four boundary conditions at the two nodes (or ends) of the beam where nodal deflections and rotations are given. Solving for the bending moment at end 1, one obtains again the stiffness-equations of the well known \& versatile slopedeflection method
- Now, in the slope-deflection method the stiffness coefficients are magnified by a factor depending on member compressive/tensional load which are called Stability or Berry's functions.

\section*{Slope-deflection method - Stiffness-equation}

The stiffness equations of the slope-deflection method
with axial load

\section*{The stiffness coefficients - axial compression and}
\[
\begin{aligned}
& v^{(4)}(x)+k^{2} v^{\prime \prime}(x)=0 \\
& \text { NB. Notation: } \begin{array}{l}
y \equiv v \\
\theta \equiv \varphi
\end{array} \\
& v(x)=A \sin (k x)+B \cos (k x)+C x+D \\
& \text { Boundary conditions: } \\
& v(0)=v_{1}=0 \quad v(\ell)=v_{2} \equiv: \psi_{12} \ell=v_{2}-v_{1} \equiv \Delta \\
& v^{\prime}(0)=\varphi_{12} \quad \text { and } v^{\prime}(\ell)=\varphi_{21} \\
& \text { However, it is more practical to express } \\
& \text { the stiffness coefficients in terms of } \\
& \text { Berry's functions as we did till now. } \\
& M_{12}=M(0)=-E I v^{\prime \prime}(0)=E I B k^{2} \quad \beta \equiv k \ell \equiv \lambda \\
& =\left[\frac{E I k^{2}}{k(2 \cos \beta+\beta \sin \beta-2)}\right]\left[(\beta \cos \beta-\sin \beta) \varphi_{12}+(\sin \beta-\beta) \varphi_{21}\right. \\
& +(k-k \cos \beta) \cdot \Delta] \\
& =\left[\frac{E I \beta}{\ell(2 \cos \beta+\beta \sin \beta-2)}\right]\left[(\beta \cos \beta-\sin \beta) \varphi_{12}+(\sin \beta-\beta) \varphi_{21}\right.
\end{aligned}
\]
\[
\begin{aligned}
& \beta \equiv k \ell \equiv \lambda
\end{aligned}
\]

Compression : \(\mathrm{P}>0 \quad \psi_{12} \equiv\left[v_{2}-v_{1}\right] / \ell\)
\% Determining the amplification coefficients for stiffness coefficien
of in a bended and compressed beam (without Berry's explicitely)
clear all
cle
8 - syms A B C D
9 - syms x L k lambda kI
0 - syms P
1- syms EI
syms v1 v2 fil fi2
4 - syms Asol Bsol Csol Dsol
syms M12 M_FEM
\(s(\mathrm{x}, \mathrm{k})=\sin \left(\mathrm{k}^{*} \mathrm{x}\right)\);
\(c(\mathrm{x}, \mathrm{k})=\cos \left(\mathrm{k}^{*} \mathrm{x}\right)\);
\% bending and compression,
P>0
\[
V(x, k, A, B, C, D)=A * S(x, k)+B * C(x, k)+C * X+D
\]
\[
\begin{aligned}
& \mathrm{d} 2 \mathrm{v} \mathrm{~d} 2 \mathrm{~d}(\mathrm{x}, \mathrm{k}, \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\operatorname{diff}(\mathrm{dv} \mathrm{dx}(\mathrm{x}, \mathrm{k}, \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}), \mathrm{x}) ; \\
& \mathrm{d} 3 \mathrm{v} \operatorname{dx} 3(\mathrm{x}, \mathrm{k}, \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\operatorname{diff}(\mathrm{d} 2 \mathrm{v} \operatorname{dx2}(\mathrm{x}, \mathrm{k}, \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}), \mathrm{x})
\end{aligned}
\]
\[
\begin{aligned}
& \mathrm{d} 3 \mathrm{v}-\mathrm{dx} 3(\mathrm{x}, \mathrm{k}, \mathrm{~A}, \mathrm{~B}, \mathrm{c}, \mathrm{D})=\operatorname{diff}(\mathrm{d} 2 \mathrm{v} \mathrm{dx} 2(\mathrm{x}, \mathrm{k}, \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}), \mathrm{x}) ; \\
& \mathrm{d} 4 \mathrm{v} \mathrm{dx} 4(\mathrm{x}, \mathrm{k}, \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\operatorname{diff}(\mathrm{d} 3 \mathrm{v} \operatorname{dx} 3(\mathrm{x}, \mathrm{k}, \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}), \mathrm{x})
\end{aligned}
\]
\[
\mathrm{d} 4 \mathrm{v} \mathrm{D}_{\mathrm{dx} 4(\mathrm{x}, \mathrm{k}, \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\operatorname{diff}(\operatorname{d3v}-\mathrm{dx} 3(\mathrm{x}, \mathrm{k}, \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}), \mathrm{x}) ;}
\]
\(8-M(x, k, E I, A, B, C, D)=-E I * d 2 v _d x 2(x, k, A, B, C, D)\)
\(Q(x, k, E I, A, B, C, D)=-E I * d 3 v_{-} d x 3(x, k, A, B, C, D) ;\)
\(M_{-} 0=M(0, k, E I, A, B, C, D)\);
\(M_{-}^{-}=M(L, k, E I, A, B, C, D)\)
\(Q \quad 0=Q(0, k, E I, A, B, C, D)\); \(Q_{-}=Q(L, k, E I, A, B, C, D)\)
\(\mathrm{v} 0=\mathrm{v}(0, \mathrm{k}, \mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})\)
\(\mathrm{V}^{-} \mathrm{L}=\mathrm{V}(\mathrm{L}, \mathrm{k}, \mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})\).
Fi \(0=d v d x(0, k, A, B, C, D)\)
\(\mathrm{vFi}^{-} \mathrm{L}=\mathrm{dv}-\mathrm{dx}(\mathrm{L}, \mathrm{k}, \mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})\)
\% Setting
8 --- the system of equation
sys \(=[\mathrm{v} 1=\mathrm{v}(0, \mathrm{k}, \mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})\)
\(\mathrm{v} 2=\mathrm{v}(\mathrm{L}, \mathrm{k}, \mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})\),
\(\mathrm{fi1}=\mathrm{dv}-\mathrm{dx}(0, \mathrm{k}, \mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})\),
fi2 \(\left.=d_{d} d x(L, k, A, B, C, D)\right]\)
\% solving it
\(301=\) solve (sys, A, B, C, D) :
structfun(0display, sol)
Scell \(=\) struct2cell (sol)
solutions \(=\) transpose ([Scell\{:\}]);
solutions \(=\) simplify(solutions) \% <-- A, B, C and D
\[
\begin{aligned}
& \text { Asol }=\text { solutions (1); } \\
& \text { Bsol }=\text { solutions (2); } \\
& \text { Csol }=\text { solutions (3); } \\
& \text { Dsol }=\text { solutions (4); }
\end{aligned}
\]
[Matrix] = equationsToMatrix(solutions, v1, fi1, v2, fi2);
\% \(\mathrm{v}_{-}\)FEM \(=\)simplify (\(\mathrm{v}(\mathrm{x}, \mathrm{k}\), Asol, Bsol, Csol, Dsol) \()\)
\% collect(collect(collect(collect(v_FEM, 'v1'), 'v2'), 'fi
\% END-Moment ---Stiffness equation
f M12 \(=\) simplify (M(0,k, EI, Asol, Bsol, Csol, Dsol))
क M12 \(=\) collect (collect (collect (collect (M_FEM, 'v1'), 'v2
M12 \(=\) subs (M_0, B, Bsol); \% <--- end moment at \(L=0\)
[EK_matrix] = equationsToMatrix (M12, v1, fi1, v2, fi2)
\(\mathrm{K}_{\mathrm{Z}} \mathrm{V} 1=\) equationsToMatrix (M12, V 1);
\(\mathrm{K}_{-}^{-} \mathrm{V}^{2}=\) equationsToMatrix (M12, V 2\()\);
\(\mathrm{K}_{-}\)fi1 \(=\)equationsToMatrix (M12, fi1)

\(\mathrm{a}_{\mathrm{C}} 12(\mathrm{EI}, \mathrm{L}, \mathrm{k})=\mathrm{K}_{\mathrm{f}} \mathrm{fi}\)
\(\mathrm{b}^{-12(E I, ~ L, ~ k)}=\mathrm{k}_{\mathrm{fi}}\)
\(\mathrm{c}_{-} 12(\mathrm{EI}, \mathrm{L}, \mathrm{k})=\mathrm{K}_{-} \mathrm{psi}\)
\[
\begin{aligned}
& a_{12}=-\frac{E I k(\sin (L k)-L k \cos (L k))}{2 \cos (L k)+L k \sin (L k)-2} \\
& b_{12}=\frac{E I k(\sin (L k)-L k)}{2 \cos (L k)+L k \sin (L k)-2} \\
& c_{12}=\frac{2 E I k(k-k \cos (L k))}{L(2 \cos (L k)+L k \sin (L k)-2)}
\end{aligned}
\]
latex_K11 = latex (K_v1)
latex_K12 = latex (K_v2)
latex_K13 = latex (K_fi1)
latex_K14 = latex (K_fi2)
\(a_{1} 12(E I, L, k)=-\left(E I^{*} k *\left(\sin \left(L^{*} k\right)-L^{*} k^{*} \cos \left(L^{*} k\right)\right)\right) /\left(2 * \cos \left(L^{*} k\right)+L^{\star} k^{*} \sin \left(L^{*} k\right)-2\right)\)
\(b^{-12}(E I, L, k)=\left(E I * k *\left(\sin \left(L^{*} k\right)-L * k\right)\right) /\left(2 * \cos \left(L^{*} k\right)+L^{*} k * \sin \left(L^{*} k\right)-2\right)\)
\(C _12(E I, L, k)=(2 * E I * k *(k-k * \cos (L * k))) /\left(L^{*}\left(2 * \cos (L * k)+L^{*} k * \sin (L * k)-2\right)\right)\)
\[
A_{12}(\lambda)=\frac{\lambda(\lambda \cos \lambda-\sin \lambda)}{2 \cos \lambda+\lambda \sin \lambda-2}
\]

\section*{Recall: Full displacement method with zero axial force}

The slope-deflection method - Stiffness matrix (no axial load)
\(\left[\begin{array}{c}Q(0) \\ \hdashline M(0) \\ \hdashline Q(L) \\ M(L)\end{array}\right]=\frac{E I}{L^{3}}\left[\begin{array}{cccc}-12 & -6 L & 12 & -6 L \\ 6 L & 4 L^{2} & -6 L & 2 L^{2} \\ -12 & -6 L & 12 & -6 L \\ -6 L & -2 L^{2} & 6 L & -4 L^{2}\end{array}\right]\left[\begin{array}{c}v_{1}\end{array}\right]\left[\begin{array}{c}+1 / 2 \\ \varphi_{2}\end{array}\right]\left[\begin{array}{c}+1 / 12 \\ \varphi_{2}\end{array}\right]\left[\begin{array}{c}-1 / 2 \\ -L / 12\end{array}\right]\)

Geometrically nonlinear stiffness equation (raw \# 2 from the stiffness matrix)
\(M(0)=\frac{E I}{L}\left[4 \cdot S_{1}(\lambda) \quad 2 \cdot S_{2}(\lambda) \quad 6 \cdot S_{3}(\lambda)\right]\)
\[
\left[\begin{array}{l}
\varphi_{12} \\
\varphi_{21} \\
\psi_{12}
\end{array}\right]+S_{0}(\lambda) \cdot \bar{M}_{12}
\]

The stiffness equations of the slope-deflection method with axial load

The stiffness equations of the slopedeflection method \& zero axial load.

Recall: Full displacement method with zero axial force

The slope-deflection method - Stiffness matrix (no axial load)

Geometrically nonlinear stiffness equation (raw \# 2 from the stiffness matrix)
\[
\left\{\begin{array} { l }
{ v (0) = v _ { 1 } } \\
{ \varphi (0) = v ^ { \prime } (0) = \varphi _ { 1 } }
\end{array} \left\{\begin{array}{l}
v(L)=v_{2} \\
\varphi(L)=v^{\prime}(L)=\varphi_{2}
\end{array}\right.\right.
\]
\(\psi_{12} \equiv\left[v_{2}-v_{1}\right] / L-\) relative sway

\section*{The stiffness equations of the slope-aeflection method with axial load}
\(\mathbf{K}^{(\mathrm{e})} \mathbf{u}^{(\mathrm{e})}=\frac{E I}{L}\left[\begin{array}{cccc}* & * & * & * \\ 6 S_{3} \cdot c_{12} & 4 S_{1} a_{12} & -6 S_{3} c_{12} & 2 S_{2} b_{12} \\ * & * & * & * \\ * & * & * & *\end{array}\right]\left[\begin{array}{c}v_{1} / L \\ \varphi_{1} \\ v_{2} / L \\ \varphi_{2}\end{array}\right]\)
\[
\lambda \equiv k L \quad P=k^{2} E I \quad \psi_{12} \equiv\left[v_{2}-v_{1}\right] / L-\text { relative sway }
\]
\[
\begin{gathered}
A_{i j}(\lambda) \\
M_{12}= \\
S_{1}(\lambda) \cdot \frac{4 E I}{L} \varphi_{12}(\lambda) \\
S_{2}(\lambda) \cdot \frac{2 E I}{L}
\end{gathered} \varphi_{21}-S_{3}(\lambda) \cdot \frac{6 E I}{L}, M_{12}+S_{0}(\lambda) \cdot \bar{M}_{12}
\]
\[
\begin{array}{c:c}
A_{i j}=\frac{3 \psi(\lambda)}{\mathrm{D}(\lambda)} & \frac{4 E I}{L} \\
\equiv S_{1}(\lambda) & B_{i j} \frac{3 \phi(\lambda)}{\mathrm{D}(\lambda)} \cdot \frac{2 E I}{L} \\
\equiv S_{3}(\lambda) & \equiv S_{2}(\lambda)
\end{array}
\]
\[
C_{i j}=A_{i j}+B_{i j}=\frac{\phi(\lambda)+2 \psi(\lambda)}{\mathrm{D}(\lambda)} \frac{6 E I}{L}
\]
\(D(\lambda) \equiv 4 \psi^{2}(\lambda)-\phi^{2}(\lambda)\)

Dimensionless
axial load

Amplification factor functions depending NONLINEARLY on axial load.
These stiffness coefficients are the elements of the
elementary (GL) geometrically nonlinear stiffness matrix These are called Berry's stability functions. They are obtained from solutions of the geometrically nonlinear problem of combined bending and axial load for a beam.

\section*{Full displacement method}

Euler-Bernoulli beam element
The slope-deflection method -
Stiffness matrix (no axial load)

\[
\mathbf{K}_{\mathrm{NL}}^{(e)} \mathbf{u}^{(e)}=\frac{E I}{L}\left[\begin{array}{cccc}
* & * & * & * \\
6 S_{3} & 4 S_{1} & -6 S_{3} & 2 S_{2} \\
* & * & * & * \\
* & * & * & *
\end{array}\right]\left[\begin{array}{c}
v_{1} / L \\
\varphi_{1} \\
v_{2} / L \\
\varphi_{2}
\end{array}\right]
\]

The stiffness equations of the slope-

\(M(0)=\frac{E I}{L}\left[4 \cdot S_{1}(\lambda) \quad 2 \cdot S_{2}(\lambda) \quad 6 \cdot S_{3}(\lambda)\right] \cdot\left[\begin{array}{l}\varphi_{12} \\ \varphi_{21} \\ \psi_{12}\end{array}\right]+S_{0}(\lambda) \cdot \bar{M}(0)\)
case : \(P>0\) (compression)
\[
\begin{gathered}
A_{i j}=\frac{3 \psi(\lambda)}{\lambda(\lambda)} \cdot \frac{4 E I}{L}, \quad B_{i j}=\frac{3 \phi(\lambda)}{\mathrm{D}(\lambda)} \frac{2 E I}{L} \\
\equiv S_{1}(\lambda) \\
C_{i j}=A_{i j}+B_{i j}=\frac{\phi(\lambda)+2 \psi(\lambda)}{} \begin{array}{r}
\equiv S_{3}(\lambda) \mathrm{D}(\lambda)
\end{array} \frac{6 E I}{L} \quad \mathrm{D}(\lambda) \equiv 4 \psi^{2}(\lambda)-\phi^{2}(\lambda)
\end{gathered}
\]
\[
\left[\begin{array}{c}
Q(0) \\
M(0) \\
Q(L) \\
M(L)
\end{array}\right]=\frac{E I}{L^{3}}\left[\begin{array}{cccc}
-12 & -6 L & 12 & -6 L \\
6 L & 4 L^{2} & -6 L_{1} & 2 L^{2} \\
-12 & -6 L & 12 & -6 L \\
-6 L & -2 L^{2} & 6 L & -4 L^{2}
\end{array}\right]\left[\begin{array}{c}
+1 / 2 \\
\varphi_{1}
\end{array}\right] \quad a_{i j}=\frac{4 E I}{L}
\]

Geometrically nonlinear stiffness equation (raw \# 2 from the stiffness matrix) when accounting effect of axial force
\[
\lambda \equiv k L
\]
deflection method with axial load
\[
\lambda \equiv k L \quad P=k^{2} E I
\]
\[
M_{12}=S_{1}(\lambda) \cdot \frac{4 E I}{L} \varphi_{12}+S_{2}(\lambda) \cdot \frac{2 \overline{E I}}{L} \varphi_{21}-S_{3}(\lambda) \cdot \frac{6 E I}{L} \psi_{12}+S_{0}(\lambda) \cdot \bar{M}_{12}
\]
\(S_{i}(\lambda)\) : Amplification factor functions depending NONLINEARLY on axial load.
These stiffness coefficients are the elements of the
Dimensionless elementary (GL) geometrically nonlinear stiffness matrix

\section*{axial load} These are called Berry's stability functions. They are obtained from solutions of the geometrically nonlinear problem of combined bending and axial load for a beam.

The stiffness coefficients - axial compression/tension and bending

\section*{Formulary}

Eulerin peruskaavat nurjahdukselle: \(P_{\sigma}=\mu \cdot \frac{\pi^{2} E I}{l^{2}}\)

The stiffness coefficients (are symmetric)

\section*{Puristettu ja taivutettu sauva:}

Kulmanmuutosmenetelmä

\section*{Berry's functions (stability function)}

\section*{Berryn funktiot:}

Olkoon \(\lambda \equiv k L\),
Puristettu sauva: Compression
\(\phi(\lambda)=\frac{6}{\lambda}\left(\frac{1}{\sin \lambda}-\frac{1}{\lambda}\right), \psi(\lambda)=\frac{3}{\lambda}\left(\frac{1}{\lambda}-\frac{1}{\tan \lambda}\right)\), ja \(\chi(\lambda)=\frac{24}{\lambda^{3}}\left(\tan \frac{\lambda}{2}-\frac{\lambda}{2}\right)\),
Vedetty sauva:
\(\phi(\lambda)=\frac{6}{\lambda}\left(-\frac{1}{\sinh \lambda}+\frac{1}{\lambda}\right), \psi(\lambda)=\frac{3}{\lambda}\left(-\frac{1}{\lambda}+\frac{1}{\tanh \lambda}\right)\), ja \(\chi(\lambda)=\frac{24}{\lambda^{3}}\left(-\tanh \frac{\lambda}{2}+\frac{\lambda}{2}\right)\),

\section*{Extension}
\[
M_{i j}=A_{i j} \varphi_{i j}+B_{i j} \varphi_{i j}-C_{i j} \psi_{i j}+\bar{M}_{i j}
\]

\section*{El constant}
\(M_{i j}=A_{i j} \varphi_{i j}+B_{i j} \varphi_{j i}-C_{i j} \psi_{i j}+\overline{M K_{i j}}\)
\(M_{i j}=A_{i j}^{0} \varphi_{i j}-C_{i j}^{0} \psi_{i j}+\overline{M K}_{i j}^{0}\) (sauvan päässä \(j\) on nivel)
Tasajäykkä sauva :
\(A_{i j}=A_{j i}=\frac{2 \psi(k L)}{4 \psi^{2}(k L)-\phi^{2}(k L)} \frac{6 E I}{L}, \quad B_{i j}=B_{j i}=\frac{\phi(k L)}{4 \psi^{2}(k L)-\phi^{2}(k L)} \frac{6 E I}{L}\) \(\overline{M K}_{i j}=-A_{i j} \bar{\alpha}_{i j}^{0}-B_{j i} \bar{\alpha}_{j i}^{0}, \quad \overline{M K}_{j i}=-A_{j i} \bar{\alpha}_{j i}^{0}-B_{i j} \bar{\alpha}_{i j}^{0}\),
\(A_{i j}^{0}=C_{i j}^{0}=\frac{1}{\psi(k L)} \frac{3 E I}{L}, \quad \overline{M K_{i j}^{0}}=-A_{i j} \bar{\alpha}_{i j}^{0}\)
Leikkausvoima:
\[
\begin{aligned}
& A_{12}=\frac{2 \psi(k L)}{4 \psi^{2}(k L)-\phi^{2}(k L)} \frac{6 E I}{L}=A_{21} \\
& B_{12}=\frac{\phi(k L)}{4 \psi^{2}(k L)-\phi^{2}(k L)} \frac{6 E I}{L}=B_{21}
\end{aligned}
\]
\[
C_{12}=A_{12}+B_{12}, \quad C_{21}=A_{21}+B_{21}
\]

Loading terms
\(Q_{i j}=Q_{i j}^{0}-\left(M_{i j}+M_{j i}\right) / L-N \psi_{i j}\) (\(N\) positiivinen, kun sauva puristettu)

\begin{tabular}{|c|c|c|}
\hline N:o & Kuormitus & \\
\hline 1 & & \[
\begin{aligned}
\overline{M K}_{1} & =-\overline{M K}_{2} \\
& =-\frac{q L^{2}}{12} \frac{x(k L)}{\tan \left(\frac{k L}{2}\right) /\left(\frac{k L}{2}\right)}
\end{aligned}
\] \\
\hline
\end{tabular}

Loading terms: Fixed-End-Moments
\[
\bar{M}_{12} \equiv M K_{1}
\]
\begin{tabular}{|c|c|c|c|}
\hline N:o & Axial compression & & \\
\hline 1 & & \[
\begin{aligned}
\overline{M K}_{1} & =-\overline{M K}_{2} \\
& =-\frac{q L^{2}}{12} \frac{\chi(k L)}{\tan \left(\frac{k L}{2}\right) /\left(\frac{k L}{2}\right)}
\end{aligned}
\] & \(\bar{\alpha}_{1}^{0}=-\bar{\alpha}_{2}^{0}=\frac{q L^{3}}{24 E I} \chi(k L)\) \\
\hline 2 & & & \[
\begin{aligned}
\bar{\alpha}_{1}^{0} & =-\bar{\alpha}_{2}^{0} \\
& =\frac{F L^{2}}{16 E I} \frac{2\left(1-\cos \frac{k L}{2}\right)}{\frac{(k L)^{2}}{4} \cos \frac{k L}{2}}
\end{aligned}
\] \\
\hline 3 & \[
\stackrel{N}{\stackrel{N}{\stackrel{a}{\leftrightarrows}} \stackrel{F}{\longleftrightarrow} \stackrel{b}{\longleftrightarrow}} \stackrel{N}{\longleftrightarrow}
\] & & \[
\begin{gathered}
\bar{\alpha}_{1}^{0}=\frac{F \sin k b}{N \sin k L}-\frac{F b}{N L} \\
\bar{\alpha}_{2}^{0}=-\frac{F \sin k a}{N \sin k L}+\frac{F a}{N L}
\end{gathered}
\] \\
\hline 4 & & & \[
\begin{aligned}
& \bar{\alpha}_{1}^{0}=-\frac{M k \cos k b}{N \sin k L}+\frac{M}{N L} \\
& \bar{\alpha}_{2}^{0}=-\frac{M k \cos k a}{N \sin k L}+\frac{M}{N L}
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Geometrically non-linear} analysis of frames
\[
\varphi_{21}=\varphi_{23} \Rightarrow \frac{L}{3 E I} \Psi(k L) M_{21}+\psi_{21}=\frac{L}{6 E I} M_{23}+\frac{q L^{3}}{48 E I}
\]
by the Slope-deflection method
Moderate rotations and loads close to critical load but not over
\[
(1+2 \Psi(k L)) M_{2}+\frac{6 E I}{L} \psi_{21}=\frac{q L^{2}}{8}
\]
Q. DEIERMINETHEBENDING MOMENTATRIGIDJOINT\#2
\[
Q_{21}=0 \Rightarrow-\frac{M_{2}}{L}-P \psi_{21}=0 \Rightarrow \psi_{21}=-\frac{M_{2}}{P L}
\]

\[
(1+2 \Psi(k L)) M_{2}-\frac{3 M_{2}}{k^{2} L^{2}}=\frac{q L^{2}}{8}
\]

Iterationsare
needed to solve the bending moment:
\[
\Rightarrow\left[M_{2}=\frac{q L^{2}}{8} \frac{P L^{2}}{P L^{2}(1+2 \Psi(k L))-6 E I}\right.
\]

Express \(Q_{32}\) in terms of endmoments

\section*{Geometrically non-linear analysis of frames by the Slope-deflection method}

Moderate rotations and loads close to critical load but not over

Imperfection, eccentricity

\[
\begin{aligned}
& M_{21}+M_{23}-P e=0 \Rightarrow \varphi_{2}=\frac{P e}{\left(A_{21}+a_{23}\right)} \\
& \left\{\begin{array}{l}
M_{21}=A_{21} \varphi_{2}=P e \frac{A_{21}}{\left(A_{21}+a_{23}\right)} \\
M_{23}=a_{23} \varphi_{2}=P e \frac{a_{23}}{\left(A_{21}+a_{23}\right)} \\
M_{32}=b_{32} \varphi_{2}=\frac{M_{23}}{2}
\end{array}\right. \\
& Q_{23}=-\frac{M_{23}+M_{32}}{r}=-\frac{3}{\tau} \frac{M_{23}}{T}=-P e \frac{3 a_{23}}{(1+\sim}
\end{aligned}
\]
\[
\begin{aligned}
& P=P+Q_{23}=P\left(1-e \frac{3 a_{23}}{2\left(A_{21}+a_{23}\right)}\right)=P\left(1-e \frac{1}{\frac{\Psi(k L)}{4 \Psi^{2}(k L)-\Phi^{2}(k L)}+\frac{2}{3}}\right) \\
& \text { uld be } N_{21}
\end{aligned}
\]
(the normal stress resultant in column 12)

If now the eccentritcity \(e\) is negative, the value of the compressive load \(P\) is increasing all the time, and no convergence will be reached. If positive, the convergence is reached.

\section*{Linear and non-linear buckling analysis}

\section*{Free Exercise - 20 extra-points for HW}
1. Performlinear buckling analysis for the perfect geometry and find the critical load and the respective buckling mode
2. Find the second buckling load and the buckling mode
3. Analysis the shape imperfection effect on the buckling load (GNA)

\section*{For that do:}
- Take the first buckling mode and then the second one (or their combination) multiplied by L/400 (Ldistance between mode nodes, as in Figs. on right) as a shape imperfection to add for the perfect geometry.
- Determine the load-displacement curve at some characteristic points
- What is the limit load? How much the buckling load of the perfect arch is reduced?
\[
\text { Shallow arches } f\left(l^{0} 0, \ldots, 93\right.
\]

Assume that stresses remains in the elastic range.
a) loading is symmetric

Example of initial shape imperfections in an arch (Standards: design of wood structures - EN 1995-1-1)

\section*{1) One way to think} how form the increment of total potential energy is through a real
loading sequence
where the load increases quasistatically and monotonically from zero to the buckling load \(\mathrm{P}_{\mathrm{E}}^{+}=\mathrm{P}_{\mathrm{E}}+\varepsilon\) where it buckles where \(\varepsilon\) being infinitesimally small \(>0\). The primary nonbuckled configuration (primary equilibrium) corresponds to \(P_{E}^{-}=\) \(P_{E}-\varepsilon\). Now one can form the increment of the total potential energy between these two real states and takes the limit when \(\varepsilon \rightarrow 0\) to say that we are at the
bifurcation or limitpoint where now the critical load being \(\mathrm{P}_{\mathrm{E}}\).

2) the other more classical way how form the increment of total potential energy is by a thought
experiment where we give an
infinitesimal virtual
perturbation to the primary equilibrium configuration to an adjacent neighbor equilibrium configuration while keeping all the loads unchanged. Then we write the increment od total potential energy between these to states of equilibrium.```

[^0]: + should also include increment of work of external work not already accounted in by the work of initial stresses

[^1]: Taylor expansions with

[^2]: (Non-linear Buckling analysis)

