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Abstract

We describe an implementation of simple, multiple and joint correspondence analysis
in R. The resulting package comprises two parts, one for simple correspondence analy-
sis and one for multiple and joint correspondence analysis. Within each part, functions
for computation, summaries and visualization in two and three dimensions are provided,
including options to display supplementary points and perform subset analyses. Special
emphasis has been put on the visualization functions that offer features such as different
scaling options for biplots and three-dimensional maps using the rgl package. Graphical
options include shading and sizing plot symbols for the points according to their contri-
butions to the map and masses respectively.

Keywords: biplot, correspondence analysis, graphics, joint correspondence analysis, multiple
correspondence analysis, singular value decomposition.

1. Introduction

The geometric interpretation of correspondence analysis originated in the research and teach-
ing of Jean-Paul Benzécri in France — the classic reference is Benzécri (1973). Interest in
correspondence analysis increased in the late 1980s and 1990s, and simple and multiple corre-
spondence analysis were introduced into most of the mainstream statistical software packages.
In R (R Development Core Team 2007) the functions corresp() and mca() (from the MASS
package, Venables and Ripley 2002) provide a facility for the computation of CA and MCA.
However, the implementation in these functions is kept to a minimum. For example, the
simple CA function does not offer the inclusion of supplementary rows or columns. In the
case of MCA, the implementation offers neither supplementary points, nor more recent devel-
opments such as adjustment of eigenvalues for improved fit and corresponding adjustments of
contributions, joint correspondence analysis (JCA) and subset analysis. Apart from the XL-
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STAT software (Addinsoft 2007), none of the major programs offers these recent developments
either.

This paper illustrates the implementation of CA and MCA in the R package ca (as of version
0.1-9, October 2006). The package comprises functions for simple, multiple and joint CA
with support for subset analyses and the inclusion of supplementary variables. Furthermore,
it offers functions for the graphical display of the results in two and three dimensions.

The package comprises the following components:

e Simple CA:

— Computation: ca()
— Printing and Summaries: print() and summary() methods for ca objects

— Plotting: plot.ca() and plot3d.ca()
e MCA and JCA:

— Computation: mjca()
— Printing and Summaries: print() and summary() methods for ca objects

— Plotting: plot.mjca() and plot3d.mjca()
e Datasets:

— smoke, author and wg93

The package contains further functions, such as iterate.mjca() for the updating of the Burt
matrix in JCA. The remaining sections describe the functions for the various forms of CA
along with selected examples. Since the visualization functions are very similar for both cases,
they are jointly covered in one section.

2. Simple correspondence analysis

As in principal component analysis, the idea in CA is to reduce the dimensionality of a
data matrix and visualize it in a subspace of low-dimensionality, commonly two- or three-
dimensional. The data of interest in simple CA are usually a two-way contingency table
or any other table of nonnegative ratio-scale data for which relative values are of primary
interest. The CA solution was shown by (Greenacre 1984, Chapter 2 and Appendix) to be
neatly encapsulated in the singular-value decomposition (SVD) of a suitably transformed
matrix. To summarize the theory, first divide the I x J data matrix, denoted by N, by its
grand total n to obtain the so-called correspondence matrix P = N/n. Let the row and
column marginal totals of P be the vectors r and c respectively, that is the vectors of row and
column masses, and D, and D, be the diagonal matrices of these matrices. The computational
algorithm to obtain coordinates of the row and column profiles with respect to principal axes,
using the SVD, is as follows:

_1 _
1. Calculate the matrix of standarized residuals: S = D, 2(P —rc")D,

[N

2. Calculate the SVD: S = UD,V' where U'U=V'V =1
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1
3. Principal coordinates of rows: F = D, 2UD,,
_1
4. Principal coordinates of columns: G = D, 2 VD,

_1
5. Standard coordinates of rows: X = D, 2U

_1
6. Standard coordinates of columns: Y = D, 2V

The total variance of the data matrix is measured by the inertia (see, e.g., Greenacre 2007,
Chapter 4), which ressembles a chi-square statistic but is calculated on relative observed and
expected frequencies:

)2
7. Tnertia = ¢ = S0 Z;’Zl (pij = ricj)”
riCj

The rows of the coordinate matrices in (3)-(6) above refer to the rows or columns, as the
case may be, of the original table, while the columns of these matrices refer to the principal
axes, or dimensions, of the solution. Notice that the row and column principal coordinates
are scaled in such a way that FD,F' = GD.G' = D2 ie. the weighted sum-of-squares of
the coordinates on the k-th dimension (i.e., their inertia in the direction of this dimension) is
equal to the principal inertia (or eigenvalue) a,%, the square of the k-th singular value, whereas

the standard coordinates have weighted sum-of-squares equal to 1: XD, X" =YD, Y' =1

The implementation of the algorithm follows Blasius and Greenacre (1994). The function
ca() computes a simple CA, for example

R> data("smoke")
R> ca(smoke)

performs a simple CA on the provided smoke dataset (Greenacre 1984), this dataset has
become a test example for CA in various software packages, and is also discussed in Greenacre
(1993, 2007). This dataset contains frequencies of smoking habits (none, light, medium and
heavy) for staff groups (senior managers, junior managers, senior employees, junior employees
and secretaries) in a fictional company.

The output of ca() is controlled by the printing method for CA, i.e. the following output is
given by default:

Principal inertias (eigenvalues):

1 2 3
Value 0.074759 0.010017 0.000414
Percentage 87.76%  11.76%  0.49%

Rows:

SM JM SE JE SC
Mass 0.056995 0.093264 0.264249 0.455959 0.129534
ChiDist 0.216559 0.356921 0.380779 0.240025 0.216169
Inertia 0.002673 0.011881 0.038314 0.026269 0.006053
Dim. 1 -0.240539 0.947105 -1.391973 0.851989 -0.735456
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Dim. 2 -1.935708 -2.430958 -0.106508 0.576944 0.788435
Columns:
none light medium heavy
Mass 0.316062 0.233161 0.321244 0.129534
ChiDist 0.394490 0.173996 0.198127 0.355109
Inertia 0.049186 0.007059 0.012610 0.016335
Dim. 1 -1.438471 0.363746 0.718017 1.074445
Dim. 2 -0.304659 1.409433 0.073528 -1.975960

The output contains the eigenvalues and percentages of explained inertia for all possible
dimensions. Additionally, values for the rows and columns (masses, chi-squared distances of
points to their average, inertias and standard coordinates are given — again, see Greenacre
(2007) for more details about these concepts). However, these values are restricted to two
dimensions where applicable, e.g. for the standard coordinates. A list of all available entries
that are returned by ca() is obtained with names():

R> names (ca(smoke))

The output of ca is structured as a list-object, for example, the row standard coordinates are
obtained with

R> ca(smoke)$rowcoord

Optional arguments for the ca() function include an option for setting the dimensionality
of the solution (nd), options for marking selected rows and/or columns as supplementary
ones (suprow and supcol, respectively) and options for setting subset rows and/or columns
(subsetrow and subsetcol, respectively) for subset CA (Greenacre and Pardo 2006a,b). The
subset option restricts the analysis to the selected subset(s) while maintaining the original
margins of the table. As an extension to the printing method, a summary method is also
provided. This gives a more detailed output in the classic style of Tabet (1973).

R> summary (ca(smoke))
returns the summary of the CA:

Principal inertias (eigenvalues):

dim value % cumy, scree plot

1 0.074759 87.8 87.8 skkkkskskkskkkskkskskkskkskskkokkkok
2 0.010017 11.8 99.6 *x*x

3 0.000414 0.5 100.1

Total: 0.085190 100.1

Rows:

name mass qlt inr k=1 cor ctr k=2 cor ctr
1] SM | 57 893 31 | -66 92 3 | -194 800 214 |
2 | M | 93 991 139 | 259 526 84 | -243 465 551 |
3| SE | 264 1000 450 | -381 999 512 | -11 1 3|
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4 | JE | 456 1000 308 | 233 942 331 | 58 58 152 |
5 | SC | 130 999 71 | -201 865 70 | 79 133 81 |
Columns:
name mass qlt inr k=1 cor ctr k=2 cor ctr

1] non | 316 1000 577 | -393 994 654 | -30 6 29 |
2| 1gh | 233 984 83 | 99 327 31 | 141 657 463 |
3| mdm | 321 983 148 | 196 982 166 | 7 1 2|
4 | hvy | 130 995 192 | 294 684 150 | -198 310 506 |

Again, eigenvalues and relative percentages of explained inertia are given for all available
dimensions. Additionally, cumulated percentages and a scree plot are shown. The items given
in Rows and Columns include the principal coordinates for the first two dimensions (k = 1 and
k = 2). Squared correlations (cor) and contributions (ctr) for the points are displayed next
to the coordinates. Notice that the quantities in these tables are multiplied by 1000 (e.g., the
coordinates and masses) which for the cor and ctr quantities means they are expressed in
permills. The total quality (qlt) is given with respect to the dimensionality of the solution,
i.e. in this case it is the sum of the squared correlations over the two included dimensions. In
the case of supplementary variables, an asterisk is appended to the supplementary variable
names in the output. For example, the summary of a CA on the smoke data where the “none”
category (i.e. the first column) is treated as a supplementary one is given by:

R> summary(ca(smoke, supcol = 1))
In the corresponding section of the output the following is given:

Columns:

name mass qlt inr k=1 cor ctr k=2 cor ctr
1 | (*)non | 462 55 <NA> | 292 39 <NA> | -187 16 <NA> |

Supplementary variables have no impact on the computation. They are projected onto the
solution space afterwards. Thus, contributions are not applicable for this case. Squared cor-
relations (cor) as a measure of how well a point is represented by the axes are still meaningful
for the case of supplementary variables and thus are included in the output.

3. Multiple and joint correspondence analysis

Multiple and Joint Correspondence Analysis (MCA and JCA, respectively) are extensions of
simple CA of a single cross-tabulation to more than two categorical variables. More details
about these methods can be found in Greenacre (2007), Chapters 18 and 19 respectively,
while the computation of MCA and JCA is described in detail in the appendix of Nenadié
and Greenacre (2006). Essentially, four approaches for the computation are considered.

The classic approach to MCA is to perform a simple CA on the indicator matrix, i.e. by
performing a SVD on the matrix of standardized residuals, as shown previously, calculated
on the indicator matrix. The indicator matrix Z is the casesxvariables matrix with columns
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being dummy variables (with values only 0 or 1), a dummy variable for each category of the set
of categorical variables. This approach yields principal inertias and principal coordinates equal
to the eigenvalues and scale values in homogeneity analysis in the Gifi system (Michailidis
and de Leeuw 1998).

An almost equivalent and more preferable approach from a CA point of view is given by
performing an eigenvalue-eigenvector decomposition based on the Burt matrix, which is equal
to the cross-product of the indicator matrix, Z ' Z: i.e., the matrix which concatenates all two-
way cross-tabulations between pairs of variables. Due to the structure of the Burt matrix,
with submatrices on the main diagonal that are cross-tabulations of each variable with itself,
the solution overestimates the total inertia.

In order to overcome this problem, two alternative approaches are considered, namely the
adjustment of inertias (Greenacre 1993) and joint correspondence analysis (Greenacre 1988).
The adjustment approach improves the MCA solution by rescaling the coordinates of the
solution to best fit the pairwise cross-tabulations off the main diagonal of the Burt matrix.
JCA is a different iterative algorithm which finds the optimal weighted least-squares fit to
these off-diagonal tables.

MCA and JCA are performed with the function mjca(). The structure of the function is kept
similar to its counterpart from simple CA. The two most striking differences are the format of
the input data and the restriction to columns for the analyses. The function mjca() takes a
response pattern matrix as input. In R terms this is a data frame with the columns containing
factors. Within the function, the response pattern matrix is converted to an indicator matrix
and a Burt matrix, depending on the type of analysis. The restriction to columns means
that by default, only values for the columns are given in the output. Also, the specification
of supplementary variables or of a subset is limited to columns. The “approach” to MCA is
specified by the lambda option in mjca():

e lambda = "indicator": Analysis based on a simple CA of the indicator matrix
e lambda = "Burt": Analysis based on an eigenvalue-decomposition of the Burt matrix
e lambda = "adjusted": Analysis based on the Burt matrix with an adjustment of iner-
tias
e lambda = "JCA": Joint correspondence analysis
By default, mjca() performs an adjusted analysis, i.e. lambda = "adjusted", which we

believe to be the best default option, since the optimal scaling properties of MCA are con-
served while raising the percentages of inertia and squared correlations to be usually very
close to those one would get with a JCA. In the case of a full-blooded JCA, which involves
an updating of the Burt matrix by iteratively weighted least squares, the auxiliary function
iterate.mjca() is internally used for the updating of the Burt matrix. The updating func-
tion has two convergence criteria, namely epsilon and maxit. The option epsilon sets a
convergence criterion by means of maximum absolute difference of the Burt matrix in an
iteration step compared to the Burt matrix of the previous step. The maximum number of
iterations is given by the option maxit. This way, the program iterates until any one of the
two conditions is satisfied. Setting one option to NA results in that criterion being ignored — for
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example, exactly 50 iterations without considering convergence are performed with maxit=50
and epsilon=NA.

As with simple CA, the solution is restricted by the nd option to two dimensions. However,
eigenvalues are given for all possible dimensions, which is equal to (J — Q) for the “indicator”
and “Burt” case. In the case of an adjusted analysis or a JCA, the eigenvalues are given only
for those dimensions k, where the singular values from the Burt matrix Ay (i.e., the principal
inertias of the indicator matrix) satisfy the condition A\ > 1/Q. For example, a MCA (based
on an adjusted analysis) is performed with

R> data("wg93")
R> mjca(wg93[,1:4])

In this case a MCA of the first four columns of the provided dataset wg93 (taken from
the International Social Survey Programme 1993, see http://www.issp.org/) is performed.
These columns contain attitudes of 871 individuals towards science and the environment
(see Greenacre 2006a, Chapter 2, for more details on these data). Each category contains
five possible answers (strongly agree, somewhat agree, neither agree nor disagree, somewhat
disagree, strongly disagree, coded as 1 to 5). Thus, the output labels are given by appending
the level names to the category names:

Eigenvalues:
1 2 3 4 5 6
Value 0.076455 0.05822 0.009197 0.00567 0.001172 7e-06
Percentage 44.91% 34.2%  5.4J 3.33% 0.69% 0%
Columns:
Al A.2 A.3 A.4 A.5 B.1 B.2
Mass 0.0342 0.0924 0.0586 0.0511 0.0138 0.0204 0.0499
ChiDist 1.3434 0.6764 0.9473 1.0492 2.2149 1.8560 1.0342
Inertia 0.0102 0.0039 0.0062 0.0087 0.0114 0.0171 0.0045
Dim. 1 1.8366 0.5462 -0.4468 -1.1659 -1.9952 2.9243 0.6415
Dim. 2 -0.7275 0.2844 1.1994 -0.7368 -2.4700 -1.3701 0.6669
B.3 B.4 B.5 Cc.1 C.2 Cc.3 C.4
Mass 0.0588 0.0807 0.0402 0.0436 0.0907 0.0565 0.0442
ChiDist 0.9333 0.7600 1.2940 1.2411 0.6881 0.9778 1.1483
Inertia 0.0046 0.0057 0.0198 0.0208 0.0042 0.0076 0.0091
Dim. 1  0.3461 -0.7141 -1.3537 2.1578 0.2468 -0.6190 -1.3489
Dim. 2 0.9639 0.2801 -2.1077 -0.9086 0.5916 1.0444 -0.6346
C.5 D.1 D.2 D.3 D.4 D.5
Mass 0.0149 0.0172 0.0666 0.0580 0.0649 0.0433
ChiDist 2.1328 1.9159 0.8431 0.9620 0.8607 1.1366
Inertia 0.0122 0.0067 0.0020 0.0075 0.0024 0.0058
Dim. 1 -1.4676 1.2038 -0.2212 -0.3847 -0.2216 0.7078

Dim. 2 -3.0166 -1.8220 0.0069 1.1587 0.2105 -1.1518

Notice that the percentages of inertia do not add up to 100% in the adjusted analysis. By
entering
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R> summary(mjca(wg93[,1:4], lambda = "Burt"))

a summary of a MCA based on the Burt matrix is given in the same style as for simple CA:

Principal inertias (eigenvalues):

dim value yA cum), scree plot

1 0.209196 18.6 18.6 skkskskokskskokskskokskkskskokskkokokkokk*k

2 0.185732 16.5 35 ok ok ok >k ok ok sk ok ok ok ok ok ok sk ok ok ok ok ok ok sk ok

3 0.103636 9.2 44.2 sxxkxkkkkkx

4 0.093926 8.3 52.5 *kxskkkkkskk

5 0.075997 6.7 B59.3 **kkkkxkk

6 0.063468 5.6 64.9 *xxxkkxk

7 0.058835 5.2 70.1 *kkxkkk

8 0.055202 4.9 75 Fokkokok

9 0.050836 4.5 79.5 *kxxkxk

10 0.048677 4.3 83.8 *xxx

11 0.044032 3.9 87.7 **xx

12 0.038868 3.4 91.2 *xx

13 0.031642 2.8 94 *%

14 0.028599 2.5 96.5 *x

15 0.023354 2.1 98.6 *

16 0.015687 1.4 100

Total: 1.127687 100
Columns:

name mass qlt inr k=1 cor ctr k=2 cor ctr

1 | A.1 ] 34 445 55 | 840 391 115 | -314 54 18 |
2 | A2 | 92 169 38 | 250 136 28 | 123 33 71
3 | A.3 | 59 344 47 | -204 47 12 | 517 298 84 |
4 | A.4 | 51 350 50 | -533 268 69 | -318 92 28 |
5 | A.5 | 14 401 60 | -913 170 55 | -1064 231 84 |
6 | B.1 | 20 621 62 | 1338 519 174 | -590 101 38 |
7 | B.2 | 50 158 47 | 293 80 21 | 287 77 22 |
8 | B.3 | 59 227 45 | 158 29 7 | 415 198 55 |
9 | B.4 | 81 210 41 | -327 185 41 | 121 25 6 |
10 | B.5 | 40 722 60 | -619 229 74 | -908 493 179 |
11| C.1 | 44 732 60 | 987 632 203 | -392 100 36 |
12 | C.2 | 91 164 38 | 113 27 6 | 255 137 32 |
13 | C.3 | 57 296 48 | -283 84 22 | 450 212 62 |
14 | C.4 | 44 345 52 | -617 289 80 | -274 57 18 |
15 | C.5 | 15 471 60 | -671 99 32 | -1300 372 136 |
16 | D.1 | 17 251 56 | 551 83 25 | -785 168 57 |
17 | D.2 | 67 14 42 | -101 14 3| 3 0 0 |
18 | D.3 | 58 303 48 | -176 33 9 | 499 269 78 |
19 | D.4 | 65 25 43 | -101 14 3| 91 11 3|
20 | D.5 | 43 272 50 | 324 81 22 | -496 191 57 |
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4. Visualizing results from CA, MCA and JCA

The graphical representation of results from CA and MCA is commonly done with so-called
symmetric maps. In that case, the row and column coordinates on each axis are scaled to
have inertias equal to the principal inertia along that axis: these are the principal row and
column coordinates. Depending on the situation, other types of display are appropriate. This
can be set with the scaling option map in the plotting functions for CA and MCA. Table 1
gives a brief overview over the available options and their meanings.

option description

"symmetric" Rows and columns in principal coordinates (default)

"rowprincipal" | Rows in principal and columns in standard coordinates

"colprincipal" | Rows in standard and columns in principal coordinates

"symbiplot" Row and column coordinates are scaled to have vari-
ances equal to the singular values

"rowgab" Rows in principal coordinates and columns in standard
coordinates times mass

"colgab" Columns in principal coordinates and rows in standard

coordinates times mass
(according to a proposal by Gabriel and Odoroff 1990)

"rowgreen" Rows in principal coordinates and columns in standard
coordinates times the square root of the mass
"colgreen" Columns in principal coordinates and rows in standard

coordinates times the square root of the mass
(according to a proposal by Greenacre 2006b)

Table 1: Scaling options in plot.ca and plot.mjca

By default, a symmetric map is plotted. For example, a symmetric map of a CA of the smoke
data (with the “none” smoking category set as a supplementary one) is created with the plot
method for CA:

R> plot(ca(smoke, supcol = 1))

The result is shown in Figure 4. The symmetric map is not a true biplot but all other options
are.

By default, supplementary variables are added to the plot with a different symbol. The
symbols can be defined with the pch option in plot.ca(). This option takes four values in
the following order: plotting point character or symbol for i.) active rows, ii.) supplementary
rows, iii.) active columns and iv.) supplementary columns. As a general rule, options that
contain entries for rows and for columns contain the entries for the rows first and than the
entries for the columns. (For example, the colour of the symbols is specified with the col
option, by default it is col = c("#000000", "#FF0000"), i.e. black for the rows and red
for the columns.) The option what controls the content of the plot. It can be set to "all",
"active", "passive" or "none" for the rows and for the columns. For example, a plot of only
the active (i.e. not supplementary) points is created by using what=c("active", "active").
Apart from the scaling option with map, the plotting methods offer options for the inclusion
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Figure 2: Standard CA biplot illustrating some graphical options of plot.ca()
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Figure 3: Three-dimensional display of a simple CA

of certain values into the plot. The option mass (again with the first value for the rows and
the second one for the columns) sets if the mass should be indicated by the size of the point.
Similarly, relative or absolute contributions can be indicated by the colour intensity in the
plot by using the contrib option. Figure 4 shows the resulting plot of

R> plot(ca(smoke), mass = TRUE, contrib = "absolute",
+ map = "rowgreen", arrows = c(FALSE, TRUE))

Greenacre (2006b) justifies the biplot options implemented here as "rowgreen" and "colgreen"
calling them “standard biplot” because they give displays which function well for low and high
inertia examples. The option dim controls which dimensions to plot. The default value is dim
= c(1, 2), i.e. the first two dimensions are plotted. A plot of e.g. the second and third
dimensions is obtained by setting dim = c(2, 3). Another possibility for adding the third
dimension to the plot is given with the functions plot3d.ca() and plot3d.mjca(). These
two functions rely on the rgl package (Adler, Nenadié¢, and Zucchini 2003; Adler and Murdoch
2006) for a three-dimensional display in R. Their structure is kept similar to their counterparts
for two dimensions, for example:

R> plot3d.ca(ca(smoke, nd=3))

creates a three-dimensional display of the CA. The resulting display is shown in Figure 4:
This type of display offers the advantage that one can zoom and navigate using the mouse.
This way, maps of two dimensions are revealed by navigating to the appropriate viewpoint,
e.g. to (0°,0°) in azimuthal coordinates for the first two dimensions or (—90°,0°) for the
second and third dimension.

5. Summary

We have presented the R package ca for simple, multiple and joint correspondence analysis.
This package contains all the features of present commercially available software packages as
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well as various new features that are not available elsewhere. Amongst these new features are
the inclusion of adjustments in MCA, the corresponding adjustments in the percentages of
inertia and squared correlations, the facility for subset analysis, joint correspondence analysis
and provision of fully integrated three-dimensional graphics.
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