Aalto University
School of Engineering

Mechatronics Machine Design (MMD)

MEC-E5001
Lecture 3
On Jan 21, 2020
Kari Tammi, Associate Professor

6 week spurt, stay active!

Wk	Lecture	Exercise	Other
1	Introduction to the course and background of mechatronics, Mechatronic design process	Learning / re-cap of Matlab	
2	Dynamic systems, frequency and time domain analysis	Laplace transform, Transfer function, Impulse and step responses, Basics of dynamic models	Preliminary exam deadline, release of project work
3	Electronics, control	Operational amplifier circuits, AD \& DA conversion, Bode diagram	Common control topologies, PID controller, Control applications
Common control topologies, PID controller, Control applications	Laboratory exercise 1		
5	Mechatronic machine design with case example, Visiting lecturer	Mechatronic system simulation	
6	Summary of the course, Students' reflections: what we learnt, Mutual feedback	No exercises	$\frac{\text { Project work }}{\text { deadline }}$
7	Project work wrap up /gala	Project work wrap up /gala	Course finished

Aalto University
School of Engineering

Learning goals this week

Operational amplifier circuits: non-inverting and inverting
AD \& DA conversion: resolution quantization error
Filters, cut-off frequency, -3 dB frequency
Bode diagram
Second-order system transfer function

Analogue to digital (AD) \& digital to analogues (DA) conversions

AD \& DA conversion, background

Macro-physical quantities are mostly continuous (time, force, current, flow speed, ...)
Modern control systems are mostly digital (discrete time, discrete quantities)
\rightarrow Mechatronic control systems require AD \& DA conversions

AD \& DA conversion, features Analogue Digital

E.g: $\quad 101_{2}=1 \cdot 2^{2}+0 \cdot 2^{1}+1 \cdot 2^{0}=5_{10}$

Most significant bit (MSB): leftmost bit
Least significant bit (LSB): rightmost bit
Delay proportional to sampling time T_{s} Resolution, voltage range of one bit

$$
\Delta=\frac{V_{i n}}{2^{N}-1}
$$

Quantization error, voltage range of half bit

$$
Q_{e}=\frac{\Delta}{2}
$$

AD circuit example

$V_{i n}$: voltage to be converted
$A B C$: binary number output Remember anti-alias filters before AD conversion (Shannon's sampling theorem)

Pic. by Horowitz \& Hill in "The art of electronics" on p. 621 irigre 9.49. Prallelencoded ("flash") AD converter (ADC).

DA circuit example

Digital number $S_{1} \ldots S_{N}$ where S_{N} is least significant bit (LSB)
v_{o} : converted voltage output, $V_{\text {ref }}$: constant
Pic. by Sedra \& Smith in "Microelectronic circuits" on p. 743

Operational amplifiers (op amps)

Basic principles of operational amplifiers (op amps)

Integrated circuit with tens of transistors

Active component

Classical 741 op amp, pic by: https://electrosome.com/wpcontent/uploads/2016/08/UA7 41-Opamp.jpg

- Uses energy from external supply
- Output varies between $V_{\min }<v_{o}<V_{\max }$

Gain extremely high

$$
v_{o}=K\left(v_{+}-v_{-}\right), K \gg 10000
$$

- Small difference in input legs leads to large output Input impedance high
- Input legs draw insignificant current Supplies not often drawn

Op amp as inverting amplifier - closedloop gain

Derive transfer function
Use "virtual ground"
Input legs do not draw/emit current
Gain K is high

$$
\begin{gathered}
v_{i}=v_{-}-R_{1} i \\
v_{o}=v_{-}+R_{2} i \\
v_{-}=0
\end{gathered}
$$

$$
A_{c l}=v_{o} / v_{i}=-R_{2} / R_{1}
$$

Op amp as non-inverting amplifier -closed-loop gain

Derive transfer function
$\frac{v_{o}}{v_{i}}$
$v_{-}=v_{+}=v_{i}$
Input legs do not draw/emit current
Gain K is high

$$
\begin{gathered}
v_{i}=R_{1} i \\
v_{o}=v_{i}+R_{2} i \\
v_{o}=v_{i}+R_{2} v_{i} / R_{1} \\
v_{o} R_{1}=v_{i}\left(R_{2}+R_{1}\right) \\
A_{c l}=v_{o} / v_{i}=\left(R_{1}+R_{2}\right) / R_{1}
\end{gathered}
$$

Op amps as filters and transfer function (Bode diagram) example

Inverting configuration closed-loop gains in case of impedances

$$
A_{c l}=v_{o} / v_{i}=-Z_{2} / Z_{1}
$$

Z_{1}	Z_{2}	Filter type
R_{1}	R_{2}	Amplifier
$1 / s C$	R_{2}	Derivative (HP filter)
R_{1}	$1 / s C$	Integrator (LP filter)
$s L$	R_{2}	Integrator (LP filter)
R_{1}	$s L$	Derivative (HP filter)

Low-pass (LP) and high-pass (HP) filters

Analysis of transfer functions by using Bode diagrams

How to make manual Bode plot analyse transfer function (1/4)

Analyse

- Degrees of numerator and denominator

$$
\begin{gathered}
D_{\text {num }}=\operatorname{deg}(\operatorname{num}(s)) \\
D_{\text {den }}=\operatorname{deg}(\operatorname{den}(s)) \\
s=\mathrm{j} \omega, \omega \rightarrow 0 \\
s=\mathrm{j} \omega, \omega \rightarrow \infty
\end{gathered}
$$

-DC gain.. $=\mathrm{j} \omega, \omega \rightarrow 0$

- High frequency gain
- Corner frequencies (gain \& phase change), solve num $(s)=0$ $\operatorname{den}(s)=0$
Corner frequencies: absolute values numerator and denominator roots
- Numerator root (zero) increases gain 20 dB/decade
- Denominator root (pole) decreases gain $20 \mathrm{~dB} /$ decade
- Numerator root (zero) increases phase 90 degrees
- Denominator root (pole) decreases gain phase 90 degrees
school Nolter: roots (zeros and poles) are assumed stable (<0)
Note: corner frequency is close to $\mathbf{- 3} \mathbf{d B}$ frequency $\omega_{-3 d B}$

How to make manual Bode plot analyse transfer function (2/4)

Draw Bode plot gain on log-log (freq.-gain)

- Start with DC gain

$$
s=\mathrm{j} \omega, \omega \rightarrow 0
$$

- Go to first corner frequency, start to draw slope. Double pole or double zero means double slope
- Analyse \& draw all poles \& zeros, and check.............. $\quad s=\mathrm{j} \omega, \omega \rightarrow \infty$ Draw Bode plot phase on log-lin. (freq.-phase)
- Start with DC phase, integrators or derivatives........... $\frac{1}{s^{N}}$ or s^{N}
- If integrators, derivative, DC phase not zero $s^{N}: \varphi=N \cdot 90^{\circ}$
- Each pole advances phase 90 deg. Each zero lags phase 90 deg.
- Change starts decade before and ends decade after corner freq.

How to make manual Bode plot analyse transfer function (3/4)

$$
G_{1}(s)=\frac{K}{s+a}
$$

Corner freq: a

$$
\begin{aligned}
& G_{1}(\mathrm{j} \omega \rightarrow 0)=\frac{K}{a} \\
& G_{1}(\mathrm{j} \omega \rightarrow \infty)=0 \\
& G_{1}(\mathrm{j} \omega \gg a) \approx \frac{K}{\mathrm{j} \omega}
\end{aligned}
$$

How to make manual Bode plot analyse transfer function (4/4)

$$
G_{2}(s)=\frac{s K \omega_{0}^{2}}{s^{2}+2 \zeta \omega_{0} s+\omega_{0}^{2}}
$$

Corner freqs.: $0, \omega_{0}$

$$
\begin{gathered}
G_{2}(\mathrm{j} \omega \rightarrow 0)=0 \\
G_{2}\left(\mathrm{j} \omega_{0}\right)=\frac{K \omega_{0}}{2 \xi} \\
G_{1}(\mathrm{j} \omega \rightarrow \infty)=0 \\
G_{1}\left(\mathrm{j} \omega \gg \omega_{0}\right) \approx \frac{K}{\mathrm{j} \omega}
\end{gathered}
$$

Manual Bode plots - extras

Phase: from zero to -180 deg. in range of $0.1 b$ to $10 b$

Phase: from zero to +90 deg. and then to -90 deg.

Bode plot conclusions

Matlab has multiple tools to plot and analyse frequency responses, e.g: bode, bodeplot, freqresp, nichols, nyquist, spectrum

Q: Why to analyse manually?
A: To understand dynamic behaviour of system

Can you give examples of such dynamic systems?

decibels

dB - decibels

Logarithmic unit used to express ratio of two values of a physical quantity (wiki)
History: easy to express large ratios, easier to calculate (multiplication becomes summation, power becomes multiplication)
decibel volts: dBV (wiki)
Signal power amplification: $\quad 10 \log \left(\left(\left|\frac{v_{o}}{v_{i}}\right|\right)^{2}\right)=20 \log \left(\left|\frac{v_{o}}{v_{i}}\right|\right)$

dB - decibels, calculation example

1) Signal amplitude has decreased from 1 to 0.5 . How many dB:s is signal attenuated? How much has power been reduced?
2) Total gain of three filters below? Gain 0.1: $10 \log (0.1)=-10 \mathrm{~dB}$ Gain 0.5: $10 \log (0.5) \approx-3 \mathrm{~dB}$

Gain 1: $10 \log (1)=0 \mathrm{~dB}$
Gain 5: $10 \log (5) \approx 7 \mathrm{~dB}$
Gain 10: $10 \log (10)=10 \mathrm{~dB}$ Gain 100: $10 \log (100)=20 \mathrm{~dB}$

Group work (and lecture quiz)

Group work \& lecture quiz 3

Discuss with your pair. Write down your answers and use them to answer lecture quiz today.

1. Draw manually Bode plot (gain and phase) of transfer function $\boldsymbol{X}(\boldsymbol{s}) / \boldsymbol{F}(\boldsymbol{s})$. Differential eq. (1 point): $\quad m \ddot{x}(t)+c \dot{x}(t)+k x(t)=f(t)$
2. Design an integrator circuit by using two op amps circuits in series. The desired transfer function is $1 / \mathrm{s}$. Draw the schematics and select the component sizes. (1 point).
3. Explain the circuit 74F148 used in the AD conversion example. What it takes as input, what is output, what is the purpose of the circuit in the given example (1 point)?
