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Problem Set 8: Solutions

1. Solution

(a) By separating variables,
ydy = tdt.

Integrating both sides ˆ
ydy =

ˆ
tdt

and then evaluating the integrals yields

y2 = t2 + 2C.

At the initial condition, it must hold that

1 = 2 + 2C,

from which we easily get C = −1
2
. Thus the unique solution of the IVP is

y(t) =
√
t2 − 1.

Note that y(t) = −
√
t2 − 1 is not a solution, as it does not satisfy the initial

condition y(
√
2) = 1.

(b) By separating variables,
y2dy = (t+ 1)dt.

Integrating both sides ˆ
y2dy =

ˆ
(t+ 1)dt

and then evaluating the integrals yields

y3 =
3

2
t2 + 3t+ 3C.

At the initial condition, it must hold that

1 =
3

2
+ 3 + 3C,

from which we obtain C = −7
6
. Thus the unique solution of the IVP is

y(t) =
3

√
3

2
t2 + 3t− 7

2
.
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(c) By separating variables,
1

y3
dy =

1

t3
dt.

Integrating both sides and then evaluating the integrals yields

−1

2
y−2 = −1

2
t−2 + C,

so
y−2 = t−2 − 2C.

At the initial condition y(1) = 1 it must hold that

1 = 1− 2C,

from which we obtain C = 0. Thus the unique solution of the IVP is y(t) = t.

(d) By separating variables,
y3dy = t3dt.

Integrating both sides and then evaluating the integrals yields

1

4
y4 =

1

4
t4 + C,

so
y4 = t4 + 4C.

At the initial condition y(1) = 1 it must hold that

1 = 1 + 4C,

from which we obtain C = 0. Thus the unique solution of the IVP is y(t) = t.

2. Solution

(a) For an equilibrium point it holds that ẏ = y2 − y = y(y − 1) = 0. Thus, the
equilibrium points are y∗1 = 0 and y∗2 = 1. The derivative of f(y) is

f ′(y) =
(2y − 1)(y2 + 1)− (y2 − y) · 2y

(y2 + 1)2
=
y2 + 2y − 1

(y2 + 1)2
.

At y∗1 = 0, f ′(0) = −1 < 0, so y∗1 = 0 is asymptotically stable. At y∗2 = 1,
f ′(1) = 1

2
> 0, so it is unstable.

(b) Since ey 6= 0, it must be that sin y = 0 when ẏ = 0. We know that sin y = 0 if
y = ... − 2π,−π, 0, π, 2π.... Thus, the equilibrium points are y∗ = ±nπ, where
n is some integer. The derivative of f(y) is

f ′(y) = ey · sin y + ey · cos y = ey(sin y + cos y).

2



Letm be some odd integer. By inserting the equilibrium points to the derivative
we get

f ′(mπ) = emπ(sinmπ + cosmπ) = emπ · cosmπ = −emπ < 0,

f ′(2mπ) = e2mπ(sin 2mπ + cos 2mπ) = e2mπ · cos 2mπ = e2mπ > 0,

f ′(0) = e0(sin 0 + cos 0) = e0 · cos 0 = e0 = 1 > 0.

We see that when m is some odd integer, mπ is asymptotically stable and the
two other equilibrium points, 2mπ and 0, are unstable.

(c) The only equilibrium point is y∗ = 0. The derivative of f(y) = y
y2+1

at y∗ = 0

is f ′(0) = 1 > 0. Hence the equilibrium is unstable.

(d) There are two equilibrium points, y∗1 = 0 and y∗2 = 1. The derivative of f(y) =
y2 − y3 at y∗1 = 0 is f ′(0) = 0. However, when y is sufficiently close to zero,
f(y) is always positive. Hence we can conclude that y∗1 = 0 is unstable. The
derivative of f(y) at y∗2 = 1 is f ′(1) = −1 < 0, hence y∗2 is locally asymptotically
stable.

3. Solution

(a) The characteristic equation is r2 − 3 = 0, with roots r1 = −
√
3 and r2 =

√
3.

The general solution is

y(t) = C1e
−
√
3t + C2e

√
3t.

(b) The characteristic equation is r2 + 4r + 8 = 0, with roots r1 = −2 + 2i and
r2 = −2− 2i. The general solution is

y(t) = e−2t (C1 cos 2t+ C2 sin 2t) .

(c) The characteristic equation is 3r2 + 8r = 0, with roots r1 = 0 and r2 = −8
3
.

The general solution is
y(t) = C1 + C2e

− 8
3
t.

(d) The characteristic equation is 4r2 + 4r + 1 = 0, whose only root r = −1
2
has

multiplicity 2. The general solution is

y(t) = (C1 + C2t)e
− 1

2
t.
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4. Solution

The candidate solution y(t) = u(t)ert is such that:

y = uert (1)

ẏ = u̇ert + ruert = u̇ert − b

2
uert (2)

ÿ = üert + 2ru̇ert + r2uert = üert − bu̇ert + b2

4
uert. (3)

Inserting (1)–(3) into the differential equation and rearranging yields

üert + u(t)ert
[
−b

2

4
+ c

]
= 0. (4)

Since 1
4
b2 = c by assumption, and since ert is always strictly positive, we have that

equation (4) holds if and only if ü = 0 for all t. This means that u̇ must be constant
and, consequently, u must be some affine function u(t) = C1 + C2t. Thus, y(t) =
u(t)ert = (C1 + C2t)e

rt.

5. Solution

(a) The system of differential equations can be written in matrix form:(
ẋ
ẏ

)
=

(
2 1
−12 −5

)(
x
y

)
.

The characteristic polynomial, where A =

(
2 1
−12 −5

)
, is

det(A− rI) =
∣∣∣∣2− r 1
−12 −5− r

∣∣∣∣ = (2− r)(−5− r)− (−12)

= r2 + 3r + 2 = (r + 2)(r + 1) = 0.

Thus, the eigenvalues are r1 = −1 and r2 = −2. For eigenvalues it holds that
(A− riI)vi = 0, where vi is the eigenvector corresponding the eigenvalue ri and
i = 1, 2. Thus,

(
2− (−1) 1
−12 −5− (−1)

)(
v1
v2

)
=

(
3 1
−12 −4

)(
v1
v2

)
=

(
0
0

)
.

So the first eigenvector is vr1 =

(
−1
3

)
. The second eigenvector can be solved

in a similar way, and it is vr2 =
(

1
−4

)
.
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Thus, the general solution is(
x
y

)
= C1e

−t
(
−1
3

)
+ C2e

−2t
(

1
−4

)
.

(b) (
ẋ
ẏ

)
=

(
2 1
−12 −5

)(
x
y

)
.

The eigenvalues and the eigenvectors can be solved as in (a): r1 = 0 and r2 = 7,

and the corresponding eigenvectors are vr1 =
(
1
2

)
and vr1 =

(
3
−1

)
. The general

solution is (
x
y

)
= C1

(
1
2

)
+ C2e

7t

(
3
−1

)
.

(c) (
ẋ
ẏ

)
=

(
1 4
3 2

)(
x
y

)
.

The eigenvalues and the eigenvectors can be solved as in (a): r1 = 5 and r2 = −2,

and the corresponding eigenvectors are vr1 =
(
1
1

)
and vr1 =

(
4
−3

)
. The general

solution is (
x
y

)
= C1e

5t

(
1
1

)
+ C2e

−2t
(

4
−3

)
.
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