Taloustieteen matemaattiset menetelmät
31C01100
Syksy 2020
Lassi Tervonen
lassi.tervonen@aalto.fi

Problem Set 8: Solutions

1. Solution

(a) By separating variables,

$$
y d y=t d t .
$$

Integrating both sides

$$
\int y d y=\int t d t
$$

and then evaluating the integrals yields

$$
y^{2}=t^{2}+2 C .
$$

At the initial condition, it must hold that

$$
1=2+2 C
$$

from which we easily get $C=-\frac{1}{2}$. Thus the unique solution of the IVP is

$$
y(t)=\sqrt{t^{2}-1} .
$$

Note that $y(t)=-\sqrt{t^{2}-1}$ is not a solution, as it does not satisfy the initial condition $y(\sqrt{2})=1$.
(b) By separating variables,

$$
y^{2} d y=(t+1) d t
$$

Integrating both sides

$$
\int y^{2} d y=\int(t+1) d t
$$

and then evaluating the integrals yields

$$
y^{3}=\frac{3}{2} t^{2}+3 t+3 C
$$

At the initial condition, it must hold that

$$
1=\frac{3}{2}+3+3 C
$$

from which we obtain $C=-\frac{7}{6}$. Thus the unique solution of the IVP is

$$
y(t)=\sqrt[3]{\frac{3}{2} t^{2}+3 t-\frac{7}{2}}
$$

(c) By separating variables,

$$
\frac{1}{y^{3}} d y=\frac{1}{t^{3}} d t
$$

Integrating both sides and then evaluating the integrals yields

$$
-\frac{1}{2} y^{-2}=-\frac{1}{2} t^{-2}+C,
$$

so

$$
y^{-2}=t^{-2}-2 C .
$$

At the initial condition $y(1)=1$ it must hold that

$$
1=1-2 C
$$

from which we obtain $C=0$. Thus the unique solution of the IVP is $y(t)=t$.
(d) By separating variables,

$$
y^{3} d y=t^{3} d t
$$

Integrating both sides and then evaluating the integrals yields

$$
\frac{1}{4} y^{4}=\frac{1}{4} t^{4}+C,
$$

so

$$
y^{4}=t^{4}+4 C .
$$

At the initial condition $y(1)=1$ it must hold that

$$
1=1+4 C
$$

from which we obtain $C=0$. Thus the unique solution of the IVP is $y(t)=t$.

2. Solution

(a) For an equilibrium point it holds that $\dot{y}=y^{2}-y=y(y-1)=0$. Thus, the equilibrium points are $y_{1}^{*}=0$ and $y_{2}^{*}=1$. The derivative of $f(y)$ is

$$
f^{\prime}(y)=\frac{(2 y-1)\left(y^{2}+1\right)-\left(y^{2}-y\right) \cdot 2 y}{\left(y^{2}+1\right)^{2}}=\frac{y^{2}+2 y-1}{\left(y^{2}+1\right)^{2}} .
$$

At $y_{1}^{*}=0, f^{\prime}(0)=-1<0$, so $y_{1}^{*}=0$ is asymptotically stable. At $y_{2}^{*}=1$, $f^{\prime}(1)=\frac{1}{2}>0$, so it is unstable.
(b) Since $e^{y} \neq 0$, it must be that $\sin y=0$ when $\dot{y}=0$. We know that $\sin y=0$ if $y=\ldots-2 \pi,-\pi, 0, \pi, 2 \pi \ldots$. Thus, the equilibrium points are $y^{*}= \pm n \pi$, where n is some integer. The derivative of $f(y)$ is

$$
f^{\prime}(y)=e^{y} \cdot \sin y+e^{y} \cdot \cos y=e^{y}(\sin y+\cos y) .
$$

Let m be some odd integer. By inserting the equilibrium points to the derivative we get

$$
\begin{gathered}
f^{\prime}(m \pi)=e^{m \pi}(\sin m \pi+\cos m \pi)=e^{m \pi} \cdot \cos m \pi=-e^{m \pi}<0, \\
f^{\prime}(2 m \pi)=e^{2 m \pi}(\sin 2 m \pi+\cos 2 m \pi)=e^{2 m \pi} \cdot \cos 2 m \pi=e^{2 m \pi}>0, \\
f^{\prime}(0)=e^{0}(\sin 0+\cos 0)=e^{0} \cdot \cos 0=e^{0}=1>0
\end{gathered}
$$

We see that when m is some odd integer, $m \pi$ is asymptotically stable and the two other equilibrium points, $2 m \pi$ and 0 , are unstable.
(c) The only equilibrium point is $y^{*}=0$. The derivative of $f(y)=\frac{y}{y^{2}+1}$ at $y^{*}=0$ is $f^{\prime}(0)=1>0$. Hence the equilibrium is unstable.
(d) There are two equilibrium points, $y_{1}^{*}=0$ and $y_{2}^{*}=1$. The derivative of $f(y)=$ $y^{2}-y^{3}$ at $y_{1}^{*}=0$ is $f^{\prime}(0)=0$. However, when y is sufficiently close to zero, $f(y)$ is always positive. Hence we can conclude that $y_{1}^{*}=0$ is unstable. The derivative of $f(y)$ at $y_{2}^{*}=1$ is $f^{\prime}(1)=-1<0$, hence y_{2}^{*} is locally asymptotically stable.

3. Solution

(a) The characteristic equation is $r^{2}-3=0$, with roots $r_{1}=-\sqrt{3}$ and $r_{2}=\sqrt{3}$. The general solution is

$$
y(t)=C_{1} e^{-\sqrt{3} t}+C_{2} e^{\sqrt{3} t}
$$

(b) The characteristic equation is $r^{2}+4 r+8=0$, with roots $r_{1}=-2+2 i$ and $r_{2}=-2-2 i$. The general solution is

$$
y(t)=e^{-2 t}\left(C_{1} \cos 2 t+C_{2} \sin 2 t\right) .
$$

(c) The characteristic equation is $3 r^{2}+8 r=0$, with roots $r_{1}=0$ and $r_{2}=-\frac{8}{3}$. The general solution is

$$
y(t)=C_{1}+C_{2} e^{-\frac{8}{3} t}
$$

(d) The characteristic equation is $4 r^{2}+4 r+1=0$, whose only root $r=-\frac{1}{2}$ has multiplicity 2 . The general solution is

$$
y(t)=\left(C_{1}+C_{2} t\right) e^{-\frac{1}{2} t}
$$

4. Solution

The candidate solution $y(t)=u(t) e^{r t}$ is such that:

$$
\begin{align*}
& y=u e^{r t} \tag{1}\\
& \dot{y}=\dot{u} e^{r t}+r u e^{r t}=\dot{u} e^{r t}-\frac{b}{2} u e^{r t} \tag{2}\\
& \ddot{y}=\ddot{u} e^{r t}+2 r \dot{u} e^{r t}+r^{2} u e^{r t}=\ddot{u} e^{r t}-b \dot{u} e^{r t}+\frac{b^{2}}{4} u e^{r t} . \tag{3}
\end{align*}
$$

Inserting (1)-(3) into the differential equation and rearranging yields

$$
\begin{equation*}
\ddot{u} e^{r t}+u(t) e^{r t}\left[-\frac{b^{2}}{4}+c\right]=0 . \tag{4}
\end{equation*}
$$

Since $\frac{1}{4} b^{2}=c$ by assumption, and since $e^{r t}$ is always strictly positive, we have that equation (4) holds if and only if $\ddot{u}=0$ for all t. This means that \dot{u} must be constant and, consequently, u must be some affine function $u(t)=C_{1}+C_{2} t$. Thus, $y(t)=$ $u(t) e^{r t}=\left(C_{1}+C_{2} t\right) e^{r t}$.

5. Solution

(a) The system of differential equations can be written in matrix form:

$$
\binom{\dot{x}}{\dot{y}}=\left(\begin{array}{cc}
2 & 1 \\
-12 & -5
\end{array}\right)\binom{x}{y} .
$$

The characteristic polynomial, where $A=\left(\begin{array}{cc}2 & 1 \\ -12 & -5\end{array}\right)$, is

$$
\begin{aligned}
\operatorname{det}(A-r I) & =\left|\begin{array}{cc}
2-r & 1 \\
-12 & -5-r
\end{array}\right|=(2-r)(-5-r)-(-12) \\
& =r^{2}+3 r+2=(r+2)(r+1)=0 .
\end{aligned}
$$

Thus, the eigenvalues are $r_{1}=-1$ and $r_{2}=-2$. For eigenvalues it holds that $\left(A-r_{i} I\right) v_{i}=0$, where v_{i} is the eigenvector corresponding the eigenvalue r_{i} and $i=1,2$. Thus,

$$
\left(\begin{array}{cc}
2-(-1) & 1 \\
-12 & -5-(-1)
\end{array}\right)\binom{v_{1}}{v_{2}}=\left(\begin{array}{cc}
3 & 1 \\
-12 & -4
\end{array}\right)\binom{v_{1}}{v_{2}}=\binom{0}{0} .
$$

So the first eigenvector is $v_{r_{1}}=\binom{-1}{3}$. The second eigenvector can be solved in a similar way, and it is $v_{r_{2}}=\binom{1}{-4}$.

Thus, the general solution is

$$
\binom{x}{y}=C_{1} e^{-t}\binom{-1}{3}+C_{2} e^{-2 t}\binom{1}{-4} .
$$

(b)

$$
\binom{\dot{x}}{\dot{y}}=\left(\begin{array}{cc}
2 & 1 \\
-12 & -5
\end{array}\right)\binom{x}{y} .
$$

The eigenvalues and the eigenvectors can be solved as in (a): $r_{1}=0$ and $r_{2}=7$, and the corresponding eigenvectors are $v_{r_{1}}=\binom{1}{2}$ and $v_{r_{1}}=\binom{3}{-1}$. The general solution is

$$
\binom{x}{y}=C_{1}\binom{1}{2}+C_{2} e^{7 t}\binom{3}{-1} .
$$

(c)

$$
\binom{\dot{x}}{\dot{y}}=\left(\begin{array}{ll}
1 & 4 \\
3 & 2
\end{array}\right)\binom{x}{y} .
$$

The eigenvalues and the eigenvectors can be solved as in (a): $r_{1}=5$ and $r_{2}=-2$, and the corresponding eigenvectors are $v_{r_{1}}=\binom{1}{1}$ and $v_{r_{1}}=\binom{4}{-3}$. The general solution is

$$
\binom{x}{y}=C_{1} e^{5 t}\binom{1}{1}+C_{2} e^{-2 t}\binom{4}{-3}
$$

