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Aim : To understand the wave spectrum and how it
may be used to calculate short term ship responses in
irregular seas ; Some brief introduction to Long term
responses.
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Motivation

«  Ships operate in varying wave conditions. We
should be able to evaluate Loads and motions
under different wave heights and lengths

« Evenif the ship is rigid it experiences varying
pressures around hull . We have to know the
influence of this varying pressure on motions,
hydrodynamics pressures, shear forces and
bending moments

* Hydrodynamic idealisations are possible in both
frequency and time domains.

» Frequency domain is useful for screening the worst
conditions for our ship

» Time domain to perform non-linear simulations at a given
sea state
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(a) SPECTRUM

SCALE OF TIME OR DISTANCE

(b) COMPONENT WAVES

Fig. 8 Typical variance spectrum of waves, showing approximation by a
finite sum of components
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Assignment 2

Grades 1-3:

v Select a book-chapter related to ocean waves © v i 5’21;;;,”;%?:: nusr;gj..umm N \ gt

v Define the water depths for your ship’s route and .y m‘;we - :;.G”M'::}““j-‘;?;:ﬁlik '.MTW;ML.‘
seasonal variations of wave conditions ._/vmasm\;d E wyww i %”15: =N

v Based on potential flow theory, sketch what kind of waves  |© ., i g Y et i e 5
you can encounter during typical journey (deep water, s ST 'ss’ N -‘L“G‘REECE.,EG'WDﬁ‘if“;‘lf:ﬂvw:m;---:M
shallow water) 'G:T:EL?’:;Z' ) f"}"*"'”j_”"ga;;‘w. e 'T",.?,,l“;‘:,' m

v ldentify and select the most suitable wave spectra for your T;;Gm 63 PEE e L
ship - Justify the selection. it — m;f,nfq”‘”“ SR

v" Discuss the aspects (e.g. likelihood) to consider in case of eSS e !‘”'"
extreme events from viewpoint of operational area g || f S | S

e L S R [
« Grades 4-5:
v Read 1-2 scientific journal articles related to ship Example

Mediterranean or Baltic Sea

dynamics _ « 9 months in open water
v" Reflect these in relation to knowledge from books and < 3months in ice
lecture slides Route: ...

Water depth: ...
* Report and discuss the work.
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Waves and Probability - the basics

Marva Excrema wava

*  When we measure the wave elevation of the — hejal  Bisplessasac S
random sea at a specific point we should move = % ; i
from time domain to probability domain through E oo Directicosl

» Auto-correlation function, Fourier transformation .‘:! 1 R
Auto-Correlation Cross=Correlation
> Wave spectrum Fanctica . e
- Viener-Knistchise r/ G:'hgpqu:::““j
« Assumptions that are necessary to obtain the x
probabilities are: E | - —1—
> Steady state process (probabilities will not be changing much from & In_—vasnec:m | | r"'-., nkmkalle; itk
one transition to the next — stable probabilities) b &
»  Normal process (Gaussian / Bell type / Standard distribution) with F—
zero mean fih Soraey pescass with serc-asss 4
>  Statistically independent maxima (occurrence of one event does L D et “"ﬂ Directiomal
not affect the other) = th:hu“, YT |nlm L hmm::‘ random sea
e e e o B LSS vt ]l e
i 2 S A
: ———— e

+ If we remove these assumptions also the way to e Redghts ) “'*'“1‘ "m":']""‘“'";,."" v
assess probabilities, e.g. for extreme loads re sghes 8 ek pucited perod
change B T e i
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The Irregular Wave

. Max. value reached after an up-crossing
: Amplitude
" Height P9C | and before the next down-crossing
ik
h.
'h MNWAY
V X
b
Min. after TiT
zero down-crossing * "
to max after the following Period
Zzero up-crossing Measured between zero down-crossings
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Irregular Waves - classification

Determination of the wave spectra is
carried out by observations of seaway
and prevailing wind.

Description of Beaufort Wind speed SWH hy/3 (m)
wind number (knots)
Light air 1 2-3 1.00
Light breeze 2 4-7 1.40
Gentle breeze 3 8-11 1.65
Moderate breeze 4 12-16 2.25
Fresh breeze 5 17 - 21 3.10
Strong breeze 6 22-27 4.15
Moderate gale 7 28-33 5.40
Fresh gale 8 34 - 40 7.10
Strong gale 9 41 -48 10.10
Whole gale 10 49 - 56 1245
Storm 11 57 - 65 15.90
Hurricane 12 more than 65

This table may be useful in obtaining
wave spectra when wind speed is
known.

Beaufort 110
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The irregular wave formation
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Combination of
waves leads to
irregular wave

WANE 1 = WAVE 2+ WAVE 1 + WAVE 4
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Sea Spectra Simplified

By Walter H. Michel’

A dissertation on the simple wave elements that make up the complex seo, this poper is
intended fo give the practicing navel architect o clearer view of how regulor woves com-
bine into an irregular pattern and how the consequent irregulor behovior of o vessel ot
sea con be predicted on the basis of recent siatistical formulations.

Prologue

Monre than 13 years have elapsed since St. Denis and
Pierson introduced to this Society the exciting new
theory of sea-wave behavior and its effect on slnps (“On
the Motions of Ships in Confused Seas,” Trans. SNAME,
vol. 61, 1933). Since that time, much effort has been
e\pemIed in pm\mg refining, and applying this theory
m r(ae'\lch ncllvmes uhul lod'\ ve ure on the threshold

simple, regular wave, Although the theory is still in the
throes of development and change, as more study and
actual sea data ave gathered, and, although there are
still limitations to it (it does not as yet take "Md account
of shallow water, or very steep waves, for example), it
presents the most logical assessment of what the sea
actually is and how it does what it does.

Even though this is now well recognized, much study




Irregular wave formation - mathematics

» Consider a regular wave described by

{(t)y=acos(wt+a)

« Anirregular wave would result form the superposition of a large number of regular waves. So,

¢(t)= g a:.cos(m; t+a;)

i=l
« Consequently the surface wave elevation can be expressed as
{x,t) :Z a; cos(k; x—@; t+;)
when waves propagate along x- axis (‘i.e. unidirectional seaway).

®; = frequency of the ith regular wave a; = amplitude

|3’. = the randomly chosen phase angle k,— = wave number
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The irregular wave formation - mathematics

If the mean is zero (i.({(r))=0) then the mean square value becomes :

.~ Wwave spectrum
. ©
ifz(f):}:_z a? — X @
" b 2= 0

» Practically the phase angles are selected from a random distribution ranging from 0 to 21 (i.e.
360 degrees)

 The mean square value of the irregular seaway after integration can be proved to be :

1 i
my=>2, a = [0z @dox} g (@) A0 (1)
i 0 J

2 (D;g (w;) Aw; is a crude way of evaluating the area under the wave spectrum
-
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The irregular wave formation - mathematics

» If we are familiar with the form of a wave spectrum then we can determine form (1) the
component waves as

I

1
5? 8;2 z; q)‘_,:'wg((.l),')ﬂ(ﬂf

-— LUA-: I.H‘— IS:-. ﬂ-h;
B ow
¥ WB =m;f:r5 ﬂulr‘l
; |'_ ]
e Actual W.ED /pg =z

fipproximated WED lpy

W2 D . Wuve Enrray Density
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Directionality of Spectra

Continuous Discrete spreading
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Fig. 4.13 — Typical directional wave specirum Fig. 4.15 — Representation of directional spectrum ai discrete heading intervals of 15°; cosine
squared spreading over £ 9%
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From 2D to 3D wave description — spreading

Long crested regular wave

Long crested irregular wave (M = 4)

In short crested or confused seas spreading function is used
to express the waves in different directions
The spreading function is :

Wave spectrum

© - (@, 1) = cos”
for -7/2<u<n/2

n=2or4

For confused seas ITTC recommends spreading function

fu)= Ecosz,u,where ~n/2<u<n/2. andn=2
Short crested (or confused seas) &
irregular wave (M=4)
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Spectrum idealisation — mathematical background

Time domain : Your model/system is evaluated according to the progression of it's state
with time.

Frequency domain : Your model/system is analysed according to its response for different
frequencies.

In a linear system you can use Fourier Transform to "transport" your model from time
domain to frequency domain. Conversely your system can be transformed form frequency to
time domain via an inverse Fourier transform (also known as convolution integral)

The Fourier Transform decomposes any function into a sum of sinusoidal basis functions.
Each of these basis functions is a complex exponential of a different frequency. The Fourier
Transform therefore gives us a unique way of viewing any function as the sum of simple
sinusoids. It applies to both periodic and non periodic functions

A
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Spectrum idealisation — mathematical background

The Fourier Transform of a function g(t) is defined by:

T {e@}=6(N)= [gye ™ dt

The result is a function of f, or frequency. As a result, G(f) gives how much power g(t) contains
at the frequency f. G(f) is often called the spectrum of g. In addition, g can be obtained from
G via the inverse Fourier Transform (convolution integral) as :

Yt

FH6()= ]G{f)e-“f”df =g() @
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Spectrum idealisation — mathematical background

The box function (also known as square pulse or square wave)
F{e®}=G(f) = [ g(t)e?™dt

o
¥i )

T2 e A T2
s J‘Ae—;""ﬁ(ﬁ‘ s |:e—_-,..ﬁ = :I
el 2mf T t2

A [ —7ifT THT ] A T € L e’ i _E
—24f T 2i |

= ;; sin(4fT) = AT [sinc(fT)]

F

The sinc function is the Fourier Transform of
the box function.

AT

Frequency (Hz)
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Power spectral density of wave amplitude
- 100 frequency components
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Extreme Value Response

« The k" moment (analogous to mechanics) S(w) 4

T kapea kaistainen
m, = j @ S(a))da) /
0 leved kaistainen
« The average angular velocity
I oS(w)dw
— m, 0
o, = ==
" [S@yde
0

« The k' moment with respect to average angular velocity

U, = T(a)—g))( S(w)dw

0

W

* The bandwith parameter (0 for narrow band and 1 for broad band)

2
m,

mym,
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Extreme Value Response

+ Let X{(t) be stationary Gaussian process with zero mean and spectral area m, while the objective
is to define the most probable extreme value at certain time

Z: \/]1’111»\/217’10 I_\Io+: 1 g

21 my

» The expected value for zero-crossings for certain time is calculated by

_ T 2 /1M

. and the extreme value

7= [2In 21(60)2 %2\ fm,
T

m
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Spectrum idealisation practical

« Afast Fourier transform (FFT) is an algorithm that samples a signal over a period of time (or
space) and divides it into its frequency components. These components are single sinusoidal
oscillations at distinct frequencies each with their own amplitude and phase.

* FFT rapidly computes such transformations by factorizing the FT matrix into a product of

sparse (mostly zero) factors. As a result, it manages to reduce the complexity of computing
the DFT

e

L _d
MATLAB

/ frequency

time
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Spectrum idealisation practical
A note on PSD

Power Spectral Density (PSD) (or power spectrum) is a measure of a signal's power
intensity in the frequency domain.

In practice, the PSD is computed from the FFT spectrum of a signal. The PSD provides a
useful way to characterize the amplitude versus frequency content of a random signal.

So a PSD will gives the power of your signal, in each frequency band

In MATLAB signal processing toolbox information on PSD is under :
https://uk.mathworks.com/help/signal/ug/power-spectral-density-estimates-using-
fft.html?s tid=gn loc drop

A
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https://uk.mathworks.com/help/signal/ug/power-spectral-density-estimates-using-fft.html?s_tid=gn_loc_drop

Spectrum idealisation practical
From Time to Frequency domain

Contact Us  H (uEeeG—

4MathWorkS® Products  Solutions Academia Support Community Events

Documentation Search R2016b Documentation Documentation ~

= CONTENTS Close
< Documentation Home ﬁt RQO]éb
< MATLAB 6 Fast Fourier transform collapse all in page
< Mathematics
< Fourier Analysis and Filtering Syntax
< MATLAB Y = fft(X) example
< Functions Y = fft(X,n) example
Y = fft(X,n,dim) example
fft
Description
Syntax . . . . 5 example
o ot Y = fft(X) computes the discrete Fourier transform (DFT) of X using a fast Fourier transform (FFT) algorithm.
escription
c | « If X is a vector, then Tft (X) returns the Fourier transform of the vector.
xamples
P + If X is a matrix, then fft(X) treats the columns of X as vectors and returns the Fourier transform of each column.
Input Arguments
P 9 « If X is a multidimensional array, then fft (X) treats the values along the first array dimension whose size does not equal 1 as
Output Arguments vectors and returns the Fourier transform of each vector.
More About axample
References Y = fft(X,n) returns the n-point DFT. If no value is specified, Y is the same size as X. xamp
See Al « If X is a vector and the length of X is less than n, then X is padded with trailing zeros to length n.
ee Also
+ If X is a vector and the length of X is greater than n, then X is truncated to length n.
« If X is a matrix, then each column is treated as in the vector case.
« If X is a multidimensional array, then the first array dimension whose size does not equal 1 is treated as in the vector case.
example

Y = fft(X,n,dim) returns the Fourier transform along the dimension dim. For example, if X is a matrix, then fft(X,n,2) returns
the n-point Fourier transform of each row.
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Spectrum idealisation practical
From Time to Frequency domain

Fs = 1000; % Sampling frequency
T = 1/Fs; % Sampling period

L = 1000; % Length of signal

t = (@:L—-1)%T; % Time wvector

Form a signal containing a 50 Hz sinusoid of amplitude 0.7 and a 120 Hz sinusoid of amplitude 1.
S = 0.7*%sin(2*kpi*k50*xt) + sin(2xkpi*x120=*t) ;
Corrupt the signal with zero-mean white noise with a variance of 4.
X = S + 2xrandn(size(t));
Plot the noisy signal in the time domain. It is difficult to identify the frequency components by looking at the signal X(t).
plot(1000xt(1:50) ,X(1:50))
title('Signal Corrupted with Zero—Mean Random Noise')

xlabel('t (milliseconds) ')
ylabel('X(t)")

Signal Corrupted with Zero-Mean Random Noise
8 T T T T T T T T T

X()
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Spectrum idealisation practical
From Time to Frequency domain

Compute the Fourier transform of the signal.

Y = fft(X);

Compute the two-sided spectrum P2. Then compute the single-sided spectrum P1 based on P2 and the even-valued signal length L.

P2 = abs(Y/L);
P1L = P2(1:L/2+1);
Pl(2:end-1) = 2%P1(2:end-1);

Define the frequency domain f and plot the single-sided amplitude spectrum P1l. The amplitudes are not exactly at 0.7 and 1, as expected,
because of the added noise. On average, longer signals produce better frequency approximations.

f = Fsx(@:(L/2))/L;

plot(f,P1)

title('Single—Sided Amplitude Spectrum of X(t)')
xlabel('f (Hz)")

ylabel('|P1(Ff)|")

Single-Sided Amplitude Spectrum of X(t)

1.2 T

0.8

IP1()

0.4

0.2

o 50 100 150 200 250 300 350 400 450 500
f (Hz)
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Spectrum idealisation practical
From Time to Frequency domain

MATLAB

Now, take the Fourier transform of the original, uncorrupted signal and retrieve the exact amplitudes, 0.7 and 1.0.

= fft(S);

2 = abs(Y/L);

e ="p2 (1= /211);
P1(2:end-1) = 2*%P1l(2:end-1);

Y
P
P

pllotGENE")

title('Single-Sided Amplitude Spectrum of S(t)"')
xlabel('f (Hz)"')

ylabel('[P1(f)|")

Single-Sided Amplitude Spectrum of S(t)

08 1
0.7 1

06 1

IP1(f)

05 1

0.4 T

0.3 1

02F 1

0.1F 1

0 50 100 150 200 250 300 350 400 450 500
f (Hz)
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Spectrum idealization practical
Exercise (at your own time)

To comprehend more MATLAB computations consider square pulses defined for T = 10 and
T =1. Then Produce the FT of these functions for Amplitude A = 1

o —— The Box Function with T=10, and its FT

A wider square pulse produces a narrower, more
constrained spectrum

| O T The Box Function with T=1, and its FT

A thinner square pulse produces a wider spectrum
The box function is shorter in time, so it has less
energy. This is reflected in the time domain spectrum.

-10 0 10 e o a 4 2
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SHAME Transactions, Vol 85, 1978, pa. 47-76

Types of wave spectra | swmw oo oo oo sconm s

Michel K. Ochi,” Member

Tris paper Prasents waws information which plays & significant role in predicting respenses o1 ships
A Struc 2 sea Fra

» There are a number of wave spectrum descriptions
that depend on correlation of observation data and
assumptions

nograph
rrabed o 0 w ST presction method s with that estimas ahert ph
et agre od from the torm =S

» After the wind has blow for some time the seas are considered as fully developed

* The basis of the most weII accepted spectra is based on the work by by Pierson — Moskowitz.
T o ——x ‘jonal fully developed seas and is defined as :

(rad/s) frequency of the waves

15+

(m”2/s) gravity acceleration

10 =

Sigrificart Wave Height (m)

. where A=8.1x107¢* and B=0.7

Wind speed (m/s) @ 19.5 m
R M A IR M above calm water level
Wind Speed U, (m's)
* In the original work by Pierson and Moskowitz both Aand B were related to the wind speed 19.5 m
above the mean sea surface. By assigning different values to A and B two main wave spectra that
are currently in use are developed. These are known as the ISSC and ITTC spectra.
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The ITTC and ISSC wave spectra

The one parameter ITTC spectrum is defined by

A=8.1x10%¢* and p-S11 (@

R

Significant wave height

The two parameter ISSC spectrum is defined by

2
T4
1

A

Characteristic wave period

NB : h(1/3) is the mean of the one third largest waves
in the sea ; when computed from actual wave
measurements, the new definition is about 5% higher

I TTC Weve g pectio

h"'é: Q’ﬂ

0.5 1‘.‘@ 1?5 2.0
(V] Creve e )
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Properties of wave spectra

: d B 4B B
* The mean square value is evaluated as : | 7| exP| —— R < e

A A B = A
—FEx — |dof= ——exp| —— =_——
.5 4) 4B ]:3{ m4)|ﬂ 4B

mg, = I D () de=
0 L) @y 0

oe—§

1
« Using equations (2), (3) : for ITTC/ISSC spectra my = 15_9Thi2f3 mg, = ,5_19?? h{s

* The frequency at which the Pierson Moskowitz spectrum is max is :

40, (o)
—= =(= A{- iaxp[— %J +iﬁaxp[—£ﬂ = ie::p(—%][— 5 +4—4B} :
do w° o' o o ot o’ M ®

14 (/4 Average wave period
w,, =(0.8B)" and T, =2n(0.8B) .

+ ForITTC o, =l.25151[h“3}r'1"l2 T, :5L003(h“3]‘-’”3_ 3.554\/h,,; =0.71T,
+ ForlssC , _ 4.849 T, =1.296 T, - T=0.92T, =0.71T,,
T
|
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The Jonswap wave spectrum
Jonswap : Joint North Sea Wave project

The Jonswap wave spectrum enhances the wave spectrum in way of the wave peak as compare

with Pierson Moscowitz wave spectrum
Ocean Wave Spectra: P-M & JONSWAP Types

2 4
- ﬁ{}_' ! 150
Slw) = —F=exp —j—i A"
w w o’ [71.25:77;]7‘7()
100 - 5 (@)= s ¢
& =
I:hul - U.JIP:I_. NE
ma =8XpP | ——F 5.3 % :
?u?‘ﬁ'ﬂ" il / Pierson - Moskowitz
{D. 07 ifw <y |
T = . B
0.09  ifw = wy A
& % 0.05 flp ' U“‘IS DAIZ DJ&)AL 03 0.35
m 7= f(Hz)

4
» qis a constant that relates to the wind speed and fetch length, see below. Typical values in the northern north sea
are in the range of 0.0081 to 0.01

w is the wave frequency

Wy is the peak wave-frequency
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Wave Surface Elevation: Realization

2 2

. e [ I o’ . . ; .
X(t;x,y)zzjzlzkzl\/SX(a)j,Gk)Aa)jAﬁk Ay, cos(a)jt—?(xcosﬁk+ysm 6.))+ B, sm(a)jt—?(xcosek+ysm 0,))

With Pierson- Moskowich Wave spectrum 3 waves in 2 directions (6 total)

Proposal of a New Standard for Wave Realizations in

Time-Domain Simulations
M. Razola, M. Huss, A. Rosén, K. Garme

Abstract

With the increasing computer performance, time-domain simulations of ship
responses in waves are becoming feasible tools in research as well as in design.
When simulating rare and complex hydrodynamic phenomena such as parametric
rolling and slamming, efficient and accurate representation of the wave environment
is crucial. The most common approach for numerical wave realization is to
represent the wave surface as a Fourier series of a finite number of harmonic wave
components based on a standardized target spectrum. In time-domain simulations
the compurtational cost is pgenerally proportional to the number of wave
components, and it is hence desirable to use the minimum number of wave
components that gives a wave process with sufficient statistical quality. This paper
evaluates four approaches o discretizaton of the targer spectrum regarding
computational cost and statistical quality. The presented results highlipht the need
for careful consideration when performing numerical wave realization. Based on the
findings 2 new standard for irregular wave realization is proposed where the rarget
spectrum is discretized in the period domain. It is shown to yield excellent wave
sequence quality with as few as 100 wave components. Establishment of a unified

wave realizatdon standard would have larpe benefits, for example in simulation code
benchmarking and in development of criteria such as the direct stability assessments
on level 3 in the IMO second generation intact stability criteria.

Adttoylisyees sity
Rchoorittdtdimgineering

korkeakoulu 2421-3.2021



Wave Making

 Simulations

»> Spectrum is negded to for time L2 L : —
domain simulations e AT i

> Principles of constucting several i

load histories as given above

 Wave basin
» Controlled flaps

» Towing tank: single flap, other end
the beach to absorb the waves

» Wide seakeeping basins have
flaps at two adjacent sides to
produce the oblique seas,
beaches in other two sides to
absorb the waves

Aalto University
School of Engineering



Statistics on Sea States

* For certain operational area, certain sea states occur with
certain probability

» Probability for certain sea states with T and H is known from
the measurements, (scatter diagram), p4(H,T)

* Fourier analysis can be used to extract different wave
components from the irregular wave time history

» Sea state can be described with wave spectrum, which
includes energy contribution of certain wave components

« From wave spectrum average, extreme elevation etc.,
amplitude etc. can be calculated), p,(H,,.x)=>ptot=p,

Table 5—Observed Percentage Frequency of Occurrence of Wave Heights and Periods (Hogben and Lumb data)

Northern North Atlantic
Waye Perjod Sec

Wave 7
14.5 16.5 18.5 20.5 Over 21 Total

height, m 2.5 6.5 8.5 10.5

13.7204 3.4934 0.8559 0.3301 0.1127 0.0438 0.0249 0.0172 0.0723 0.3584 19.0291
11.4889 15.5036 6.4817 1.8618 0.5807 0.1883  0.0671 0.0254  0.0203 0.0763 36.2941
1.5944 7.8562 8.0854 3.7270 1.1790 0.3713 0.1002 0.0321  0.0091 0.0082 22.9629
0.3244 2.2487 4.0393 2.9762 1.3536  0.4477 0.1307 0.0428  0.0050 0.0040 11.5724

0-1

1-2

a4

8-

4-5 0.1027 0.7838 1.6998 1.5882 0.9084 0.3574 0.1443 0.0433 0.0072 0.0049 5.6400

5-6 0.0263 0.1456 0.3749 0.4038 0.2493 0.1200 0.0382 0.0067  0.0027 0.0027 1.3702

6-7 0.0277 0.1477 0.3614 0.4472  0.2804  0.1301 0.0504 0.0113  0.0011 0.0032 1.4605

7-8 0.0084 0.0714 0.1882 0.2199 0.1634 0.0785 0.0353 0.0069 0.0018 0.0034 0.7772

8-9 0.0037 0.0325 0.0856 0.1252 0.1119 0.0558 0.0303 0.0045  0.0027 0.0033 0.4555

9-10 0.0034 0.0204 0.0674 0.1173 0.0983 0.0550 0.0303 0.0173  0.0079 0.0047 0.4220
10-11 0.0005 0.0012 0.0023  0.0031 0.0012 0.0005 0.0088
11+ 0.0005 0.0007 0.0019  0.0035 0.0002 0.0005 0.0073
Totals 27.3003  30.3043 22.2415 11.8009 5.0143 1.8493 0.6517 0.2080 0.1306 0.4691 100.000
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Fig. 8 Typical variance spectrum of waves, showing approximation by a
finite sum of components
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Statistics on Sea States

+ Often idealized wave spectrum that neglect time and place are

used, e.g.

* Pierson-Moskowitz for fully developed sea

+  JONSWAP for developing sea

+ Often the sea is considered as long-crested (conservative

assumption) meaning that the waves are assumed to come

from the same direction. Realistic seas are however often
short-crested meaning that the waves come from different

directions

Table 5—Observed Percentage Frequency of Occurrence of Wave Heights and Periods (Hogben and
Northern North Atlantic

Wave Period T, sec

Wave

height, m 2.5 6.5 8.5 10.5
0-1 13.7204 3.4934 0.8559 0.3301
1-2 11.4889  15.5036 6.4817 1.8618
2-3 1.5944 7.8562 8.0854 3.7270
34 0.3244 2.2487 4.0393 2.9762
4-5 0.1027 0.7838 1.6998 1.5882
5-6 0.0263 0.1456 0.3749 0.4038
6-7 0.0277 0.1477 0.3614 0.4472
7-8 0.0084 0.0714 0.1882 0.2199
89 0.0037 0.0325 0.0856 0.1252
9-10 0.0034 0.0204 0.0674 0.1173

10-11 0.0005 0.0012 0.0023
11+ 0.0005  0.0007  0.0019
Totals 27.3003 30.3043 22.2415 11.8009

125

0.1127
0.5807
1.1790

0.2493
0.2804
0.1634
0.1119
0.0983
0.0031
0.0035

5.0143

14.5

0.0438
0.1883

4477
0.3574
0.1200
0.1301
0.0785
0.0558
0.0550
0.0012
0.0002

1.8493

0.1002
0.1307
0.1443
0.0382
0.0504
0.0353
0.0303
0.0303

0.6517

0.0254
0.0321
0.0428
0.0433
0.0067
0.0113
0.0069
0.0045
0.0173
0.0005

0.2080

The sea states are described in global wave statistics

20.5

0.0723
0.0203
0.0091
0.0050
0.0072
0.0027
0.0011
0.0018
0.0027
0.0079

0.0005
0.1306

Over 21

0.3584
0.0763
0.0082
0.0040
0.0049
0.0027
0.0032
0.0034
0.0033
0.0047

0.4691

Total

19.0291
36.2941
22.9629
11.5724
5.6400
1.3702
1.4605
0.7772
0.4555
0.4220
0.0088
0.0073

100.000
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Sea States for ship structures (Long Term)

For unlimited operation the North-Atlantic (Area

25 of BSRA statistics)

For restricted service at the discretion of the

Class Society Service Factor Analysis can be

employed

Some Key References :

>
>

IACS URS 11A, Rec. 34 ;

Lloyd’s Register Rules (Part 4 Ship
Structures) and

® Marine Technology, Vol. 46, No. 2, April 2009, pp. 116121

Service Factor Assessment of a Great Lakes Bulk Carrier
Incorporating the Effects of Hydroelasticity

Spyridon E. Hirdaris," Norbert Bakkers,” Nigel White,? and Pandeli Temarel®

This paper presents a summary of an investigation into the effects of hull flexibility when deriving an equiva-
lent service factor for a single passage of a Great Lakes Bulk Carrier from the Canadian Greal Lakesto China.
The long term wave induced bending moment predicted using traditional three-dimensional rigid body
hydrodynamic methods is augmented due to the effects of springing and whipping by including allowances
based on two-dimensional hydroelasticity predictions across a range of headings and sea slates. The
analysis results are correlated with full scale measurements that are available for this ship. By combining the
long term “rigid body” wave-bending moment with the effects of hydroelasticity, a suitable service factor is
derived for a Great Lakes Bulk Carrier traveling from the Canadian Great Lakes to China via the Suez Canal.

Keywords: Great Lakes; hydrodynamics; longitudinal strength

Hogben, N., Dacunha, N.M. and Olliver, G.F. (1986). Global wave
statistics, British Maritime Technology.
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Table 5.2 — Wave height and period statistics. (After Hogben, Dacunha and Olliver (1986).) Reproduced by permission of British
Maritime Technology Ltd.)
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Summary _—

helght  Displacemsnt height
Random Sea
Timi
Perdad

Foint Directicnal
Heasurement Measurement

1

«  Wave spectrum is needed to derive ship
responses

TIME DOMAIN

Cross=Correlation

. . Lutu;ﬁ::i:;\;tiﬂn 1 petion
«  Stochastic loads can be assessed using spectral hg“d‘-'“
methOdS ¥iener-Khimtchine ’—-’ .;:“.1 qulurll.urj

Theorem Bpeotra

*  When you know the spectrum, you can define

the maximum response (probability theory for T I— j\\ ¥ave spectra
stochastic processes) .

() Pirectional

FREQUENCY DOMAIN

|Addcmniiond )
{1) Sresdy-stats s
{H) Wormal process with zerc-ssan
(44} Seaetsrically independent saxiea Directional
{1v) Marrow-banded spectrem Characterigtics
1 _ of random sea
Frobability Fumcticos of [Rimaval of AsdempLions |

Wave Holght
Wave Height & Pericd Non-Caussien Randesm Frocess

Fredictions n,.r'lnl;u Randem Process

Average wave helght
Significant wavae hailght Hoa-Harrew=Band Kandom Frocess

Fr {Beight > a}
Fr i Valoeity (or Acceleratisn) *A 1 "'M]l\jﬁﬂﬂ#

Fr (Height* o with specified period)
Extréms wave helight

Frequency of occerrence of breaking wives
Frequency of occurrence of group waves, sCe.
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