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Contents

« Aim : Tointroduce the equations of motion and how these are formed using basic rigid body
dynamics.

« Literature

Journee, J.M.J., "Introduction to Ship Hydromechanics”

Lloyd, A.R.J.M, "Seakeeping — Ship Behavior in Rough Weather”, John Wiley & Sons
Bertram, V., "Practical Ship Hydrodynamics”, Butterworth-Heinemann, Ch. 4.

Matusiak, J., "Ship Dynamics”, Aalto University

Lewis, E. V. Principles of Naval Architecture. Vol. 3, "Motions in waves and controllability”
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Rawson, K. J., "Basic Ship Theory. Volume 2, Ship dynamics and design - ch.12 Seakeeping & ch.13
Manoeuvrability”.
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Motivation

Ship motions are affected by numerous factors such as :
» Sea state

Propulsive equipment (rudders, propulsors etc.)

Cargo movement

YV V V

Special general arrangement features

Practical and well validated methods and procedures that
are suitable for ship design are essential.

Classic methods are based on linear ship dynamics
(potential flow analysis methods).

» They allow us to use spectral techniques and statistics

» They can be updated with correction factors to account
non-linearities

Non linear methods become useful when ship motions are
excessive or we model extreme events. Approaches exist in
time-domain for specific sea states, time-frames and using
different time histories. CFD approaches also emerge.
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Assignment 3

e Grades 1-3:

v' Select a book-chapter related to the ship equations of
motion and read it

v Identify the main components associated to equations of
motion of your ship. How and why they relate with the
ship’s mission (think in operational safety terms) ?

v Discuss how the general arrangement, hull form and
operational profile of your ship affect the equations of
motion (think in design for safety terms).

v’ Start getting familiar with motions and loads design
software (e.g. MaxSURF, Napa, etc.) and reflect the
software use to the theory learned

 Grades 4-5:

v" Read 1-2 scientific journal articles related to Ship
Equations of Motion

v" Reflect these in relation to knowledge from books and
lecture slides

* Report and discuss the work.
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Ship Motions - Introduction

A rigid ship moves in waves in 6 degrees of
freedom (DOF)

This means that for arbitrarily-shaped ship
we will have

v' 6 equations of motion

v' 6 unknowns

These must be solved simultaneously

For port-starboard-symmetry these
equations reduce to two sets of uncoupled
EoM containing 3 unknows namely :

v' surge, heave, pitch

input C(t), waves

t {time)

output z(t), motions

NV

t (time) —

wavespectrum ——s frequency characteristics ——s motionspectrum

RAO
v' sway, yaw, roll — I
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Ship Motions - Introduction

INPUT: |
waves or wind [ SYSTEM: ship

input C(t), waves output z(t), motions
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wavespectrum ——s frequency characteristics —s» motionspectrum

Response

OUTPUT:
motion or

structural loads
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Frequency vs Tome domain - Revision

Frequency domain

Wave spectrum

“Transfer function
multiplication
(Must be linear)

!

b

Response spectrum

—IFFT—
—FFT &

«—FFT e

| =IFFT—

Time domain

Realised
wavemotion

| linear)

l

Time-domain

integration
(May be non-

2

Time trace of

response

Time Domain

Measured Wave Record

The Fourier Transform of a function g(t) is defined by: F {g®}=G(f) = jg(r)e‘”ﬁd‘r (1)

The result is a function of f, or frequency. As a result, G(f) gives how much power g(t) contains at the
frequency f. G(f) is often called the spectrum of g. In addition, g can be obtained from G via the

inverse Fourier Transform (convolution integral) as :

FHe)= [anerdr =g @
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Dynamics of rigid bodies - revision
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Newton’s 2" Law

mx+cx+kx=F(t)

« If we set F(t) = 0 then we obtain the complementary function; i.e. the function expressing the response
of the system when we have free vibration

» F(t) is also known as the particular integral ; i.e. a function expressing the excitation and affecting the
frequency response function

* In ship dynamic terms this means that dynamic response may be simply affected by the complementary
function or her combination with the particular integral

» For ships the mass (m), stiffness (k) and damping (c) terms should include both wet and dry parts
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Case 1 : Undamped free vibration (1 - DOF)

* Assume the system is conservative and the vibration is free. The equation of
motion reduces to:

mx +kx =0

e Assume sinusoidal solution x =e”
Natural frequency of the system

APm+k=0 1= +jw,

 The response is defined as :
x = Ayel®nt + Bie/ont = Asin( wt) + Beos( wt) = Xsin( wt+ ¢)

 The amplitude and phase are defined as :

X =NA+B*  $=tan’(B/ 4)
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Case 1 : Undamped free vibration (1 dof)

* |If we assume the initial conditions: x(t = 0) = xo,x(t = 0) = v,

X =

\/w%xg + vé b = tan-1( a)nx())

Wn, Vo

* Therefore the final solution of this system is defined as:

\/w,%xg + vg

n

x(t) = sin( wt + ¢)
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Case 2 : Damped free vibration (1- DOF)

 The amplitude of oscillation of the spring, mass, damper system will reduce with
time due to damping effects. The damper works by dissipating the energy of the
system to zero. For this case Newton’s equation becomes :

mx—+cx+kx=0

) i ) At
* Assume sinusoidal solution X =¢

m/12+C/1+k=0, ).1’2=

* There are three solutions to the above differential equation that link to three
different types of motions:

1. If Ay, are real (c? — 4mk > 0 (corresponding to overdamped case.

2. If A1, are imaginary (c? — 4mk < 0 (corresponding to underdamped case.

3. If 1, =, are real (c? —4mk = 0 (leading to ¢, = V4mk = 2mw,, that
corresponds to critically damped case (i.ethe system overshoots and comes
back to rest).
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Case 2 : Damped free vibration (1- DOF)

* Another approach to solve Newton’s equation is the damping ratio ({). This is the
ratio of the damping coefficient of the system to the critical damping coefficient:

c c c
= = = - C=2mw
¢ Cor  2Mmwy  24/km nS

Mz = wn[-{ £/¢2 =1

* The three types of motions can then be defined by the damping ratio as:

1.¢ > 1 (for overdamped case);
2.( < 1 (for underdamped case) and
3. ¢ = 1 for the critically damped case.

* The response of the system in terms of these two roots is defined as:

x(t) = aje™t + a,etat
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Case 2 : Damped free vibration (1- DOF)

For the underdamped case where the damping ratio range is 0 < { < 1 this
leads to:

/11,2 = —(wy, * Wn A/ (2 —1=—C(w, * wgyj

N

x(t) = Ae Pt sin( wgyt + @)
\/(Vo +x0lwn) *+ (Xowa) XoWq ))

—{wnt o ( -1
e sin( wgt + tan™*(
w5 d Vo + x0{ Wy,
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Case 2 : Damped free vibration (1 dof)

* |If we follow the same procedure, the solution of overdamped case is given by:

x(t) = a3e(_(wn+wd)t + a4e(—(a)n—a)d)t

« Similarly, for the critically damped case, the solution is given by:

x(t) = [xg + (Vg + wpxo)t]e “nt

x(t)
N = Underdamped
Critical v Damped
Owverdamped

[ oN— .

—
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How can we practically assess damping ?

A practical way to assess damping that is broadly applicable in the area of ship
hydrodynamics is the damping decay test. This can be mathematically expressed using
the log decrement that is the natural logarithm of the ratio of two successive

amplitudes.

Xl Ae_zwntl

0 =In—=1In

_ Tq —
X5 Ae—Swn(t1+Tg) Inetnle = ¢wnTa

2nw,  2n¢
wa  [1-

Since the damping ratio is very small in that case, the log decrement can be

Td = 27T/Cl)d -5 0 =

approximated by: § = 2n{

k=1000 NMim wy=10 radls 520 —— Z=01..

1,007
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Case 3 : Forced Vibration — 1 DOF

Consider adding harmonic excitation to the vibration system where F(t) varies in
sinusoidal manner instead of being arbitrary function in time:

mx + cx + kx = F(t) = Fycos(  wt)

— X(t) + 2w, x(t) + ' x(t) = f, cos(wt)

R f,=F Im

This is a differential equation of the 2" order. Accordingly, it is prone to a general
and particular solution which when combined together they may give the response
function of the system.
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Case 3 : Forced Vibration — 1 DOF

Consider adding harmonic excitation to the vibration system where F(t) varies in
sinusoidal manner instead of being arbitrary function in time:

mx + cx + kx = F(t) = Fycos(  wt)

— X(t) + 2w, x(t) + ' x(t) = f, cos(wt)

U

This is a differential equation of the 2" order. Accordingly, it is prone to a general
and particular solution which when combined together they may give the response

function of the system. The general solution is given when the left-hand side of the
equation is equal to zero.

%, () + 28w, () +afx,()=0  *a(t) = AenEsin( wat + ), 04

= /-T2
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Case 3 : Forced Vibration — 1 DOF

* The particular solution is defined as : X,(?) + 24w, x,(¢) + a),fxp (1) = f, cos(art)

There are two possible trial solutions to the particular solution namely
x,(t) = A, cos(ar) + B sin(ar) or x (1) = X cos(wt —6)
where: X2 =4>+B?, O=tan'(B,/A)

Substituting the trial solution in the equation of motion leads to:
(-4, + 2B w0+ Aw: — f,)-cos(wt) +

(-B.@w> —2A.lw,m+ Bsw’)-sin(wt) =0

For this equation to be zero at any time t, the two coefficients multiplied
by sin( wt) and sin( wt) must be zero.
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Case 3 : Forced Vibration — 1 DOF

* Solving these two equations we can find the two unknowns:

((Urzz - (Uz)fo

A =
(a),zl —w?) 4+ QLw,w)

2¢wpwfy

B, =
(a),% —w?) *+ 2lw,w)

* The particular solution after solving the unknowns becomes:

xp(t) = Xcos( wt—0)

2{ W,
= o cos( wt— arctan| f—n

\/ (03— 0?2 *+ 2{ww) on o
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Case 3 : Forced Vibration — 1 DOF

The first term in the full solution is the transient solution, which tends to zero as the
time goes to infinity, while the second term is the steady oscillatory solution. The
second term is of more importance as it is the steady solution. In many cases, we
neglect the transient solution. The full solution then reduces to:

xp(t) = Xcos( wt— 0)

fo

_ 2w, w
X 2 2 0 = tan™'[ zz—nz
\/(a)ﬁ —w?) "+ (2{w,w) Wy — W

Displacement (m)
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School of Engineering Time (sach

[

Total respomsa smessssces Transient ——e— Sraady sttt

Transient, steady state and total responsea.



Case 3 : Forced Vibration — 1 DOF

sk
If we rewrite these equations as a function of the frequency ratio @ = @/ @,
we get the expression

szXa),zl= 1 0 = tan-1( 2{w* >
Fo fo 1 *2

\/(1—(1)*2) 2+(2{w*) 2 — @

The term in the left-hand side is known as the . |
amplitude ratio. When the system is I il -0 =
undamped, the amplitude ratio, when the
frequency of vibration approaches the natural = H—0.05
frequency, gets to extremely significant value, 7§
and such case is known by resonance. % i

0 2 L

se angle ({(degrees)
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£ 150 2% H
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Forced Vibrations due to Harmonic Excitation

If we apply a Fourier integral on the excitation force of Newton’s equation of motion
external loading and response are defined as

o . I s .
FO =5 [ aswetdo  x0=5-[" A(@)e"do

Then Newton’s equation of motion becomes :

—mf Ay (w)w?e®tdw
+c Jf Ag(w)iwe®@tdw = f_ Ap(w)etdw

+kJr Ay (w)etdw

—COo
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Forced Vibrations due to Harmonic Excitation

* If we apply a Fourier integral on the excitation force of Newton’s equation of motion
external loading and response are defined as

o . I s .
FO =5 [ aswetdo  x0=5-[" A(@)e"do

« Then Newton’s equation of motion becomes :

—m f Ax(W)w?e'® dw + c j Ar(w)iwe*tdw + k f Ay(w)etdw = J Ap(w)e™tdw

— 0

(0" ) =
A, (o) “~ p(@” "
b F e s A w —_ " . —
or 4 (w) —ma)2+cia)+k|:> x(@) —mw*? + diw* + 1 s ©
mwy,
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Forced Vibrations due to Harmonic Excitation

If we multiply this term with the complex conjugate, we get the spectral density for that system:

Sx(w)
T 2
= TlgngonT |Ax(w)|
1 t(w") ’
= lim 5 -
T-ooTTT |—mw** + diw* + 1
Sp

(1 — w*?) 2 4 52¢*2
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Quasi-Static Response

At sub-critical case (also known as quasi-
static response) the system can reach high
values of spectral density at small
frequencies relative to the natural
frequency and the stiffness has the major
effect on the system

Only stiffness affects the system response

Sp(w")

Sx(w™) = ( - Sy = Sp

1—w*?) 24 52¢9*2

Excitation spectrum for Q*=0.25

0 0.1 02 03 04 05 06 07 08 0:9 1
o'

Response spectrum for *=0.25, 6=1

Figure 4.2. Quasi-static or sub-critical response.
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Dynamic Response

At super-critical stage (also known as dynamic
response) the highest values of spectral density lie
in only high values of frequencies with respect to

the natural frequency and damping plays an
important role:

Only inertia forces affect the system response

S (w* Sh
Se(w") = P 2) > Sy~
(1 —w*2) 4+ 6%2w*? w

Excitation spectrum for Q*=4
0.08, T T T T

0.08
2
= o004t

0.02f

0 5 10 15 20 25 30 35 40 45 50

0 5 10 15 20 25 30 35 40 45 50
o

Figure 4.3. Dynamical or super-critical response.
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Resonance

e At resonance condition when there is
very low damping the frequency ratio
w*approaches unity. The denominator
approaches zero, and the spectral
density approaches extremely large
value:

e Serious problems which can be
controlled only by adjusting damping

Sx(w®)
B Sp(w”)

(1 —w*2) ‘4 82w*2 5~ 0
> S, >>>>

Excitation spectrum for (2*=1

0.2r

Splw”)

0.1F

0 L L L L l

0 2 4 6 8 10 12 14 16 18

w"

Response spectrum for 2*=1

20

0 0.2 0.4 0.6 0.8 1 1.2 1.4 16 1.8

Figure 4.4. Resonant response,
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Ship encounter frequency

In ship dynamics the encounter frequency with the waves is used instead of the
absolute wave frequency. This is because the ship is moving relative to the waves,
and she will meet successive peaks and troughs in a shorter or longer time interval
depending upon whether it is advancing into the waves or is travelling in their

direction.
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Ship encounter frequency

Assuming the waves and ship are on a straight course, the frequency
with which the ship will encounter a wave crest depends on the distance
between the waves crests (A — wavelength), the speed of the waves (c
— wave celerity that depends on the wavelength), the speed of the ship
(U), and the relative angle between the ship heading and the wave
heading (M)

The encounter period is thus the distance traveled (A) divided by the
speed the ship encounters the waves (c - U cos(l))

WU

g

We = W —

cos(u)

. A
¢ ¢—U X cosu

A

Aalto University
School of Engineering



Coordinate Systems

We have several coordinate systems for
different purposes

> Ship CoG or body bound system — xB
» Earth bound system — xE
» Steadily translating system xi

Considering transformation of coordinates
for a regular wave propagating at an angle a
(from AX Y Z' to AXYZ) as illustrated in

(b)

X' =Xcosa+Ysina

Then the transformation to the ship’s-fixed
coordinate system (oxy) coordinate system:

X=x+Wt Y=y

Moy

A
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Definition of headings

The heading angle determines the “type” of seas the
ship experiences. Heading angles are defined as
follows :

e u = 0°-following seas

e u=180°-head seas

e u=90°-starboard beam seas

e u=270°-port beam seas

e 0<u<90% — quartering waves on the ship
starboard side

e 270° < u<360° — quartering waves on the
ship port side

e 90Y < pu <180° -bow waves on the starboard
side

e 180° < u < 270° - bow waves on the port side

Heam Sca
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Ships frequency w,,, in waves of frequency we

a) =0y,
O S i
= ii E B 7 g ‘ Resonance

Aallokon
kulkusuunt; 1

a,‘ T
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Equation of Motion - steadily translating system

The harmonic motion components of CoG in steadily translating system are (note differences in
phase angles) given below. We should know those to evaluate motions.

Surge : T = T, Co8(wet + £x¢) zp,
Sway : Y = Yg CO8(wet + €4¢) W
Heave : z = 2, cos(wet + £,¢)

Roll : ¢ = ¢, cos(wet + £4¢)
Pitch f = B, cos(wet + Eo¢)

Yaw Y = 1, cos(wet + Ey¢)
Secondary z 1 _ Secondary
response \Prlmary component response

| CG - t T
/
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Equation of Motion

As the functions of motion are trigonometric, there is relation between displacement, velocity and

acceleration, i.e.

¢ = ¢, cos(wet + £4¢)
® |
O = —wWe@, sin(wet + £4¢) = wWepg c08(wet + E5¢ + T /2)

E;'ﬁ = —wﬁ @, cos(wet + £4¢) = wgqba cos(wet + E4c + )

With these relations, the equation of motion for all 6
components is given as

5
2 ; 3
[—w,(M +A) + iw,N+Slu=F,

'm0 0 0 mz 0 7 I
0 m 0 —mzg 0 mx,
0 0 m 0 —mx 0 _
M=10 —my, 0 6, 0 -6, 5=
mz, 0 —mx, 0 0,y 0
L0 m, o0 -6, 0 -6,

Orx = f(y2 +z)dm; 6, = fxzdm; etc.

cCooc oo o

oo oOo o

!
¢
¢
¢
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Summary and next steps

We have 6 degrees of freedom motion system $
T
» Derived from forced, damped vibration ?‘\ * -
> Solution can be derived in time or frequency s

domain if harmonic excitation is assumed

Once the motion components in steadily oscillating

system are known, the motions at any other point of the -
rigid body can be derived using superposition " u,
Next we derive the terms for equation of motion
assuming small motions
Surge : T = T CO8(Wet + Ex¢)
Sway : Y = Yo COS(wel + £y¢)
Heave : z = z5 cos(wet + £,¢)
Roll : ¢ = @, cos(wet + £4¢)
Pitch 8 = B, cos(wet + £5¢)
Yaw Y = 1, cos(wet + £y¢)

A
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Thank you !



