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• Aim : To introduce  the equations of motion and how these are formed using basic rigid body 

dynamics. 
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Motivation

• Ship motions are affected by numerous factors such as : 

➢ Sea state

➢ Propulsive equipment (rudders, propulsors etc.)

➢ Cargo movement 

➢ Special general arrangement features

• Practical and well validated methods and procedures that 

are suitable for ship design are essential.

• Classic methods are based on linear ship dynamics 

(potential flow analysis methods). 

➢ They allow us to use spectral techniques and statistics

➢ They can be updated with correction factors to account 

non-linearities

• Non linear methods become useful when ship motions are 

excessive or we model extreme events. Approaches exist in 

time-domain for specific sea states, time-frames and using 

different time histories. CFD approaches also emerge. 



Assignment 3

• Grades 1-3:

✓ Select a book-chapter related to the ship equations of 

motion and read it

✓ Identify the main components associated to equations of 

motion of your ship. How and why they relate with the 

ship’s mission (think in operational safety terms) ? 

✓ Discuss how the general arrangement, hull form and 

operational profile of your ship affect the equations of 

motion (think in design for safety terms).

✓ Start getting familiar with motions and loads design 

software (e.g. MaxSURF, Napa, etc.) and reflect the 

software use to the theory learned

• Grades 4-5:

✓ Read 1-2 scientific journal articles related to Ship 

Equations of Motion

✓ Reflect these in relation to knowledge from books and 

lecture slides

• Report and discuss the work.



Ship Motions - Introduction

• A rigid ship moves in waves in 6 degrees of 

freedom (DOF)

• This means that for arbitrarily-shaped ship 

we will have 

✓ 6 equations of motion

✓ 6 unknowns

• These must be solved simultaneously

• For port-starboard-symmetry these 

equations reduce to two sets of uncoupled 

EoM containing 3 unknows namely : 

✓ surge, heave, pitch

✓ sway, yaw, roll

• We approximate the response by 

superposition of elementary waves 

progressing in :

✓ Different lengths

✓ Different directions

RAO Wave spectra Response



Ship Motions - Introduction

RAO Wave spectra Response



Frequency vs Tome domain - Revision

The Fourier Transform of a function g(t) is defined by: (1) 

The result is a function of f, or frequency. As a result, G(f) gives how much power g(t) contains at the 

frequency f. G(f) is often called the spectrum of g. In addition, g can be obtained from G via the 

inverse Fourier Transform (convolution integral) as :

(2) 



Dynamics of rigid bodies - revision

σ Ԧ𝐹 = 𝑚 ሷ𝑥



Newton’s 2nd Law

• If we set F(t) = 0 then we obtain the complementary function; i.e. the function expressing the response

of the system when we have free vibration

• F(t) is also known as the particular integral ; i.e. a function expressing the excitation and affecting the

frequency response function

• In ship dynamic terms this means that dynamic response may be simply affected by the complementary

function or her combination with the particular integral

• For ships the mass (m), stiffness (k) and damping (c) terms should include both wet and dry parts



Case 1 : Undamped free vibration (1 - DOF)

• Assume the system is conservative and the vibration is free. The equation of

motion reduces to:

0mx kx+ =

• Assume sinusoidal solution
tx e=

𝜆2𝑚 + 𝑘 = 0, 𝜆 = ±
𝑘

𝑚
= ±𝑗𝜔𝑛

• The response is defined as : 

൯𝑥 = 𝐴1𝑒
𝑗𝜔𝑛𝑡 + 𝐵1𝑒

−𝑗𝜔𝑛𝑡 = 𝐴 𝑠𝑖𝑛ሺ 𝜔𝑡) + 𝐵 𝑐𝑜𝑠ሺ 𝜔𝑡) = 𝑋 𝑠𝑖𝑛ሺ 𝜔𝑡 + 𝜙

2 2
X A B= +

1
tan ( / )B A

−
=

Natural frequency of the system 

• The amplitude and phase are defined as : 



Case 1 : Undamped free vibration (1 dof)

• If we assume the initial conditions: 𝑥ሺ𝑡 = 0) = 𝑥0, ሶ𝑥ሺ𝑡 = 0) = 𝑣0

𝑋 =
𝜔𝑛
2𝑥0

2 + 𝑣0
2

𝜔𝑛

ቇ𝜙 = 𝑡𝑎𝑛−1ሺ
𝜔𝑛𝑥0
𝑣0

• Therefore the final solution of this system is defined as:

ቍ
𝑥ሺ𝑡) =

𝜔𝑛
2𝑥0

2 + 𝑣0
2

𝜔𝑛
𝑠𝑖𝑛ሺ 𝜔𝑡 + 𝜙)



Case 2 : Damped free vibration (1- DOF)

• The amplitude of oscillation of the spring, mass, damper system will reduce with 
time due to damping effects. The damper works by dissipating the energy of the 
system to zero. For this case Newton’s equation becomes :

0mx cx kx+ + =

• Assume sinusoidal solution

𝑚𝜆2 + 𝑐𝜆 + 𝑘 = 0, 𝜆1,2 =
−𝑐 + 𝑐2 − 4𝑚𝑘

2𝑚

tx e=

• There are three solutions to the above differential equation that link to three

different types of motions:

1. If 𝜆1,2 are real (𝑐2 − 4𝑚𝑘 > 0 )corresponding to overdamped case.

2. If 𝜆1,2 are imaginary (𝑐2 − 4𝑚𝑘 < 0 )corresponding to underdamped case.

3. If 𝜆1 = 𝜆2 are real (𝑐2 − 4𝑚𝑘 = 0 )leading to 𝑐𝑐𝑟 = 4𝑚𝑘 = 2𝑚𝜔𝑛 that

corresponds to critically damped case (i.ethe system overshoots and comes

back to rest).



Case 2 : Damped free vibration (1- DOF)

• Another approach to solve Newton’s equation is the damping ratio (𝜁). This is the 
ratio of the damping coefficient of the system to the critical damping coefficient:

𝜁 =
𝑐

𝑐𝑐𝑟
=

𝑐

2𝑚𝜔𝑛
=

𝑐

2 𝑘𝑚
→ 𝑐 = 2𝑚𝜔𝑛𝜁

ቃ𝜆1,2 = 𝜔𝑛[−𝜁 ± 𝜁2 − 1

• The three types of motions can then be defined by the damping ratio as:

1. ζ > 1 (for overdamped case);

2. ζ < 1 (for underdamped case) and

3. ζ = 1 for the critically damped case.

• The response of the system in terms of these two roots is defined as:

𝑥ሺ𝑡) = 𝑎1𝑒
𝜆1𝑡 + 𝑎2𝑒

𝜆2𝑡



Case 2 : Damped free vibration (1- DOF)

For the underdamped case where the damping ratio range is 0 < 𝜁 < 1 this 

leads to:

𝜆1,2 = −𝜁𝜔𝑛 ± 𝜔𝑛 𝜁2 − 1 = −𝜁𝜔𝑛 ± 𝜔𝑑𝑗

𝜔𝑑 = 1 − 𝜁2

ቍ

𝑥ሺ𝑡) = 𝐴𝑒−𝜁𝜔𝑛𝑡 𝑠𝑖𝑛ሺ 𝜔𝑑𝑡 + 𝜙)

=
ቀ𝑣0 + 𝑥0𝜁𝜔𝑛)

2
+ ሺ𝑥0𝜔𝑑)

2

𝜔𝑑
2 𝑒−𝜁𝜔𝑛𝑡 𝑠𝑖𝑛ሺ 𝜔𝑑𝑡 + 𝑡𝑎𝑛−1ሺ

𝑥0𝜔𝑑

𝑣0 + 𝑥0𝜁𝜔𝑛
)



Case 2 : Damped free vibration (1 dof)

• If we follow the same procedure, the solution of overdamped case is given by:

𝑥ሺ𝑡) = 𝑎3𝑒
ሺ−𝜁𝜔𝑛+𝜔𝑑)𝑡 + 𝑎4𝑒

ሺ−𝜁𝜔𝑛−𝜔𝑑)𝑡

• Similarly, for the critically damped case, the solution is given by:

𝑥ሺ𝑡) = [𝑥0 + ሺ𝑣0 + 𝜔𝑛𝑥0)𝑡]𝑒
−𝜔𝑛𝑡



How can we practically assess damping ?

A practical way to assess damping that is broadly applicable in the area of ship
hydrodynamics is the damping decay test. This can be mathematically expressed using
the log decrement that is the natural logarithm of the ratio of two successive
amplitudes.

𝛿 = 𝑙𝑛
𝑋1
𝑋2

= 𝑙𝑛
𝐴𝑒−𝜁𝜔𝑛𝑡1

𝐴𝑒−𝜁𝜔𝑛 𝑡1+𝑇𝑑
= 𝑙𝑛 𝑒𝜁𝜔𝑛𝑇𝑑 = 𝜁𝜔𝑛𝑇𝑑

∵ 𝑇𝑑 = 2 Τ𝜋 𝜔𝑑 →∴ 𝛿 =
2𝜋𝜁𝜔𝑛

𝜔𝑑
=

2𝜋𝜁

1 − 𝜁2

Since the damping ratio is very small in that case, the log decrement can be

approximated by: 𝛿 = 2𝜋𝜁



Case 3 : Forced Vibration – 1 DOF

Consider adding harmonic excitation to the vibration system where 𝐹ሺ𝑡) varies in

sinusoidal manner instead of being arbitrary function in time:

)𝑚 ሷ𝑥 + 𝑐 ሶ𝑥 + 𝑘𝑥 = 𝐹ሺ𝑡) = 𝐹0 𝑐𝑜𝑠ሺ 𝜔𝑡

2

0( ) 2 ( ) ( ) cos( )n nx t x t x t f t  → + + =

0 0 /f F m=

This is a differential equation of the 2nd order. Accordingly, it is prone to a general 
and particular solution which when combined together they may give the response 
function of the system. 



Case 3 : Forced Vibration – 1 DOF

Consider adding harmonic excitation to the vibration system where 𝐹ሺ𝑡) varies in

sinusoidal manner instead of being arbitrary function in time:

)𝑚 ሷ𝑥 + 𝑐 ሶ𝑥 + 𝑘𝑥 = 𝐹ሺ𝑡) = 𝐹0 𝑐𝑜𝑠ሺ 𝜔𝑡

2

0( ) 2 ( ) ( ) cos( )n nx t x t x t f t  → + + =

0 0 /f F m=

This is a differential equation of the 2nd order. Accordingly, it is prone to a general 
and particular solution which when combined together they may give the response 
function of the system. The general solution is given when the left-hand side of the 
equation is equal to zero.

2( ) 2 ( ) ( ) 0g n g n gx t x t x t + + =



Case 3 : Forced Vibration – 1 DOF

• The particular solution is defined as :
2

0( ) 2 ( ) ( ) cos( )p n p n px t x t x t f t  + + =

• There are two possible trial solutions to the particular solution namely

( ) cos( ) sin( ) or ( ) cos( )p s s px t A t B t x t X t   = + = −

where : 2 2 2 1,   tan ( / )s s s sX A B B A −= + =

• Substituting the trial solution in the equation of motion leads to:

2 2

0

2 2

) ( )

0

(  

2( ) (

2 cos

sin )s

s s n s n

s n n

A B A f t

A Bs tB

    

    

− + + −

−

 +

− + =

• For this equation to be zero at any time t, the two coefficients multiplied

by 𝑠𝑖𝑛ሺ𝜔𝑡) and 𝑠𝑖𝑛ሺ𝜔𝑡) must be zero.



Case 3 : Forced Vibration – 1 DOF

• Solving these two equations we can find the two unknowns:

𝐴𝑠 =
൫𝜔𝑛

2 −𝜔2)𝑓0

ቀ𝜔𝑛
2 − 𝜔2) 2

+ ሺ2𝜁𝜔𝑛𝜔)
2

𝐵𝑠 =
2𝜁𝜔𝑛𝜔𝑓0

ቀ𝜔𝑛
2 − 𝜔2) 2

+ ሺ2𝜁𝜔𝑛𝜔)
2

• The particular solution after solving the unknowns becomes:

ቍ

𝑥𝑝ሺ𝑡) = 𝑋 𝑐𝑜𝑠ሺ 𝜔𝑡 − 𝜃)

=
𝑓0

ቀ𝜔𝑛
2 − 𝜔2) 2

+ ሺ2𝜁𝜔𝑛𝜔)
2
𝑐𝑜𝑠ሺ 𝜔𝑡 − 𝑎𝑟𝑐𝑡𝑎𝑛[

2𝜁𝜔𝑛𝜔

𝜔𝑛
2 − 𝜔2

]



Case 3 : Forced Vibration – 1 DOF

The first term in the full solution is the transient solution, which tends to zero as the
time goes to infinity, while the second term is the steady oscillatory solution. The
second term is of more importance as it is the steady solution. In many cases, we
neglect the transient solution. The full solution then reduces to:

൯𝑥𝑝ሺ𝑡) = 𝑋 𝑐𝑜𝑠ሺ 𝜔𝑡 − 𝜃

𝑋 =
𝑓0

ቀ𝜔𝑛
2 − 𝜔2) 2

+ ሺ2𝜁𝜔𝑛𝜔)
2 ቉𝜃 = 𝑡𝑎𝑛−1[

2𝜁𝜔𝑛𝜔

𝜔𝑛
2 − 𝜔2



Case 3 : Forced Vibration – 1 DOF

If we rewrite these equations as a function of the frequency ratio
we get the expression

𝑋𝑘

𝐹0
=
𝑋𝜔𝑛

2

𝑓0
=

1

ቀ1 − 𝜔∗2) 2
+ ሺ2𝜁𝜔∗) 2

ቇ𝜃 = 𝑡𝑎𝑛−1ሺ
2𝜁𝜔∗

1 − 𝜔∗2

*
/

n
  =

The term in the left-hand side is known as the 
amplitude ratio. When the system is 
undamped, the amplitude ratio, when the 
frequency of vibration approaches the natural 
frequency, gets to extremely significant value, 
and such case is known by resonance. 



Forced Vibrations due to Harmonic Excitation

If we apply a Fourier integral on the excitation force of Newton’s equation of motion 
external loading and response are defined as

𝐹ሺ𝑡) =
1

2𝜋
න
−∞

∞

𝐴𝑃ሺ𝜔)𝑒
𝑖𝜔𝑡𝑑𝜔

1
( ) ( )

2

i t

xx t A e d 




−
= 

Then Newton’s equation of motion becomes :

−𝑚න
−∞

∞

𝐴𝑥ሺ𝜔)𝜔
2𝑒𝑖𝜔𝑡𝑑𝜔

+ 𝑐න
−∞

∞

𝐴𝑥ሺ𝜔)𝑖𝜔𝑒
𝑖𝜔𝑡𝑑𝜔

+ 𝑘න
−∞

∞

𝐴𝑥ሺ𝜔)𝑒
𝑖𝜔𝑡𝑑𝜔

= න
−∞

∞

𝐴𝑃ሺ𝜔)𝑒
𝑖𝜔𝑡𝑑𝜔



Forced Vibrations due to Harmonic Excitation

• If we apply a Fourier integral on the excitation force of Newton’s equation of motion 
external loading and response are defined as

𝐹ሺ𝑡) =
1

2𝜋
න
−∞

∞

𝐴𝑃ሺ𝜔)𝑒
𝑖𝜔𝑡𝑑𝜔

1
( ) ( )

2

i t

xx t A e d 




−
= 

• Then Newton’s equation of motion becomes :

−𝑚න
−∞

∞

𝐴𝑥ሺ𝜔)𝜔
2𝑒𝑖𝜔𝑡𝑑𝜔 + 𝑐න

−∞

∞

𝐴𝑥ሺ𝜔)𝑖𝜔𝑒
𝑖𝜔𝑡𝑑𝜔 + 𝑘න

−∞

∞

𝐴𝑥ሺ𝜔)𝑒
𝑖𝜔𝑡𝑑𝜔 = න

−∞

∞

𝐴𝑃ሺ𝜔)𝑒
𝑖𝜔𝑡𝑑𝜔

2

( )
( ) P
x

A
A

m ci k




 
=

− + +
• For 𝐴𝑥ሺ𝜔

∗) =
)𝐴𝑃

𝑛ሺ𝜔∗

−𝑚𝜔∗2 + 𝛿𝑖𝜔∗ + 1

𝐴𝑃
𝑛ሺ𝜔∗) =

)𝐴𝑃ሺ𝜔

𝑚𝜔𝑛
2

𝛿 =
𝑐

𝑚𝜔𝑛



Forced Vibrations due to Harmonic Excitation

If we multiply this term with the complex conjugate, we get the spectral density for that system:

𝑆𝑥ሺ𝜔)

= 𝑙𝑖𝑚
𝑇→∞

1

𝜋𝑇
)𝐴𝑥ሺ𝜔
2

= 𝑙𝑖𝑚
𝑇→∞

1

𝜋𝑇

)𝐴𝑃
𝑛ሺ𝜔∗

−𝑚𝜔∗2 + 𝛿𝑖𝜔∗ + 1

2

=
𝑆𝑃
𝑛

ቀ1 − 𝜔∗2) 2
+ 𝛿2𝜔∗2



Quasi-Static Response

• At sub-critical case (also known as quasi-

static response) the system can reach high

values of spectral density at small

frequencies relative to the natural

frequency and the stiffness has the major

effect on the system

• Only stiffness affects the system response

𝑆𝑥ሺ𝜔
∗) =

)𝑆𝑃
𝑛ሺ𝜔∗

ቀ1 − 𝜔∗2) 2
+ 𝛿2𝜔∗2

→ 𝑆𝑥 ≈ 𝑆𝑃
𝑛



Dynamic Response

• At super-critical stage (also known as dynamic 
response) the highest values of spectral density lie 
in only high values of frequencies with respect to 
the natural frequency and damping plays an 
important role:

• Only inertia forces affect the system response

𝑆𝑥ሺ𝜔
∗) =

)𝑆𝑃
𝑛ሺ𝜔∗

ቀ1 − 𝜔∗2) 2
+ 𝛿2𝜔∗2

→ 𝑆𝑥 ≈
𝑆𝑃
𝑛

𝜔∗4



Resonance

• At resonance condition when there is 
very low damping the frequency ratio 
𝜔∗approaches unity. The denominator 
approaches zero, and the spectral 
density approaches extremely large 
value:

• Serious problems which can be 
controlled only by adjusting damping

𝑆𝑥ሺ𝜔
∗)

=
)𝑆𝑃

𝑛ሺ𝜔∗

ቀ1 − 𝜔∗2) 2
+ 𝛿2𝜔∗2 →≈ 0

→ 𝑆𝑥 >>>>



Ship encounter frequency

In ship dynamics the encounter frequency with the waves is used instead of the
absolute wave frequency. This is because the ship is moving relative to the waves,
and she will meet successive peaks and troughs in a shorter or longer time interval
depending upon whether it is advancing into the waves or is travelling in their
direction.



Ship encounter frequency

• Assuming the waves and ship are on a straight course, the frequency 

with which the ship will encounter a wave crest depends on the distance 

between the waves crests (λ — wavelength), the speed of the waves (c 

— wave celerity that depends on the wavelength), the speed of the ship 

(U), and the relative angle between the ship heading and the wave 

heading (μ)

• The encounter period is thus the distance traveled (λ) divided by the 

speed the ship encounters the waves (c - U cos(μ))

ቇ𝜔𝑒 = 𝜔 −
𝜔2𝑈

𝑔
𝑐𝑜𝑠ሺ𝜇

𝑇𝑒 =
𝜆

𝑐 − 𝑈 × 𝑐𝑜𝑠𝜇



Coordinate Systems

• We have several coordinate systems for 
different purposes 

➢ Ship CoG or body bound system – xB
➢ Earth bound system – xE
➢ Steadily translating system xi

(a)

(b)

• Considering transformation of coordinates 
for a regular wave propagating at an angle α 
(from A X’ Y’ Z’ to A X Y Z) as illustrated in 
(b)

𝑋′ = 𝑋 𝑐𝑜𝑠 𝛼 + 𝑌 𝑠𝑖𝑛 𝛼

• Then the transformation to the ship’s-fixed

coordinate system (oxy) coordinate system:

𝑋 = 𝑥 + 𝑉𝑠𝑡, Y=y



Definition of headings

The heading angle determines the “type” of seas the

ship experiences. Heading angles are defined as

follows :

• 𝜇 = 00 – following seas

• 𝜇 = 1800 – head seas

• 𝜇 = 900 – starboard beam seas

• 𝜇 = 2700 -port beam seas

• 0 ≤ 𝜇 ≤ 900 – quartering waves on the ship

starboard side

• 2700 ≤ 𝜇 ≤ 3600 – quartering waves on the

ship port side

• 900 ≤ 𝜇 ≤ 1800 -bow waves on the starboard

side

• 1800 ≤ 𝜇 ≤ 2700 – bow waves on the port side



Ships frequency ωn, in waves of frequency ωe

Quasi-static

Resonance

Dynamic



Equation of Motion – steadily translating system

The harmonic motion components of CoG in steadily translating system are (note differences in 

phase angles) given below. We should know those to evaluate motions. 

CG
x

z

y

  (x, t)

w(x, t)

F

T

Primary component
Secondary 

response

Secondary

response



Equation of Motion

As the functions of motion are trigonometric, there is relation between displacement, velocity and 

acceleration, i.e. 

With these relations, the equation of motion for all 6 

components is given as



Summary and next steps

• We have 6 degrees of freedom motion system 

➢ Derived from forced, damped vibration

➢ Solution can be derived in time or frequency 

domain if harmonic excitation is assumed

• Once the motion components in steadily oscillating 

system are known, the motions at any other point of the 

rigid body can be derived using superposition

• Next we derive the terms for equation of motion 

assuming small motions



Thank you !


