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6 Lecture 6

Ship motions in regular waves

Moving through water is different than moving through air. This is partly because water is denser and
more viscous than air (i.e. damping is increased). This motion requires the water surrounding the
floating body to be accelerated. This extra required force shows up in the equation of motion as an
addition to the mass of the object known as the added mass. It therefore represents the amount of
fluid accelerated by the object. However, something to keep in mind is that the particles of fluid
adjacent to the body will also accelerate to varying degrees and the added mass value is a weighted
integration of the entire fluid mass effected by the accelerating object.

In this sense the equation of motion of a ship in water can be simplified to read:

(𝑎 + 𝑚)𝑥 +̈ 𝑏𝑥 +̇ 𝑐𝑥 = 𝐹0𝑠𝑖𝑛(𝜔𝑡) (6-1)

where a stands for added mass, b is the hydrodynamic damping, c is the stiffness, F is the excitation
due to external environment (assumed herby sinusoidal) and the 𝑥 - variables represent the response
(acceleration 𝑥 ̈, velocity 𝑥 ̇and displacement 𝑥). Both the added mass and hydrodynamic damping
coefficients are a function of the frequency of oscillation. However, added mass depends primarily
on the shape of the object, the type of motion (linear or rotational), and the direction of the motion.
In this way, added mass differs from just mass since mass is a quantity independent of motion.
Hydrodynamic damping is related to the viscosity of the fluid (and hence the frictional drag).
However, when a free surface is involved the damping is dominated by the generation of waves. The
larger the waves generated, the larger the hydrodynamic damping. Each degree of freedom that has
a restoring force has an associated natural frequency. So, for a ship, there is a natural frequency in
heave, roll, and pitch. These natural frequencies depend on the mass and stiffness properties of the
system.

For a ship with port-starboard symmetry (e.g. typical ocean going or naval vessel) the coupled
motions of heave – pitch and sway – roll – yaw can be examined separately during seakeeping
analysis. Of these five motions only heave pitch and roll have a restoring force or moment. The forces
provided due to the effects of added mass and damping are referred to as hydrodynamic forces. They
arise from pressure distribution around the oscillating hull.

In the following sections the equations of motion heave and pitch and coupled heave pitch and roll
will be examined as an introduction to understanding the mathematical background to the
seakeeping problem.
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6.1 Uncoupled heave motion

Let us consider the case of a ship in still water which is subject to a mechanical excitation in the form
of an upward force 𝐹𝑧(𝑡) leading to heave displacement 𝑧(𝑡). According to the theory explained in
Lecture 5 the linear equation of motion for this 1 DOF system will be:

𝑀𝑧𝑧𝑧 +̈ 𝑁𝑧𝑧𝑧 +̇ 𝐶𝑧𝑧𝑧=𝐹𝑧(𝑡) (6-2)

For a sinusoidally varying mechanical excitation 𝐹𝑧(𝑡) = 𝐹1𝑒𝑗𝜔𝑡. Assuming 𝐹1 is a force vector of
constant amplitude the response will also be sinusoidal namely 𝑧(𝑡) = 𝑍𝑒𝑗(𝜔𝑡−𝜀) where 𝑍 is the
amplitude of excitation and ε the phase lag of the response. Accordingly:

𝑍 = 𝐹1

(𝐶𝑧𝑧−𝜔2 𝑀𝑧𝑧 )2+(𝜔𝑁𝑧𝑧)2 
  and 𝑡𝑎𝑛𝜀 = ω𝑁𝑧𝑧

(𝐶𝑧𝑧−𝜔2𝑀𝑧𝑧) (6-3)

where :

 𝐶𝑧𝑧𝑧 = 𝜌𝑔𝐴𝑤𝑧 is the hydrostatic heave restoring force (see Figure 6-1) with 𝜌 representing
the water density (kg/m3) ; g the acceleration of gravity (m/s2) and Aw the still water lane
area (m2).’

 𝑁𝑧𝑧𝑧 ̇is the heave damping force provided by the surrounding water
 𝑁𝑧𝑧 is the heave damping coefficient.
 Mzz = m + mzz is the virtual mass of the ship where the mass of the ship is m = ρ𝛻 and mzz is

the heave added mass.

Figure 6-1  Demonstration of uncoupled heave motion. Underwater shaded areas indicate portion of hull underwater
section.

The forces provided due to the effect of added mass and damping are the hydrodynamic forces.
They arise from pressure distribution around the oscillating hull. In linear hydrodynamic theory the
force has a component proportional to the acceleration (i.e. added mass) and a component
proportional to the velocity (i.e. damping coefficient). To understand the effect of waves we have to
consider the effect of the relative position of the ship with respect to waves. If we ignore the
hydrodynamic effects and apply Newton’s second law of motion (see Lecture 5) then for the
uncoupled heave case :
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𝑚𝑧 =̈ −𝑊 + ∆ − 𝐶𝑧𝑧(𝑧 − ϛ) 𝑜𝑟 𝑚𝑧 +̈ 𝐶𝑧𝑧𝑧 = 𝐶𝑧𝑧ϛ (6-4)

where ϛ is the wave profile defined with respect to the still water line and z-ϛ is called the relative
displacement. Assuming that the hydrodynamic effects are proportional to the relative velocity and
acceleration the equation of motion in waves becomes:

𝑚𝑧 = −𝑚𝑧𝑧(𝑧 −̈ ϛ̈) − 𝑁𝑧𝑧(𝑧 −̇ ϛ̇) − 𝐶𝑧𝑧(𝑧 − ϛ)̈ (6-5)

Or

(𝑚 + 𝑚𝑧𝑧)𝑧 +̈ 𝑁𝑧𝑧𝑧 +̇ 𝐶𝑧𝑧𝑧 = 𝑚𝑧𝑧 ϛ̈̈ + 𝑁𝑧𝑧 ϛ̇ + 𝐶𝑧𝑧ϛ = 𝐹𝑧(𝑡) (6-6)

Although the above rather simplistic Eq.(6-6) shows that for a ship in waves the surrounding fluid not
only provides the hydrostatic and hydrodynamic terms but also the wave excitation which is a
function of the wave acceleration, velocity and displacement.

For a stationary ship in a regular wave train of frequency ω the excitation term becomes:

𝐹𝑧(𝑡) = 𝐹𝑧𝑠𝑠𝑖𝑛(𝜔𝑡) + 𝐹𝑧𝑐𝑐𝑜𝑠(𝜔𝑡) = 𝐹𝑧𝑠𝑖𝑛(𝜔𝑡 + 𝜓) (6-7)

The amplitude of the wave excitation are defined as :

𝐹𝑧 = 𝐹𝑧𝑠
2 + 𝐹𝑧𝑐

2  for 𝐹𝑧𝑠 = 𝐹𝑧𝑐𝑜𝑠𝜓    and 𝐹𝑧𝑐 = 𝐹𝑧𝑠𝑖𝑛𝜓 (6-8)

Thus Eq. (6-6)  can be re-written as

𝑀𝑧𝑧𝑧 +̈ 𝑁𝑧𝑧𝑧 +̇ 𝐶𝑧𝑧𝑧=𝐹𝑧𝑠𝑖𝑛(𝜔𝑡 + 𝜓) = 𝐹𝑧𝑒𝑗(𝜔𝑡+𝜓) (6-9)

The response to this excitation is 𝑧(𝑡) = 𝑍𝑠𝑖𝑛(𝜔𝑡 + 𝜓 − 𝜀) or in complex notation 𝑧(𝑡) =
𝑍𝑒𝑗(𝜔𝑡+𝜓−𝜀).

Thus, by substitution to Eq. (6.3) we obtain :

𝑍[(𝐶𝑧𝑧 − 𝜔2𝑀𝑧𝑧)𝑠𝑖𝑛(𝜔𝑡 + 𝜓 − 𝜀) + 𝜔𝑁𝑧𝑧𝑐𝑜𝑠(𝜔𝑡 + 𝜓 − 𝜀)] = 𝐹𝑧𝑠𝑖𝑛(𝜔𝑡 + 𝜓) (6-10)

An easy way to obtain the heave amplitude (Z) and phase lag (ε) from Eq.(6-10) is to consider the
following two cases:

𝜔𝑡 + 𝜓 − 𝜀 = 0𝑙𝑒𝑎𝑑𝑖𝑛𝑔𝑡𝑜𝑍𝜔𝑁𝑧𝑧 = 𝐹𝑧si n(𝜀) (6-11)

𝜔𝑡 + 𝜓 − 𝜀 = 𝜋/2    leading to 𝑍(𝐶𝑧𝑧 − 𝜔2𝑀𝑧𝑧) = 𝐹𝑧cos (𝜀) (6-12)

Squaring equations (6-11) and (6-12) and adding them produces the heave amplitude as follows :

𝑍 = 𝐹𝑧/ (𝐶𝑧𝑧 − 𝜔2 𝑀𝑧𝑧  )2 + (𝜔𝑁𝑧𝑧)2  (6-13)

Dividing Eq. (6-11) by Eq. (6-12) defines the phase lag as

𝑡𝑎𝑛(𝜀) =ω𝑁𝑧𝑧/(𝐶𝑧𝑧 − 𝜔2𝑀𝑧𝑧) (6-14)
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For a ship progressing in regular waves with forward speed U and heading χ the variation of the wave
elevation (and wave velocity and acceleration) with time is sinusoidal with the wave encounter
frequency (ωe). Thus Eq. (6-9) becomes:

𝑀𝑧𝑧𝑧 +̈ 𝑁𝑧𝑧𝑧 +̇ 𝐶𝑧𝑧𝑧=𝐹𝑧𝑠𝑖𝑛(𝜔𝑒𝑡 + 𝜓) = 𝐹𝑧𝑒𝑗(𝜔𝑒𝑡+𝜓) (6-15)

In the above equation the amplitude and phase of the wave sinusoidal wave excitation is proportional
to the wave amplitude and is a function of the wave frequency and the ship’s forward speed and
heading.

The hydrodynamic damping coefficient and added mass are not constant values but they vary with
the frequency of the ship’s oscillation, i.e. 𝑚𝑧𝑧 = 𝑚𝑧𝑧(𝜔𝑒) ; 𝑁𝑧𝑧 = 𝑁𝑧𝑧(𝜔𝑒) 𝑎𝑛𝑑 𝐹𝑧 = 𝑎𝐹𝑧(𝜔, 𝜔𝑒).
Thus in more explicit form Eq. (6-15) becomes:

[𝑚 + 𝑚𝑧𝑧(𝜔𝑒)]𝑧 +̈ 𝑁𝑧𝑧(𝜔𝑒)𝑧 +̇ 𝐶𝑧𝑧𝑧 = 𝑎𝐹(𝜔, 𝜔𝑒)𝑠𝑖𝑛(𝜔𝑒𝑡 + 𝜓) = 𝐹𝑧(𝜔, 𝜔𝑒)𝑒𝑗(𝜔𝑒𝑡+𝜓) (6-16)

and the heave amplitude and phase lag are:

𝑍 = 𝑎𝐹𝑧(𝜔,𝜔𝑒)

𝐶𝑧𝑧−𝜔𝑒
2 𝑚+𝑚𝑧𝑧(𝜔𝑒) 2+[𝜔𝑒𝑁𝑧𝑧(𝜔𝑒)]2

  and 𝑡𝑎𝑛𝜀 = 𝜔𝑒𝑁𝑧𝑧(𝜔𝑒)
𝐶𝑧𝑧−𝜔𝑒

2 𝑚+𝑚𝑧𝑧(𝜔𝑒) (6-17)

If we assume free motions in waves then Eq. (6-16) becomes:

[𝑚 + 𝑚𝑧𝑧(𝜔𝑒)]𝑧 +̈ 𝑁𝑧𝑧(𝜔𝑒)𝑧 +̇ 𝐶𝑧𝑧𝑧 = 0 (6-18)

Analytical solution of this equation is not possible due to the presence of coefficients which are not
constants but functions of the encounter frequency. Nevertheless, the free heave displacement will
be exponentially decaying oscillatory function of time. For undamped motion

[𝑚 + 𝑚𝑧𝑧(𝜔𝑒)]𝑧 +̈ 𝐶𝑧𝑧𝑧 = 0 (6-19)

 leading to the characteristic equation

𝐶𝑧𝑧𝑧 − 𝜔𝑒
2[𝑚 + 𝑚𝑧𝑧(𝜔𝑒)] = 0 (6-20)

that cannot be solved analytically. However, as it can be seen from Fig. 6.2a it is possible to assume
a constant value of added mass namely 𝑚𝑧𝑧 = 𝑚𝑧𝑧(𝜔𝑒 → ∞) and therefore the heave natural
frequency in water can be approximated as :

𝜔3𝑛 = 𝑐𝑧𝑧
𝑚+𝑚𝑧𝑧

(6-21)

6.2 Uncoupled pitch motion

If we consider that the ship is an 1DOF system subject to pitch excitation namely θ(t) then the
corresponding mathematical expression to Eq. (6-16) is :

𝐼𝑦𝑦 + 𝐼𝜗𝜗(𝜔𝑒) 𝜗 +̈ 𝑁𝜗𝜗(𝜔𝑒)𝜗 +̇ 𝐶𝜗𝜗𝜗 = 𝑀𝜗(𝜔, 𝜔𝑒)𝑒𝑗(𝜔𝑒𝑡+𝑢) (6-22)
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where :

𝐼𝑦𝑦  is the mass moment of inertia about axis Oy

𝐼𝜗𝜗 is the pitch added mass moment of inertia

𝑁𝜗𝜗 is the pitch damping coefficient

𝐶𝜗𝜗 = 𝜌𝑔𝐼𝑙𝑜𝑛𝑔  for 𝐼𝑙𝑜𝑛𝑔 = 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 2𝑛𝑑 𝑚𝑜𝑚𝑒𝑛𝑡 𝑜𝑓 𝑤𝑎𝑡𝑒𝑟 𝑝𝑙𝑎𝑛𝑒 𝑎𝑟𝑒𝑎

𝑀𝜗 is the amplitude of the wave excitation vector

The solution of this equation is similar to the one presented in Eq. (6-17). The pitch natural frequency
in water can be approximated as

𝜔𝑝 = 𝑐𝜃𝜃
𝐼𝑦𝑦+𝐼𝜃𝜃

(6-23)

where 𝐼𝜃𝜃 = 𝐼𝜃𝜃 → ∞.

6.3 Coupled heave and pitch motions

The coupled equations of motion for heave and pitch can be expressed in matrix format as:

𝑚 + 𝑚𝑧𝑧 𝑚𝑧𝜃
𝑚𝜃𝑧 𝐼𝑦𝑦 + 𝐼𝜃𝜃

× 𝑧̈
𝜃̈ + 𝑁𝑧𝑧 𝑁𝑧𝜃

𝑁𝜃𝑧 𝑁𝜃𝜃
× 𝑧̇

𝜃̇ + 𝐶𝑧𝑧 𝐶𝑧𝜃
𝐶𝜃𝑧 𝐶𝜃𝜃

× 𝑧
𝜃 = 𝐹𝑧(𝜔, 𝜔𝑒)𝑒𝑗(𝜔𝑒𝑡+𝜓)

𝑀𝜗(𝜔, 𝜔𝑒)𝑒𝑗(𝜔𝑒𝑡+𝑢) (6-24)

In this equation in addition to heave added mass 𝑚𝑧𝑧 and pitch added inertia 𝐼𝜃𝜃  we have two
additional heave into pitch (and pitch into heave) added mass terms namely 𝑚𝑧𝜃 and 𝑚𝜃𝑧. Similarly,
in addition to heave damping 𝑁𝑧𝑧 and pitch damping 𝑁𝜃𝜃 coefficients we have the heave into pitch
(and pitch into heave) terms defined as 𝑁𝑧𝜃 and 𝑁𝜃𝑧 respectively. There are no terms in the form of
first moments of mass in the inertia matrix. The heave into pitch restoring terms are defined as :

𝐶𝑧𝜃 = 𝐶𝜃𝑧 = 𝜌𝑔𝑀𝑙 (6-25)

where 𝑀𝑙 = ∫ 𝑥𝐵(𝑥)𝑑𝑥 
𝐿  represents the longitudinal first moment of water plane area and 𝐵(𝑥) is

the beam in way of the water line.

The above equations indicate that coupling takes place through hydrodynamic and hydrostatic
actions. All added masses and damping coefficients are dependent on the frequency of oscillation.

6.4 6.4 Roll in small amplitudes

There are three rotational degrees of freedom namely roll, pitch and yaw and each have a subscript
number associated with the direction. For typical ship shapes, the radii of gyration have a relationship
to the ship’s geometry. So, in general, 𝑘4 = 0.3 × 𝐵𝑊𝐿  (for roll); 𝑘5 = 0.25 × 𝐿𝑝𝑝 (for pitch); 𝑘6 =
0.25 × 𝐿𝑝𝑝 (for yaw). If we assume that a ship rolls in small oscillation format about her center of
mass which is usually close to the undisturbed water line then dynamics are described by the
equation :
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𝐽𝑥𝑥 + 𝐼𝜑𝜑(𝜔) 𝜑 + 𝑁𝜑𝜑(𝜔)𝜑 + 𝐶𝜑𝜑𝜑 = 𝐾𝜑(𝑡) (6-26)

where :

𝐾𝜑(𝑡) is a sinusoidal mechanical excitation producing a rolling moment 𝐾𝜑(𝑡) = 𝐾1𝑒𝑗𝜔𝑡

φ is the angle of roll

Ixx is the mass moment of inertia about the longitudinal axis through the centre of mass

Cφφ = ΔGMT=ρg∇GMT is the hydrostatic roll restoring coefficient

Iφφ = roll added inertia (frequency of oscilation dependent)

Nφφ = roll damping coefficient due to hydrodynamic effects associated with fin and tank stabilizaers

It is noted that roll damping increases with forward speed. The increase in damping results in a
smaller maximum resonant peak, but also a slight reduction in the frequency at which the peak
response will occur. The mass of a ship is determined by its total weight or displacement. Thus
rotational inertia associated with roll are determined by the distance of each weight from center of
gravity. The further the heaviest weights are from the CG, the larger the rotational moment of inertia.
If all of the masses were located equidistant from the center of gravity the moment of inertia would
be easy to calculate and would be equal to the total mass times the distance from the CG squared. If
the roll added inertia and damping coefficients are constant the free damped equation of motion
becomes

𝐽𝑥𝑥 + 𝐼𝜑𝜑(𝜔) 𝜑 + 𝑁𝜑𝜑(𝜔)𝜑 + 𝐶𝜑𝜑𝜑 = 0 (6-27)

and if we ignore damping

𝐽𝑥𝑥 + 𝐼𝜑𝜑(𝜔) 𝜑 + 𝐶𝜑𝜑𝜑 = 0 (6-28)

Although the mass in a ship is never located equidistant from the center of gravity, we can find the
representative distance the mass would need to be were the ship a sphere. This representative
distance is the radius of gyration, k. If we have the radius of gyration, we can find the ship’s moment
of inertia. Accordingly. Eq.(6-28) leads to

𝜌∇(𝑘𝑥𝑥
2 𝜑 + 𝑔𝐺𝑀𝑇𝜑)=0 (6-29)

where the roll radius of gyration 𝑘𝑥𝑥
 is defined as 𝐼 = 𝐼𝑥𝑥 + 𝐼𝜑𝜑 = 𝑚𝑘𝑥𝑥 = 𝜌∇𝑘𝑥𝑥

2 . and the roll
natural frequency including the effects of added inertia becomes

𝜔𝜑 = 𝐶𝜑𝜑

𝐼𝑥𝑥+𝐼𝜑𝜑

𝑔𝐺𝑀𝑇
𝑘𝑥𝑥

2 (6-30)

If we define the constant roll damping coefficient as 𝑁𝜑𝜑 = 2ϛ 𝐼𝑥𝑥 + 𝐼𝜑𝜑 𝜔𝜑  the damped equation
of motion in still water after dividing terms by the inrtia term becomes :

𝜑 + 2ϛ𝜔𝜑𝜑̈ + 𝜔𝜑
2 𝜑 = 0 (6-31)
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where ϛ is the damping ratio.

For a ship rolling in long beam waves (i.e. waves that are long compared to her beam) the
instantaneous wave surface can be represented by the wave slope shown in Figure 6-2.

Figure 6-2  Illustration of Roll motion

If we ignore the effects of roll damping associated hydrodynamic forces (and any other
environmental forces such as current, wind etc.) and we only consider the hydrostatic buoyancy force
acting perpendicular to the wave surface (i.e. the wave slope) then taking moments about G (see
Figure 6-2) leads to the equation of motion for small angles becomes:

𝐼𝑥𝑥𝜑 = −𝜌𝑔∇𝐺𝑀𝑇𝑠𝑖𝑛(𝜑 − 𝛼) → 𝜌𝑔∇𝐺𝑀𝑇(𝜑 − 𝛼) (6-32)

William Froude experimental observations indicate that for such representation the use of maximum
surface wave slope is recommended. This is because the wave slope has the same representation as
the wave profile. Having obtained a simplified form of wave excitation (valid essentially for long
waves) we can generalize including the effects of damping and added inertia namely :

𝐽𝑥𝑥 + 𝐼𝜑𝜑 𝜑 + 𝑁𝜑𝜑𝜑 + 𝐶𝜑𝜑𝜑 = 𝐾𝜑𝑐𝑜𝑠(𝜔𝑡) (6-33)

The response to this sinusoidal excitation is 𝜑(𝑡) = 𝛷𝑐𝑜𝑠(𝜔𝑡 − 𝜀) ; thus, by substitution to Eq (6-33)
we obtain:

𝐶𝜑𝜑 − 𝜔2 𝐼𝑥𝑥 + 𝐼𝜑𝜑 𝛷𝑐𝑜𝑠(𝜔𝑡 − 𝜀) − 𝜔𝑁𝜑𝜑𝛷𝑠𝑖𝑛(𝜔𝑡 − 𝜀) = 𝐾𝜑𝑐𝑜𝑠(𝜔𝑡) (6-34)
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An easy way to obtain the roll amplitude (Φ) and phase lag (ε) from Eq.(6-16) is to consider the
following two cases:

𝜔𝑡 − 𝜀 = 𝜋
2

𝑙𝑒𝑎𝑑𝑖𝑛𝑔𝑡𝑜 − 𝛷𝜔𝑁𝜑𝜑 = −𝐾𝜑si n(𝜀) (6-35)

𝜔𝑡 − 𝜀 = 0    leading to 𝛷 𝐶𝜑𝜑 − 𝜔2 𝐼𝑥𝑥 + 𝐼𝜑𝜑 = 𝐾𝜑cos (𝜀) (6-36)

Squaring equations (6-35) and (6-36) and adding them produces the roll amplitude as follows :

𝛷 = 𝐾𝜑

𝐶𝜑𝜑−𝜔2 𝐼𝑥𝑥+𝐼𝜑𝜑  2+ 𝜔𝑁𝜑𝜑
2 

  (6-37)

Dividing Eq. (6-35) by Eq. (6-36) defines the phase lag as

𝑡𝑎𝑛𝜀 = 𝜔𝑁𝜑𝜑

𝐶𝜑𝜑−𝜔2 𝐼𝑥𝑥+𝐼𝜑𝜑
(6-38)

The amplitude and phase lag of the roll oscillation can be put into the following form

𝛷 = 𝑎𝑚
[1−𝛬2 ]2+(2ϛ𝛬)2 

= 𝜇𝑎𝑚  and 𝑡𝑎𝑛𝜀 = 2ϛ𝛬
(1−𝛬2)2 (6-39)

where 𝜇 is referred to as the magnification factor and 𝛬 = 𝜔
𝜔𝜑

 is the tunning factor. Both 𝜇 and

amplitude 𝑎𝑚 vary with the frequency of oscillation. At resonance 𝛬 = 1 and 𝛷𝑟𝑒𝑠 = 𝑎𝑚
2ϛ

.

For a ship moving in regular waves with forward speed U and heading angle χ and equation of motion
similar to Eqs. (6-16) and (6-22) can be written as:

𝐼𝑥𝑥 + 𝐼𝜑𝜑(𝜔) 𝜑 + 𝑁𝜑𝜑(𝜔)𝜑 + 𝐶𝜑𝜑𝜑 = 𝐾𝜑(𝜔, 𝜔𝑒)𝑠𝑖𝑛(𝜔𝑒𝑡 + 𝛿) = 𝐾𝜑(𝜔, 𝜔𝑒)𝑒𝑗(𝜔𝑒𝑡+𝛿) (6-40)

where the hydrodynamic coefficients and the wave excitation are evaluated from potential flow
hydrodynamic theory.

6.5 6.5 Roll in large amplitudes

In Lecture 2.3 we briefly reviewed different stabilisation systems that may be used for controlling
large amplitude motions. Here we briefly address some of the mathematical basis of the problem.

The main problem with roll motion is that large amplitudes may cause discomfort compared to other
motions. The amount of damping which is provided by the fluid is not always sufficient to reduce the
roll amplitude to acceptable levels. Therefore, additional mechanisms are commonly in use to
increase the amount of roll damping. These can be grouped as (i) passive systems which make use of
the roll motion and do not require any power source and control system (ii) active systems which use
power to move masses or control surfaces and a control system. Typical passive systems are bilge
keels, fixed fins, passive tanks and passive moving weights. Bilge keels are longer than fins
(approximately 2/3 of a sip’s length), whilst fins have longer chord length. Typical active systems are
moving fins (retractable or not), active tans and moving weights. For roll stabilisation with active fins
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the equation of motion has some additional terms on the right hand side which are referred to as
three term controller:

𝐼𝑥𝑥 + 𝐼𝜑𝜑(𝜔) 𝜑 + 𝑁𝜑𝜑𝜑 + 𝐶𝜑𝜑𝜑 = 𝐾𝜑(𝑡) + 𝐶(𝐶1𝜑 − 𝐶2𝜑 + 𝐶3𝜑) (6-41)

Moving the terms relating to 𝜑 to the left hand side of the equation leads to

𝐼𝑥𝑥 + 𝐼𝜑𝜑(𝜔) − 𝐶𝐶1 𝜑 + 𝑁𝜑𝜑 + 𝐶𝐶2 𝜑 + 𝐶𝜑𝜑 − 𝐶𝐶3 𝜑 = 𝐾𝜑(𝑡) (6-42)

as it can be seen 𝐶1 and 𝐶3decrease with virtual mass moment of inertia and restoring moment whilst
𝐶2 increases the damping. 𝐶  is associated with the lift generated by the fin stabilizers and can be
evaluated from the flow around airfoils as :

𝐶 = 𝜌𝑎𝐴𝑉2 𝜕𝐶𝐿
𝜕𝑎𝐿

(6-43)

where

𝑎 is the distance from roll axis to center of pressure fin

𝐴 is the fin area (i.e. the product of fin chord and span)

𝑉 is the velocity into the fin usually assumed to be equivalent to U, i.e. the forward speed of the ship

𝑎𝐿 is the angle of attack

𝜕𝐶𝐿
𝜕𝑎𝐿

 is the slope of the lift coefficient surve

Typical damping ratios without any active or passive measures are 0.05 – 0.1. With the use of active
stabilizers the damping ratio can be increased to 0.5 – 0.8.

6.6 Idealisation of responses in regular waves

To predict the ship motion in a set of regular waves, we need to have a way to predict the ship
response as a function of the excitation amplitude and frequency. Names for this relationship include
Frequency Response Function (FRF) recognized by naval architects as the Response Amplitude
Operator (RAO) or Transfer Function (TF). In all cases, the result can be represented as a plot with
the ratio of ship response to excitation amplitude on the vertical axis and the ratio excitation
frequency to natural frequency on the horizontal axis. Figure 6-3 shows a typical transfer function for
roll motion. The response depends on the ship mass, added mass, hydrodynamic damping, buoyancy
and excitation frequency in the direction of motion. For the zero forward ship speed case the
excitation frequency would match the wave frequency. However, when the ship has forward speed
the excitation frequency depends on the wave frequency and the relative direction of the ship and
waves. This resulting excitation frequency is the encounter frequency since it is the frequency at
which the ship encounters the waves. Figure 6-4 demonstrates the influence of stabilizers on ship roll
motion.
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Figure 6-3 Typical ship transfer function for Roll

Figure 6-4 Influence of passive tank stabilization on ship roll RAO (roll/wave slope)

Variation of the nondimensionalized heave added mass, damping coefficient and excitation
amplitude (for head waves of amplitude 1m) are shown in Figure 6-5 (a,b,c). as a function of the
encounter frequency for a naval ship. Note that the variations of added mass and damping
coefficients with speed are very small whilst those of the wave excitation are significant. The
corresponding heave amplitude (per unit wave amplitude, i.e. the Response amplitude Operator) is
sown in Figure 6-5d for head waves. Both amplitudes and phases of the wave excitation terms are
functions of wave and wave encounter frequencies. Examples of heave (m/m) and pitch (rad/m)
RAOs for a naval ship are shown in Figure 6-6. In these figures three different axes were used to
illustrate the variation of the RAOs namely ωe, L/λ and λ/L; where L : ship length and λ : wave length.
It is interesting to note that the peaks of heave and pitch occur in the viscinity of L = λ. This
phenomenon is called ship wave matching.
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Figure 6-5 Typical nondimensionalized heave added mass, damping coefficients and excitation amplitude for a naval
ship.

Figure 6-6  Examples of heave (m/m) and pitch (rad/m) RAOs for a naval ship


