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7 Lecture 7

Seakeeping methods

The birth of modern seakeeping analysis was in the mid 20th Century as demonstrated by the
landmark papers of (Ursell 1949a, Ursell 1949b), and (St Dinis and Pierson Jr 1953). Continuous
refinements of analysis methods and mathematical techniques combined with the availability of
high-performance desktop computers in the late 20th Century has made routine seakeeping analysis
possible in design offices. Today designers have several seakeeping tools to choose from and apply
at preliminary design stage. This lecture primarily discusses the basic hydrodynamic modelling
methods for the evaluation of seakeeping responses using two- and three-dimensional potential flow
models. A brief overview to nonlinear hydrodynamic methods is also made.

7.1 Evaluation of hydrodynamic forces

In traditional seakeeping the problem of linear ship motions in waves is usually numerically tackled
by examining three different types of forces, in addition to the restoring forces of hydrostatic origin.
Those are:

 Radiation forces (or moments) where the ship is assumed to oscillate in calm seas and
accordingly the hydrodynamic added inertia and damping coefficients are determined in still
water conditions

 Incident wave or Froude - Krylov forces (or moments) where the wave is considered in the
absence of the ship and the corresponding wave forces (or moments) acting on the ship are
determined. NB: In linear hydrodynamics we assume small displacements, i.e. “true”, wetted
surface is not considered.

 Diffraction forces (or moments) where the effects of the presence of the ship on the waves
are considered and the corresponding diffracted wave forces (or moments) are determined.

The evaluation of these force components within the context of linearity implies that a ship is subject
to an incident wave that is progressive, regular and harmonic (see Lectures 3,4). Progressive means
that it has a translation speed known as celerity. Regular means that the spatial variation of the wave
component is repetitive and is expressed by the wavelength λ. Accordingly the spatial frequency is

the wave number 𝑘 = 2𝜋
𝜆

. Harmonic means that the variation of the waveform repeats itself after a

time interval T known as the wave period. The associated circular frequency to this wave period is

defined as 𝜔 = 2𝜋
𝑇

. The velocity potential associated with the incident wave is determined using

linearized description of fluid structure interaction. This is achieved by utilizing the velocity potential
function 𝛷(𝑥, 𝑦, 𝑧, 𝑡) which describes the fluid flow arising from the existence of the incident wave
system. The fluid is assumed to be inviscid and incompressible and fluid flow is assumed to be
irrotational and accordingly:

 ∇2𝛷 = 0 everywhere in the fluid due to incompressibility and irrotationality conditions
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 𝜕2𝛷
𝜕𝑡2 + 𝜕𝛷

𝜕𝑦
= 0 on the undisturbed free surface (y = 0) due to requirements for continuity of

pressure and velocity across the surface

 𝜕𝛷
𝜕𝜂

= 0 on the impermeable seabed

Figure 7-1 Radiation and diffraction idealization in way of adjustment arbitrary structures

If we assume that the ship is held rigid then the incident wave will strike different parts of the hull at
different times. It takes an initial period before the ship structure becomes aware of the existence of
a steady state (i.e. the situation for which the loading and responses of the structure are harmonic).
The period of time that lapses prior to the persistence of the steady state is known transient. This
transient period gives rise to a phase shift between the harmonic incident wave and the diffraction.
The fluid flow is described by the sum of incident and diffraction potentials :

𝛷 = 𝛷𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 + 𝛷𝑑𝑖𝑓𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 (7-1)

The linearized dynamic wave excitation pressure over a dS elemental area is defined as :

𝐹𝑘
𝑒𝑥𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛 = − ∫ 𝑝𝑒𝑥𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑛𝑘𝑑𝑆 

𝑆𝑤
= −𝜌 𝜕

𝜕𝑡
𝛷𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 + 𝛷𝑑𝑖𝑓𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 (7-2)

where :

𝑘 (=1,2…,6) are the six scalars corresponding to excitations in 6-DOF namely (surge, sway, heave, roll,
pitch, yaw)

𝑛𝑘 is the unit vector in way of the excitation in 6-DOF

𝑆𝑤 is the surface of the ship structure in way of which 𝑛𝑘 applies

The total excitation force is expressed as
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𝐹𝑘
𝑒𝑥𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛 = 𝐹𝑘

𝐹𝑟𝑜𝑢𝑑𝑒− 𝐾𝑟𝑦𝑙𝑜𝑣 + 𝐹𝑘
𝐷𝑖𝑓𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 (7-3)

where:

𝐹𝑘
𝐹𝑟𝑜𝑢𝑑𝑒− 𝐾𝑟𝑦𝑙𝑜𝑣 = −𝑗𝜔𝜌 ∫ 𝜑𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝑛𝑘𝑑𝑆𝑒−𝑗𝜔𝑡 

𝑆𝑤
(7-4)

𝐹𝑘
𝐹𝑟𝑜𝑢𝑑𝑒− 𝐾𝑟𝑦𝑙𝑜𝑣 = −𝑗𝜔𝜌 𝜑𝑑𝑖𝑓𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑛𝑘𝑑𝑆𝑒−𝑗𝜔𝑡

 

𝑆𝑤
(7-5)

The first term on the right hand side of Eq.(7-3) is equivalent to summing the pressure due to the
progression of a regular harmonic wave acting on a virtual structure of the same shape and position
as the actual structure. The second term represents the extent of the interaction of the incident wave
with the ship. Having investigated the interaction of the incident wave with the fixed structure
(namely diffraction) we can next consider the forced oscillation of the structure in calm waters. The
reactive or radiation forces and moments are expressed as :

𝐹𝑘𝑗
 = − ∫ 𝑝𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛𝑛𝑘𝑑𝑆 

𝑆𝑤
= ∫ 𝜌 𝜕

𝜕𝑡
𝜑𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛

𝑗 𝑛𝑘𝑑𝑆 = −𝑗𝜔𝜌 
𝑆𝑤

∫ 𝜑𝑗𝑛𝑘𝑑𝑆𝑒−𝑗𝜔𝑡 
𝑆𝑤

(7-6)

Given that we have 6 force components (k) in 6 different directions of motion (j) there would be 36
values of 𝐹𝑘𝑗

  at each incident wave frequency ω. If we resolve the radiation forces into added mass
and fluid damping then

𝐹𝑘𝑗
 = −𝐴𝑘𝑗𝑠𝑗 − 𝐵𝑘𝑗𝑠𝑗 (7-7)

leading to

𝐴𝑘𝑗 = 𝜌
𝑎𝑗𝜔 ∫ 𝜑𝑗𝑛𝑘𝑑𝑆 

𝑆𝑤 (7-8)

𝐵𝑘𝑗 = −
𝜌
𝑎𝑗

𝜑𝑗𝑛𝑘𝑑𝑆
 

𝑆𝑤
(7-9)

7.2 Equations of motion in 6-DOF

According to Newton’s 2nd law of motion the rate of change of linear or angular momentum is equal
to the sum of the external forces and moments acting on the ship structure. Thus, for translation and
rotation in the jth degree of freedom :

𝑑𝑀𝑆𝑗

𝑑𝑡
= 𝐹𝑒𝑥𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛 + 𝐹𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 + 𝐹ℎ𝑦𝑑𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐 + 𝐹𝑜𝑡ℎ𝑒𝑟 (7-10)

𝑑𝐼𝑗𝑗𝑆𝑗

𝑑𝑡 = 𝑀𝑒𝑥𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛 + 𝑀𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 + 𝑀ℎ𝑦𝑑𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐 + 𝑀𝑜𝑡ℎ𝑒𝑟 (7-11)

The arbitrary shape of the structure means that all motions are coupled. Consequently, the radiation
forces in the jth direction will have contributions from motions in all 6-DOF. The hydrostatic restoring
forces based on Archimedes principle involve only the vertical plane motions for heave roll and pitch.
Those arguments allow us to write down the six equations of motion as :
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−𝜔2𝑀𝑠𝑘 = 𝐹𝑘𝑒𝑥𝑐𝑖𝑡𝑒 − ∑ −𝜔2𝐴𝑘𝑗 − 𝑖𝜔𝐵𝑘𝑗 𝑠𝑗
6
𝑗=1 − ∑ 𝐶𝑣𝑗𝑠𝑗𝑗=3,4,5 (7-12)

where k = 1,2,…,6 correspond to 6 – DOF (surge, sway, heave, roll, pitch, yaw) and 𝑣 notations next
to restoring term C correspond to roll, pitch and yaw. If we transfer the non-wave excitation terms
to the left hand side of each equation and we re-arrange terms so that motion dependence terms
are arranged in a strict order we get a system of 6 coupled algebraic equations expressed in matrix
format. These equations can be solved in matrix format for each wave frequency and heading and
they are used to evaluate the Response Amplitude Operators (RAOs).

7.3 Linear seakeeping analysis methods

Solving the linearized equations of motion presented in section 7.1 requires evaluation of the
coefficients and the excitation amplitudes and phases. Considerable effort has therefore been
devoted to developing theoretical methods of determining the coefficients and excitations to allow
ship motions to be calculated without recourse to experiment. These methods have been developed
on the basis that seakeeping analysis is essentially a three - part problem:

 Estimation of the likely environmental conditions to be encountered by the vessel
 Prediction of the response characteristics of the vessel
 Specification of the criteria used to assess the vessel's seakeeping behavior

This logic also defines the way in which the performance of different vessels is compared in ship
design development. Comparison of different designs or assessment of a single design against
specified criteria is dependent on accurate information for all three items listed above. Evaluation of
seakeeping performance depends heavily on the environment (wave spectra) that the vessels are
being subjected to and the criteria which are being used to compare the designs.

Two classic types of analyses are in use to obtain these forces using potential flow analysis. The first
is known as strip theory and the other as panel method. Details related with the basic assumptions
associated with each of these methods follow.

7.3.1 Strip theory
Strip theory is a two-dimensional analysis whereby the hull is divided into a number of uniform slices.
The hydrodynamic properties (that is added mass, damping, and stiffness) obtained for each slice
considering the flow around the an infinitely long uniform cylinder with the cross-section of the slice.
The sectional added inertia and damping coefficients are obtained for heaving and coupled sway-roll
slices. There are limitations concerning what assumptions may be made to use strip theory
depending on the problem specifics and over the years various methods have been developed. The
global hydrodynamic values for the complete hull are then computed by integrating the two -
dimensional values of the strips over the length of the ship. Linear strip theory assumes the vessel’s
motions are linear and harmonic, in which case the response of the vessel in both pitch and heave,
for a given wave frequency and speed, will be proportional to the wave amplitude and slope,
respectively.

The basic assumptions required for linear strip theory are:



Lecture 7: Seakeeping methods

80 © Spyridon Cheirdaris 2021, All rights reserved

 The fluid is inviscid, that is, viscous damping is in principle ignored or implemented
independently via an empirical coefficient usually associated with roll damping.

 The ship is slender (i.e. the length is much greater than the beam or the draft, and the beam
is much less than the wave length).

 The hull is rigid so that no flexure of the structure occurs.
 The speed is moderate so there is no appreciable planing lift.
 The motions are small (or at least linear with wave amplitude).
 The ship hull sections are wall—sided.
 The water depth is much greater than the wave length so that deep water wave

approximations may be applied.
 The presence of the hull has no effect on the waves (Froude -Krilov hypothesis).

Figure 7-2 Strip theory idealisation

The theory presented below is based on the frequency domain strip theory introduced by (Salvesen,
TUCK, and Faltinsen 1970) The surge motion is not considered in our analysis since the hydrodynamic
forces associated with surge motion are much smaller than those associated with the other five
modes of motion (assuming a slender body). Along the lines of Eq. (7-12) by summing the inertia
force, the hydrodynamic force, and the hydrostatic resorting force, the equation of motion in the
frequency domain can be re-written as:

6
2

1
[ ( ) ]e jk jk e jk jk k j

k
M A i B C F  



    
(7-13)

or
6

1
( ) ei t

jk jk k jk k jk k j
k

M A B C F e   


             for 2,3,....6j 

where jkM is the generalized mass matrix. for free motions the only non-zero hydrostatic coefficient

jkC are the 33
C , 44

C , 55
C , and 35

C = 53
C . If the ship is assumed to be with lateral symmetry(symmetric

about the xz plane), and the center of gravity is located at (0,0, gz ) then the generalized mass matrix

is given by:
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4 46

5

46 6

0 0 0 0
0 0 0 0
0 0 0 0 0
0 0 0

0 0 0 0
0 0 0 0

g

g

jk
g

g

M Mz
M Mz

M
M

Mz I I
Mz I

I I

 
  
 

    
 
 

  

(7-14)

The added mass and damping matrix are given by:

11 13 15

22 24 26

31 33 35

42 44 46

51 53 55

62 64 66

0 0 0
0 0 0

0 0 0
( )

0 0 0
0 0 0

0 0 0

jk jk

A A A
A A A

A A A
A orB

A A A
A A A

A A A

 
 
 
 

  
 
 
 
  

(7-15)

By substituting the damping matrix, the added mass matrix, and the restoring force matrix in the
equation of motion (7-13) with applying the lateral symmetry assumption, the six coupled equations
of motion reduce to

 three coupled equations for surge, heave, and pitch and
 three coupled equations for sway, roll, and yaw.

If we consider as an example the two coupled equations of heave and pitch:

(𝑀 + 𝐴33)𝜂3̈ + 𝐵33𝜂3̇ + 𝐶33𝜂3 + 𝐴35𝜂5̈ + 𝐵35𝜂5̇ + 𝐶35𝜂5 = 𝐹3𝑒𝑖𝜔𝑒𝑡 (7-16)

𝐴53𝜂3̈ + 𝐵53𝜂3̇ + 𝐶53𝜂3 + (𝐴55 + 𝐼5)𝜂5̈ + 𝐵55𝜂5̇ + 𝐶55𝜂5 = 𝐹5𝑒𝑖𝜔𝑒𝑡 (7-17)

The relation between the different added mass and damping coefficients are given in detail by
Salvesen et al. (1970). For example, added mass, damping and hydrostatic restoring coefficients are
defined as :

𝐴33 = ∫ 𝑎33𝑑𝜉 − 𝑈
𝜔𝑒

2 𝑏33
𝐴 (7-18)

𝐵33 = 𝑏33𝑑𝜉 − 𝑈𝑎33
𝐴 (7-19)

33 wp
L

C g Bd gA    (7-20)

35 53 wp
L

C C g Bd gM        (7-21)

2
55 wp

L

C g bd gI      (7-22)
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In Eq.(7-20) – (7-22) 𝐴𝑤𝑝,𝑀𝑤𝑝, and 𝐼𝑤𝑝 represent the area, first moment, and moment of inertia of
the waterplane.

The solutions of local hydrodynamic coefficients is mathematically challenging and typically
computers are used. Once we know the added mass etc. we can use conformal mapping in form of
Lewis sections to estimate the properties of 2D ship-like sections. The advantage of conformal
mapping is that the velocity potential of the fluid around an arbitrarily shape of a cross-section in a
complex plane can be derived from the more convenient circular cross-section in another complex
plane. In this manner hydrodynamic problems can be solved directly with the coefficients of the
mapping function. The advantage of making use of the two-parameter Lewis conformal mapping is
that the dimensionless frequency-depending potential coefficients are a function of two parameters
only namely the half the breadth to draught ratio and the area coefficient of the cross-section.

The conformal mapping technique is a transformation operation of a known potential around a
uniform geometry (infinitely long cylinder in our case) into flow around a contour (the ship section)
by use of transformation series. Truncating the transformation series to only three parameters, the
mapped cross-sections will become what is known by Lewis forms. The main requirements to use
Lewis forms that the cross-section must be symmetric, semi-submerged, and the hull needs to
intersect the water surface perpendicularly. For instance, based on this method the sectional added
mass coefficient 𝑎33 can be evaluated according to the equation:

𝑎33 = 𝐾2𝐾4𝐴(𝑥) (7-23)

where:

 𝐾2is a non-dimensional coefficient that helps us determine the mapping of the geometry into
the flow around the cylinder ignoring the free surface

 𝐾4is a non-dimensional frequency correction coefficient for the free surface.
 𝐴(𝑥) is the immersed cross sectional area.

The non-dimensional coefficient 𝐾2is defined as :

𝐾2 = (1+𝐶1)2+3𝐶2
2

1−𝐶1
2−3𝐶2

2 (7-24)

where C1 and C2 are the Lewis’ mapping coefficients given by:

𝐶1 = 𝐵
𝐵0

(1 − 𝛬),  𝐶2 = 𝐵
𝐵0

(1 + 𝛬) − 1 for 𝐵
𝐵0

= 1
2

 , 𝛬 = 2𝑇
𝐵

,  𝐶𝑀 = 𝐴
𝐵𝑇 (7-25)

In Eq.(7-22) B and T present the sectional waterline breadth and draught respectively.

The non-dimensional coefficient 𝐾4 reflects the effect of the free surface. It depends on the non-

dimensional frequency 𝜉0 = 𝜔𝑒
2𝐵

2𝑔
 and is expressed as :



Lecture 7: Seakeeping methods

83 © Spyridon Cheirdaris 2021, All rights reserved

𝐾4 =

⎩
⎪⎪
⎨

⎪⎪
⎧

−8
𝜋2 𝑙𝑛( 0.795(1 + 2𝑇

𝐵
)𝜉0)                                      for 𝜉0 < − 1.3503

𝑇−0.9846

𝐵 +2.3567
+ 0.5497

0.2367𝜉0
2 − 0.4944𝜉0 + 0.8547 + 0.01

𝜉0+0.0001
     for − 1.3503

𝑇−0.9846

𝐵 +2.3567
+ 0.5497 < 𝜉0 < 1.388

0.4835 + −0.0484 + 0.0504𝜉0 − 0.001𝜉0
2         for 1.388 < 𝜉0 ≤ 7.31

1               for  𝜉0>7.31 

(7-26)

7.3.2 Pulsating source Green Function method
In the green function panel method, the three-dimensional flow around the ship is calculated in order
to obtain the pressure, forces and moments acting on the wetted hull surface. As the method is three
dimensional the approximations inherent in strip theory are avoided. In the pulsating source method
the source density is computed on the center of each panel in a way that assumes that there is no
flow through. A distribution of sources is applied, either on the panel (hull surface) or at some
distance from it within the body, to smooth flow irregularities occurring at the boundaries of the
panels. All these potentials fulfill the Laplace equation and the radiation, the bottom or infinite depth
and linearized free-surface conditions. The ship response can be determined in the frequency
domain, where the motions of the ship are defined for various regular waves frequencies.

Figure 7-3 Green function idealization of a 10,000 TEU container ship (Hirdaris et al. 2016)

The response is usually calculated for different wave directions and zero forward speed and then
combined to present the behavior of the ship in actual sea states. Accurate solutions using the zero-
speed free-surface Green function method are obtained for problems with linearized free-surface
boundary conditions at zero forward speed, but good or reasonable approximations are possible with
moderate steady forward speed.

The most important effect of forward speed can easily be taken into account by accounting for the
influence of the encounter frequency 𝜔𝑒  which as explained in Lecture 3 can be expressed as :

𝜔𝑒 = 𝜔 − 𝑘𝑈 𝑐𝑜𝑠 𝜇 (7-27)

where 2k   is the wavenumber,  is the wavelength, U is the ship speed, and  is the wave
direction.

The amplitude of the incoming linear wave of a unit amplitude in deep water (for simplification only)
is:
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cos sin
0̂

ikx ikyi e
k

     (7-28)

The remaining potentials 1,2,3,..,7Ĵ  can be determined numerically by the panel method. To obtain
these potentials the model should satisfy the Laplace equation in the fluid domain and the zero-
speed linearized free surface boundary condition at the non-oscillating water surface z = 0. The
diffraction potential (𝑗 = 7) and radiation potentials (𝑗 =  1: 6) can be determined by superimposing
the potentials of all panels as

,
1

ˆ ˆP

j j p p
p

q 


  (7-29)

where P is the number of panels and ,j pq is the source density of each panel.

The source densities can be obtained by solving a linear equation system with seven different right-
hand sides (𝑗 =  1 ∶ 7); and then satisfy the body boundary conditions at the center of all panels. The
radiation potentials are divided into two parts:

0ˆ ˆ ˆU
j j j

e

U
i

  


  (7-30)

where 0ˆ
j and ˆU

j are the speed-independent conditions that satisfy the body boundary condition.

The fluid pressure (P) can be obtained using the Bernoulli equation for unsteady flow:

2 21 1| |
2 2

p gz U 

     (7-31)

The pressure of a specific motion on each panel can be evaluated by solving the above equation
separately for the wave potential 0 , diffraction potential 7 and the six radiation potentials from 1
to 6 . Consequently, the forces and moments can be evaluated by summing up the forces and
moments on each panel namely :

1 1
dˆ  ˆ ˆ ˆan

P P

j j p j j p
p p

p p
 

    F n M x n (7-32)

where pn is a normal vector directed into the hull and its absolute equals the panel area; while the

pressure ˆ jp at the panel center equals the average pressure on each panel for 0 : 7J  .

Finally, the generalized motion vectors are evaluated by the equation :

1 6 0 72

1 6 0 7

ˆ ˆ ˆ ˆˆ
ˆ ˆ ˆ ˆˆe 

      
                  

F F F Fu
M

M M M M
(7-33)

This equation may be further complemented by adding corrections to account for the surge and roll
damping, forces on fins, etc., however, this is not covered in this section. The complex amplitude of
the translation û  and rotation ̂  motions can be obtained by solving the above system of the six
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complex scalar linear equations. After obtaining the amplitude of the motion we can get the hull
pressure, forces and moments in virtual cross-section, drift forces, etc.

7.4 Non-linear seakeeping analysis methods – a brief reference

Technical difficulties in the computations of modern hull ship motions are mainly related with
understanding, simulating and validating the effects of nonlinearities. There are nonlinear
phenomena associated with the fluid in the form of viscosity and the velocity squared terms in the
pressure equation. The so-called free surface effect also causes nonlinear behavior due to the nature
of corresponding boundary conditions (e.g. (Bailey 1997)) and the nonlinear behavior of large
amplitude incident waves (e.g. (Mortola et al. 2011)). Forward speed effects and the body geometry
often cause nonlinear restoring forces and nonlinear behavior in way of the intersection between the
body and the free surface (e.g. (Chapchap et al. 2011)). A large variety of different nonlinear methods
have been presented in the past three decades (Hirdaris et al. 2016). Clearly, as techniques become
more sophisticated assumptions become more complex (see Figure 7-4). Computational time and
complexity may be an issue in the process of understanding, simplifying or validating the modelling
assumptions. In this sense the accuracy of the solution must be balanced against the computational
effort. Figure 7-4 and Table 7-1 summarise the taxonomy and some key qualitative features of the
methods available. From an overall perspective one may distinguish between methods based on
linear potential theory (Level 1 methods) and those solving the Reynolds-Averaged Navier–Stokes
(RANS) equations (Level 6 methods). The majority of methods currently used in practise is based on
linear potential flow theory assumptions and account for some empirical forward speed corrections
(Chapchap et al. 2011).

Within the group of weakly nonlinear potential flow methods (Levels 2–5) there is a large variety of
partially nonlinear, or blended, methods, which attempt to include some of the most important
nonlinear effects. For example, Level 2 methods present the simplest nonlinear approach where
hydrodynamic forces are linear and all nonlinear effects are associated with the restoring and the
Froude–Krylov forces. On the other hand, Level 3 and 4 methods refer to the so called ''body
nonlinear'' and ''body exact'' methods. In these methods the radiation problem is treated as
nonlinear and is solved partially in the time and frequency domains using a retardation function and
a convolution integral.

The difference between these two levels is that the ''body nonlinear'' approach (Level 3) solves the
radiation problem using the calm water surface and the ''body exact method''(Level 4) uses the
incoming wave pattern as in way of the free-surface for the solution of the radiation problem. Level5
methods are highly complex and computationally intensive. They have no linear simplifications and
the solution of the equations of motion is carried out directly in the time domain. The hydro-dynamic
problem is solved using an MEL (Mixed Euler–Lagrange) approach. They are usually based on the
assumption of ''smooth waves''. Therefore, wave breaking phenomena that may, for exam-ple, be
associated with large amplitude motions in irregular seaways cannot be modelled. Large advances in
reducing computer processing times resulted in making basic RANS methods, excluding DES
(Detached Eddy Simulations), URANS (Unsteady RANS) and DNS (Detached Navier Stokes), attractive
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for 3D fluid-structure interaction problems and hence for the prediction of wave-induced motions
and loads.

Implementation of potential flow hydroelastic methods in the ''frequency domain (FD)'' or ''time
domain (TD)'' may be possible irrespective to the type of hydrodynamic idealisation (e.g. (Chapchap
et al. 2011), and (Mortola 2013)). More recent developments enabling full coupling between RANS
with FEA software, may ensure the inclusion of hydroelasticity also within this more advanced CFD
framework (Lakshmynarayanana and Hirdaris 2020).Nevertheless, there are quite a few issues to
resolve even for the application of RANS methods to the conventional, rigid body, sea-keeping
problem. For example, these include issues with the time efficiency for computations, the efficient
and convergent meshing of the fluid domain associated with the movement of the body and the
deforming free surface, as well as the influence of turbulence modelling.

Figure 7-4  Level of idealisation for forward speed hydrodynamic solutions (Numbers 1–6 refer to Levels 1–6 of
idealisation as per (Hirdaris et al. 2016)).

Table 7-1 Taxonomy of hydrodynamic solution methods as per (Hirdaris et al. 2016).
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