
 

Lecture 10 

Added Resistance and Maneuvering 

1.1 Introduction 

Added resistance in waves is the part of a ship’s total resistance that is caused by encountering waves. 

Calculations of added resistance can be used as an addition to the calm water resistance to predict 

the total resistance of a ship in a seaway. There will always be waves on the sea, so there will always 

be added resistance. A ship can experience a 15-30% resistance increase in a seaway (Arribas 2007), 

where the added resistance is the main reason for this increase. Being able to predict added 

resistance due to waves is therefore a vital part of the prediction of a ships resistance. Prediction of 

added resistance can for instance be used in the following problems: 

• Weather margin:  the so-called Weather Margin for new ship designs can be decided, where 

the maximum resistance increase due to weather can be predicted, to decide engine install 

and so on. 

• Weather Routing: Weather Routing is very important due to its economical effect on ship 

exploitation. It is for instance very important to make good estimations of the time it will take 

for a ship to travel a route, so the cargo owners know when the ship will arrive in port, 

minimizing the costs of storage and so on. It is also very important to be able to optimize 

routes in order to reduce the fuel consumption and emission. A good prediction of Added 

resistance in waves is important for both these tasks. 

• Performance analysis: the previous two problems use the prediction of added resistance to 

get the total resistance, the reversed problem is however also of interest. Being able to get 

rid of the influence of the stochastic waves in a seaway, can be used to calculate a ship’s “real” 

calm water resistance. This “real” calm water resistance can be used as a measurement of the 

ships performance over time. The ship owners could use this information to determine the 

value of a ship, and how often it should be docked for antifouling and so on. 

 

1.2 The nature of added resistance 

When a ship is oscillating due to waves, it supplies energy to the surrounding water, energy that will 

increase the resistance. This energy is primarily transmitted with the waves radiating from the ship 

Figure 0-1. The supplied energy is due to damping of the oscillatory motions. Hydrodynamic damping 

is dominating for heave- and pitch motions, which are the biggest contributors to added resistance. 

The viscous damping can therefore be neglected, which means that added resistance can be 

considered as a non-viscous phenomenon (Ström-Tejsen 1973). This means that potential theory can 

be used. The radiation induced resistance is dominating when the ship motions are big. This happens 

in the region of the resonance frequency of heave and pitch motions Figure 0-2. The reflection of 



 

incident waves is also causing added resistance. The so-called diffraction induced resistance is 

dominating for high wave frequencies Figure 0-2, where the ship motions are small. 

 

Figure 0-1 Radiating waves due to oscillation. 

Energy is also transmitted to the surrounding water by waves generated by the forward speed of the 

ship. But this is referred to as the calm water resistance, which is not handled in this lecture. The 

added resistance in a seaway is considered to be independent of the calm water resistance (Ström-

Tejsen 1973). 

 

Figure 0-2 Radiation induced resistance and diffraction induced resistance, for different wave frequencies. 

 

1.2.1 Motions are a first order problem 

Usually ship motions and forces are modeled as a so called LTI system (Linear Time Invariant system).  

This means that a ship is considered as a system which uses a linear sine-wave, representing the 

water wave, as input signal and delivers a linear sine-wave, representing for instance a motion or a 

force, as response to this signal. The LTI system is allowed to respond with a phase lag on the input 

signal and a linear change of the amplitude. These restrictions give a very advantageous property of 

the LTI system in that the superposition principle can be used. This means that if a signal ( )x t  can 

be expressed as the sum of sub signals ( )kx t , the response to this signal ( )y t  can be expressed as 

the sum of the responses of the sub signals ( )ky t : 
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This means that ship motions and forces in irregular waves can be expressed as the sum of the 

responses in regular waves, which is a very powerful property of a LTI system. In reality ships do not 

respond linearly to the waves. In order to model the responses as a LTI system, the responses have 

to be linearized. This linearization gives good accuracy according to (Faltinsen 1993), since the linear 

part is dominating the responses. Ship motions are therefore considered to be a first order problem. 

 

1.2.2 Added resistance is a second order problem 

The added resistance is the mean force in the heading direction of the ship. Calculating the mean 

force using a linear force from 1.2.1 will give a zero mean value. This is because the time mean value 

of an arbitrary sine wave with an arbitrary amplitude A  and period time eT  is zero: 
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A second order sine wave however, will give a non zero time mean value: 
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Therefore, the quadratic term in the response has to be included in the problem. The quadratic term 

is small compared to the linear term but has to be included to obtain a mean value. (Ström-Tejsen 

1973) has shown in experiments that the added resistance in regular waves varies linearly with the 

wave height squared at a constant wave length, added resistance is therefore considered to be a 

second order problem. It is unfortunately hard to get good predictions of added resistance, since it 

is a second order problem. If the motions are predicted with an accuracy of approximately 10-15%, 

the second order added resistance can not be expected to be of accuracy better than 20-30% 

(Salvesen 1978). 

The wave is usually expressed with a velocity potential function. The velocity potential function is 

derived from boundary conditions that can be linearized. This is referred to as linear wave theory, 

which will give a linear wave velocity potential. The linear theory is applicable until the wave 

steepness becomes sufficiently large, that non-linear effects become important. Although added 

resistance is a second order problem, the linear wave velocity potential is the only one needed. 

Higher order velocity potentials are not needed, to study the added resistance (Faltinsen 1993). 

 



 

1.3 Added resistance in irregular waves  

Added resistance is the time mean value of a second order force. Consider a signal ( )x t  consisting 

of two signals 1( )x t and 2 ( )x t : 
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The quadratic response to this signal: 
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The second order force in an irregular wave can therefore not be expressed with superposition, 

because of the trigonometric cross terms ( )1 2 cos ...A A  . But added resistance is the time mean 

value of this second order force, where the trigonometric terms from (0-5) disappears, so that the 

time mean value of (0-5) can be expressed as: 
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The added resistance in irregular waves can therefore be expressed with superposition of the regular 

wave responses. (Ström-Tejsen 1973) has shown this relation in experiments and that the average 

added resistance 
AWR  in irregular waves with good accuracy can be expressed as: 
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( )R   is the mean response curve, and ( )S  is the wave energy spectrum. The evaluation of (0-7), 

made by Ström-Tejsen, was done by inserting ( )R   and ( )S   from regular wave experiments into 

(0-7), and compare that to the corresponding irregular wave experiment. The usual way to calculate 

added resistance in irregular waves, is therefore to first calculate the added resistance in regular 

waves for different wave frequencies and then use (0-7). This is why almost all available methods to 

calculate added resistance in waves, focus on regular waves. The added resistance for different wave 

frequencies can be presented in a transfer function like the schematic one in Figure 0-2. It is also 

important to be aware that the choice of wave energy spectrum ( )S   , will have a big influence on 

the integrated mean added resistance AWR  . The relation between the spectral peaks in the wave 



 

energy spectrum ( )S   and the mean response curve ( )R   will have a big impact on the result. So 

it is reasonable to conclude that to find an accurate wave energy spectrum ( )S   , is as important 

as to find an accurate prediction of the added resistance in regular waves ( )R  . 

 

1.4 Non dimensional added resistance  

The full scale added resistance AWR  in regular waves can be made non dimensional using the 

following expression: 

 ( )
AW

2 2 /
aw

A wl

R
g b L 

=
 

R
 (0-8) 

This relation has been confirmed by (Ström-Tejsen 1973) in model tests, using models of the same 

ship with varying scale.  

1.5 Non dimensional wave frequency  

The peak of the added resistance transfer function Figure 0-2 usually occurs at a frequency where 

the wavelength is about the same size as the ships length. This is due to the big influence of pitch 

motion, which has its peak here, according to Figure 0-3. 

 

Figure 0-3 wavelengths near the ship length will produce heavy pitching, and added resistance. 

This means that the length of the ship will have a big influence on where the peak of the added 

resistance will be. To capture this relation it is usual to present the transfer functions with a non 

dimensional frequency, normalized with the ships length in some way. This can be done in a variety 

of ways, and different authors tend to invent their own way of normalizing the frequency. The non 

dimensional frequencies can be expressed by: 
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Which can be related to the wave frequency on deep water as: 

 norm 
2

L L

g
 

 
= = 

 
  (0-10) 

A non-dimensional frequency of encounter: 
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1.6 Methods to calculate added resistance in waves  

Three methods to calculate added resistance in waves are considered in this section: Gerritsma and 

Beukelman’s method, Boese’s method and Faltinsen’s asymptotic method. Gerritsma and 

Beukelman’s method is a so-called radiated energy method. This problem starts out by trying to 

describe the energy that the oscillating ship transmits to the surrounding water. It is assumed that to 

maintain a constant forward ship speed, this energy should be delivered by the ship’s propulsion 

plant. Boese’s method is a so-called pressure integration method, which basically means that the 

linear pressure in the undisturbed wave is integrated over the ship hull, to obtain a mean force in the 

heading direction of the ship. It may seem strange that the linear pressure would give a mean force, 

but it does in this case since the ship hull, where the integration is performed, is moving. Both these 

methods primarily deal with radiation induced resistance. Faltinsen’s asymptotic method on the 

other hand, only deals with diffraction induced resistance, and neglects the ship motions. 

Relative velocity: Both Gerritsma and Beukelman’s method and Boeses method to calculate added 

resistance use Relative velocity. The relative velocity is the vertical velocity of the water related to a 

point on the ship Figure 0-4. 

 

Figure 0-4 definition of vertical relative velocity 
bz

V   

 



 

1.7 Gerritsma and Beukelman’s Method 

Gerritsma and Beukelman’s method (Gerritsma and Beukelman 1972) for calculation of added 

resistance is a so-called radiated energy method. The added resistance is calculated with the 

following expression:  
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This method is very much related to the Strip theory, where (0-12) is an integration along the ships 

length, over the strips. b  is the sectional damping coefficient for speed, for the different strips 

(Gerritsma and Beukelman 1972): 
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bz
V is the amplitude of the relative velocity, which is the water velocity related to the strip: 
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This is an equation for various strips (different bx ), but it is also an equation for various values of Z, 

representing the depth where the water velocity is evaluated. In (Gerritsma and Beukelman 1972) 

the water velocity is evaluated at a mean depth D  for every strip: 
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Where A   is the area of the “wet” part of the strip, and B   is the beam of the strip in the waterline. 

The relative velocity can now be written: 
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The damping coefficient (0-13)  and the relative velocity (0-16) only contain heave 3  and pitch 

motion 5 , so Gerritsma and Beukelman’s method does not account for roll 4  or yaw motion 6 . 

3  and 5  can be expressed in a complex way: 
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3̂ and 5̂  are complex amplitudes, which means that they contain both amplitude 3 , 5  and 

phase 3 , 5 : 
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This gives the final expression for the relative velocity: 
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…and the amplitude: 
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Note: This expression contains e as well as  .  

1.7.1 Physical interpretation 

In (Journée 2001) a derivation of Gerritsma and Beukelman’s method (0-12) is made. The basic idea 

with the method is to calculate the radiated wave energy during one period of oscillation, in regular 

waves. This would in other words be the energy required to create waves, when the ship is oscillating. 

And it is assumed that to maintain a constant forward ship speed, this energy should be delivered by 

the ship’s propulsion plant. According to (Gerritsma and Beukelman 1972) the radiated energy can 

be calculated with this equation: 
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Studying the expression for 
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V in (0-19) enables the possibility to express 
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zb
V is the phase lag of the relative velocity. The time integration in (0-21) can be performed: 
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The radiated energy during one period of oscillation can also be expressed in terms of added 

resistance awR  (Journée 2001): 
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 (Figure 0-5) is the wave length that the ship experiences when it is heading diagonally through the 

waves. (0-24) together with (0-23) gives Gerritsma and Beukelman’s equation for added resistance 

(0-12). 



 

 

Figure 0-5   is the wave length experienced by the ship. 

1.8 Maneuvering Theory 

In this section we will go much more in-depth on the theory behind maneuvering, including the 

equations of motion and the hydrodynamic derivatives. We will discuss how to determine these 

derivatives experimentally and discuss how a ship turns in more detail. Finally, we will cover some 

rudder design considerations. 

1.8.1 Elements of Controllability 

 

1) Course keeping ( or Steering) - The maintenance of a steady mean course or heading. Interest 

centers on the ease with which the ship can be held to the course.  

2) Maneuvering - The controlled change in the direction of motion ( turning or course changing). 

Interest centers on the ease with which change can be accomplished and the radius and 

distance required to accomplish the change.  

3) Speed Changing - The controlled change in speed including stopping and backing. Interest 

centers on the ease, rapidity and distance covered in accomplishing changes. 

Performance varies with water depth, channel restrictions, and hydrodynamic interference from 

nearby vessels or obstacles. Coursekeeping and maneuvering characteristics are particularly sensitive 

to ship trim. For conventional ships, the two qualities of coursekeeping and maneuvering may tend 

to work against each other: an easy turning ship may be difficult to keep on course whereas a ship 

which maintains course well may be hard to turn. Fortunately a practical compromise is nearly always 

possible. 



 

Since controllability is so important, it is an essential consideration in the design of any floating 

structure. Controllability is, however, but one of many considerations facing the naval architect and 

involves compromises with other important characteristics. Some solutions are obtained through 

comparison with the characteristics of earlier successful designs. In other cases, experimental 

techniques, theoretical analyses, and rational design practices must all come into play to assure 

adequacy.  

Three tasks are generally involved in producing a ship with good controllability: 

1) Establishing realistic specifications and criteria for coursekeeping, maneuvering, and speed 

changing. 

2) Designing the hull control surfaces, appendages, steering gear, and control systems to meet 

these requirements and predicting the resultant performance. 

3) Conducting full-scale trials to measure performance for comparison with required criteria and 

predictions. 

1.8.2 Basic Equations of Motion 

For the axis fixed with respect to the Earth, the equations of motion for maneuvering are 

 

 

(0-25) 

However, for convenience we want to discuss the ship forces and motions from the ship-fixed 

reference frame. To do that, we need to express the variables in the previous equations from the 

ship-fixed coordinate system rather than in the Earth reference frame. 

 

Figure 0-6 Coordinate System for Maneuvering. 

 



 

Consider the velocities: 
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To get accelerations we need to take the derivative of the velocities: 
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Plugging these into the equations of motion (Note: the forces are still in the Earth reference frame): 
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Now consider the forces in the ship-fixed reference frame (same transformation as for the velocities): 
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Plugging into the previous equations and simplifying gives the equations of motion in the forces, 

velocities, and accelerations measured in the ship-fixed reference frame: 
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The angular equation is unchanged by the shift in coordinate system. Since the other variables ( )  ,  u v  

are velocities, let's replace the angular velocity   with r  (now velocities have no dot and 

accelerations are all represented with one dot). Now, the equations of motion are: 
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The forces and moments (left hand side) of the equations of motion consist of four types of forces 

that act on a ship during a maneuver: 

1) Hydrodynamic forces acting on the hull and appendages due to ship velocity and acceleration, 

rudder deflection, and propeller rotation 

a. Due to relative velocity and acceleration of the surrounding fluid 

b. Due to rudder deflection 

c. Due to propeller action 

2) Inertial reaction forces caused by ship acceleration  

a. Rigid body forces acting on a moving body - due to body accelerations 



 

3) Environmental forces due to wind, waves and currents 

4) External forces such as tugs, thrusters, mooring lines, etc. 

We will only deal with the top two! 

 

1.8.2.1 Linear Equations 

The force components   ,  X Y  and moment component N are assumed to be composed of several 

parts, some of which are functions of the velocities and accelerations of the ship. For now, we will 

assume that the forces are composed only of the forces and moments arising from motions of the 

ship which, in turn, have been excited by disturbances whose details we need not be concerned with 

here. 
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 The forces are comprised of velocity dependent forces arising from hull drag through the water (in 

surge, sway and yaw) and acceleration dependent forces arising from the mass of the ship and the 

added mass of the fluid being accelerated in surge, sway, and yaw.  

For stability analyses, we need to consider a vessel moving in equilibrium that experiences a 

disturbance. To consider the effect of a disturbance on the forces acting on the vessel, we  can use 

the Taylor Series expansion technique. "If the function of a variable, x , and all its derivatives are 

continuous at a particular value of x , say 1x , then the value of the function at the value of x  not far 

removed from 1x  can be expressed as follows": 
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If the change in the variable ( )1  x x− is kept small, the higher order terms (HOT) can be neglected, 

leaving 
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For multivariable functions, 
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So, if we write the linearized sway force we get 
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For Straight Line Stability, many of the velocities and accelerations are zero. For example, for a vessel 

moving at constant forward speed, there are no acceleration terms, no sway or yaw velocities and 

no Y force before a disturbance. The forward velocity is equal to the ship speed, U. 
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Because of symmetry, there can be no Y  force due to forward velocity or acceleration, so 
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The Sway Force Equation now becomes, 
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We can perform the same technique to get the linearized Surge and Yaw equations: 
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Now we have the forces for the basic equations of motion, we can combine (and move everything 

over to the right hand side) and get 
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The partial derivatives are called the Hydrodynamic Derivatives and we need to find them to solve 

the equations of motion! 

1.8.2.2 Notes on Notation 

To define a standard notation for maneuvering (rather than writing out the partial derivatives every 

time), SNAME (1952) specified the following rule:  

• Replace the partial derivative with the letter for force ( or moment) and the subscript with 

the motion. For example, 
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Rewriting the equations of motion using this notation gives the official Linearized Maneuvering 

Equations of Motion: 
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For convenience in analysis, we will non-dimensionalize the equations. For maneuvering the main 

effects are on sway and yaw - we can neglect surge since changes in forward velocity will be small 

relative to the mean forward velocity, U . 
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(The U  disappeared in the sway equation since the velocities are non-dimensionalized by U , so 

' 1U =  ) 

1.8.2.3 Control Forces and Moments 

It is important to note that all the terms in the previous equations must include the effect of the 

ship's rudder held at zero degrees (on the centerline). On the other hand, if we want to consider the 

path of a ship with controls working, we must include terms expressing the control forces and 

moments created by rudder deflection (and any other control devices) as functions of time. The 

linearized y-component of the force created by rudder deflection is RY  · The linearized component 

of the moment created by rudder deflection about the z-axis of the ship is RN  . 

R  = rudder-deflection angle, measured from xz  -plane of the ship to plane of the rudder; 

positive deflection corresponds to a turn to port for rudder(s) located at the stern. 

Y N   = linearized derivatives of Y and N with respect to rudder-deflection angle R  



 

 

Figure 0-7 Rudder Induced Turning moments  

For small rudder deflections (due to small disturbances, for example) and for usual ship 

configurations, 
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 Applying these assumptions and including the rudder force and moment, the equations of motion 

become: 
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For conventional ship configurations, we can simplify the mass and inertial terms as follows: 
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We can evaluate the hydrodynamic derivatives for the effect of the rudder on the hull, where R  is 

the rudder angle in radians (positive to port): 
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 To make numerical predictions it is necessary to obtain values for some or all of the coefficients or 

derivatives involved. This is primarily done by means of captive model tests. 



 

1.8.3 Captive Model Tests (PMM) 

First let us consider what forces are acting on the vessel due to maneuvering motions and how these 

forces relate to the Hydrodynamic Derivatives.  

Consider a ship experiencing transverse acceleration, v (see Figure 0-8). If the acceleration is to 

starboard (positive), there will be a reaction force vY to port due to the resistance of the water. For a 

transverse acceleration the force will always resist the direction of acceleration. This is shown in 

Figure 0-8 with the sway force versus sway acceleration showing a negative slope. 

 

Figure 0-8 Ship Experiencing Transverse Acceleration 

Consider a ship experiencing angular acceleration, r (see Figure 0-9). If the acceleration is positive 

(bow to starboard), there will be a reaction moment rN in the negative direction due to the 

resistance of the water. For an angular acceleration the moment will always resist the direction of 

acceleration. Therefore, a plot of yaw moment versus yaw acceleration will  always have a negative 

slope and will look like Figure 0-9.  

Figure 0-11 shows the forces on a body with a sway velocity, v , added to a forward velocity, u . Both 

the bow and the stern experience a lift force oppositely directed to v . Therefore, vY  is always 

negative (see Figure 0-12). However, the bow contribution is usually larger than that of the stern, so 

there is a negative moment contribution vN . Yet the addition of a rudder at the stern will increase 

the magnitude of the stern force and so decrease the negative magnitude of vN . If the rudder force 

were sufficiently large, it might even cause vN  to be positive (not usually the case). Figure 0-12 shows 

the possible relationships between vN and v . 

 



 

 

Figure 0-9 Sway Force versus Sway Acceleration 

 

Figure 0-10 Ship Experiencing Angular Acceleration 

 

Figure 0-11 Ship Experiencing Forward Velocity and Transverse Velocity 

Figure 7.8 shows the effect of an angular velocity, r , in addition to forward velocity, u , on Y andN

. Due to the angular velocity, point B near the bow has a positive transverse velocity, Bv , producing 

a negative Y-force and a negative N moment− . Point S near the stern has a negative transverse 

velocity, Bv , producing a positive Y force−  and a negative N moment− . So the moments can combine 

to produce a large negative moment, but the sway forces oppose each other resulting in a small 

positive or negative Y-force. Figure 0-14 shows the relationship between Y and N and r . 

So, how can we use captive model tests and this information to find the hydrodynamic derivatives? 

 



 

 

Figure 0-12 Sway Force and Yaw Moment versus Transverse Velocity 

 

 

Figure 0-13 Ship Experiencing Forward Velocity and Angular Velocity 

 

Figure 0-14 Sway Force and Yaw Moment versus Angular Velocity 

1.8.3.1 Straight-Line Tests in a Towing Tank 

The velocity-dependent derivatives vY  and vN of a ship at any draft and trim can be determined from 

measurements on a model of the ship, ballasted to a geometrically similar draft and trim, towed in a 

conventional towing tank at a constant velocity, U , corresponding to a given ship Froude number, 

at various angles of attack,  , to the model path. The figure below (Figure 0-15) shows the 

orientation of the model with respect to the tow tank. From the figure you can see that the transverse 

velocity component ( from the vessel coordinate system) is produced along the y-axis such that 

 sinv U = −  (0-49) 



 

 

 

where the negative sign is due to the sign convention (see Figure 0-6). The Y force−  and N moment−

are measured on the model for each value of   tested. The force or moment versus sway velocity is 

then plotted and the hydrodynamic coefficient is the slope of the curve near   0v = . Figure 0-12 

shows an example of sway force (Y ) and yaw moment (N ) versus sway velocity ( v ). The slope of 

the straight line through the curve at   0v =  is the hydrodynamic coefficient. So, for the plot Y versus 

v , you can find the coefficient vY  and for the plot N versus v , you can find the coefficient vN , Let's 

review:  

1) Test a model fixed in yaw (specified drift angle,  ) at a constant forward velocity,U . 

2) The sway velocity felt by the model is equal to  ( )U sin −   

3) The sway force and yaw moment are measured on the model  

4) For a given U  and   you have one point on the Y  versus v  plot and one point on the N  

versus v  plot. To get additional points, run the test at various drift angles. 

 

 

Figure 0-15 Straight Line Tow Testing 

The propeller will usually exert an important influence on the hydrodynamic derivatives. Therefore, 

the model tests to determine these derivatives should be conducted with the propeller operating, 

preferably at the ship propulsion point. Also, since the undeflected rudder contributes significantly 

to the derivatives the model tests should also include the rudder in the amidships position.  

The technique described above can also be used to determine the control derivatives Y  and N   . If 

the model is oriented with zero angle of attack ( 0) = , but the model were towed down the tank at 

various values of rudder angle, R , the force and moment measurements would determine the force 

Y and moment N as a function of rudder angle. Plots of these against rudder angle will indicate the 

values of the derivatives Y   and  N  . 

Straight-line tests can also be used to determine the cross-coupling effect of v on Y   and N   and of 

R  on vY  and vN . 



 

1.8.3.2 Rotating-Arm Technique 

To measure the rotating derivatives rY and rN on a model a special type of towing tank and apparatus 

called a rotating-arm facility is occasionally employed.  

• An angular velocity is imposed on the model by fixing it to the end of a radial arm and rotating 

the arm about a vertical axis fixed in the tank. 

• The model revolves about the tank axis, rotates at rate r while its transverse velocity 

component v is zero at all times (yaw angle of attack or drift angle 0− = ). 

• The model is rotated at a constant linear speed at various radii R and the sway force Y and 

yaw moment N are recorded.  

• The angular velocity is given by    /  r U R= , so the only way to vary r  at constant U is to vary 

R . 

• The plots of Y  and N  versus r provide the hydrodynamic derivatives rY and rN . 

 

Figure 0-16 Model in Rotating-Arm Facility 

Some disadvantages of rotating-arm tests: 

1) Require a specialized facility of substantial size. (There are only a few rotating-arm facilities 

in the world. One is at the David Taylor Research Center in Carderock, MD. Another was at 

the Davidson Laboratory at Stevens Institute of Technology.) 

2) The model must be accelerated and data obtained within a single revolution. Otherwise the 

model will be running in its own wake and its velocity with respect to the fluid will not be 

accurately known. 

3) In order to obtain values of the derivatives rY , rN  , vY  , and vN  at   0r = , data at small values 

of r are necessary. This means that the ratio of the radius of turn, R to the model length L

must be large. 

1.8.3.3 Planar Motion Mechanism (PMM) Technique 

To avoid the large expense of a rotating-arm facility, a device known as a Planar Motion Mechanism 

(PMM) was developed for use in the conventional long and narrow towing tank to measure the 

velocity-dependent and acceleration derivatives. 



 

Basically the PMM consists of two oscillators, one of which produces a transverse oscillation at the 

bow and the other produces a transverse oscillation at the stern while the model moves down the 

towing tank at a constant forward velocity, 0U  (measured along the centerline of the tank). Figure 

0-17 shows a sample model in a PMM. The forces required from each oscillator are recorded along 

with the transverse position of the model at each oscillator. The point B near the bow is oscillated 

transversely with a small amplitude, 0a , and at frequency . Point S near the stern is oscillated 

transversely with the same amplitude, 0a , and the same frequency,  . The phase difference between 

the oscillations allows the model to experience yaw. If 0=ò , the model experiences pure sway with 

zero yaw, as shown in Figure 0-18. For a pure sway test, the model is moving transversely in a 

sinusoidal motion. The sway velocity and acceleration can be found by taking the time derivatives of 

the position. 
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Therefore, the magnitude of the velocity and acceleration is given by 
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Figure 0-17 Model setup for planar motion tests 

 



 

 

Figure 0-18 Path and orientation of model for pure sway motion 

Each oscillator measures the Y-forces experienced by the model as a result of the swaying motion (

BY  and SY ). To find the vY derivative, we need to consider the Y force− in-phase with the velocity (or 

90° out-of-phase with the position). To get the magnitude of the Y force−  in-phase with the velocity 

we need to do a FFT of the signal. 

This time, however, we will find the sine and cosine components of the signal, rather than the total 

magnitude. Once we have the components in-phase with the velocity (the cosine components) we 

can find the derivative vY by plotting the velY  term versus the sway velocity. 

 
cos cosvel B SY Y Y= +  (0-52) 

For the yaw moment derivative, a similar procedure can be applied. In this case, the sway force at 

each oscillator must be multiplied by a distance to get the moment. The distance, sX , is typically 

chosen as measured from amidship: (and each point B and S must be equidistant from amidship). 

This means the hydrodynamic derivative vN can be determined from plotting the cosine component 

of the yaw moment versus the sway velocity. 

 ( )
cos cosvel B S sN Y Y x= −  (0-53) 

The components of the sway force and yaw moment that are in-phase with the acceleration are the 

sine components. Therefore, the derivatives vY and vN  are found by plotting the accY and   accN  versus 

the sway acceleration v . 
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To obtain the angular derivatives rY and rN from planar motion tests, the measurements must be 

made when   0,    0r v= =  and   0v =  . Similarly, for rY and rN the measurements need to be taken 

when   0,    0r v= = , and   0v = . To impose an angular velocity and an angular acceleration on a body 

with v and v  equal to zero, the model must be towed down the tank with the centerline of the model 



 

always tangent to its path, see Figure 0-19. This means the sway velocity (relative to the model) is 

always zero. To obtain pure yaw motion using the two oscillators in the PMM, the phase angle, ò , 

must be equal to 

 tan / 2 sx

U


=ò  (0-55) 

 

Figure 0-19 Path and orientation of model for pure yaw motion 

The yaw oscillation is a sinusoidal motion and of the form 
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The yaw velocity, r is out-of-phase with the angle   and the angular accleration r  is in-phase with 

the angle  . Therefore, the amplitudes of BY and sY measured 90° out-of-phase with   will 

determine the force and moment due to rotation r  and the amplitudes of BY  and sY in-phase with 

the   will determine the forces and moment due to angular acceleration r . 
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Plotting these forces versus velocity and acceleration can provide the yaw derivatives. The slope of 

angvelY versus r  gives ( )ΔrY m U+ , the slope of angvelN versus r  gives rN , the slope of angaccY versus r

gives rY , and the slope of angvelN  versus r  gives ( )r zN I− . 

1.8.4  Directional Stability 

Now that we have experimental values for our hydrodynamic derivatives, we can solve the linear 

sway and yaw equations of motion. Solutions to the linear sway and yaw equations provide linear 

transfer functions permitting review of the stability of motion.  



 

There are various kinds of motion stability associated with ships and they are classified by the 

attributes of their initial state of equilibrium that are retained in the final path of their centers of 

gravity. For example, consider Figure 0-20. 

 

Figure 0-20 Various kinds of motion stability (PNA III, Arentzen 1960) 

In each of the cases, the ship is assumed to be traveling at a constant speed along a straight path.  

1) For case I - Straight Line Stability: the final path after the disturbance is finished retains the 

straight-line attribute of the initial state of equilibrium, but not its direction. 

2) For case II - Directional Stability: the final path after the disturbance is finished retains not 

only the straight-line attribute of the initial path, but also its direction.  

3) For case III - Directional Stability: the result is the same as for Case II, but without the 

oscillations. 

4) For case IV - Positional Motion Stability: the ship returns to the original path – not only does 

the final path have the same direction as the original path, but also its same transverse 

position relative to the surface of the earth. 

When operating with controls-fixed in the horizontal plane in the open ocean with stern propulsion, 

a surface ship does not have directional stability (i.e. if disturbed from its original course it will not 

return to that course by itself). However, the ship can have Straight-Line Stability (i.e. if disturbed 

from its original straight-line course, the ship will settle on a final path that is also a straight line). 

When operating with controls working you can achieve directional stability. You want the ship to 

have directional stability with controls working, but also to have straight-line stability with controls 

fixed. This results in a compromise between rudder size and deadwood size. 

We will start by using the linear equations of motion to evaluate the straight-line stability 

characteristics of a ship. 

• We want to understand the effect of ship design features on maneuverability. 



 

• With the rudder fixed on the centerline, we want the ship to have straight-line stability, but 

just barely. 

• This will reduce the size of the rudder and steering gear needed for good maneuverability. 

The simultaneous solution of the sway and yaw equations for the sway and yaw velocities yields a 

second-order differential equation. Working with non-dimensional variables, the solutions for v  and 

r   correspond to the standard solutions of second-order differential equations: 
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The variables 1 2 1, ,V V R  and 2R  are constants of integration and 1 and 2  are the stability indexes. If 

both values of a are negative, v   and r   will approach zero with increasing time which means that 

the path of the ship will eventually resume a new straight-line direction. If either 1  or 2  are 

positive, v   and r   will increase with increasing time and a straight-line path will never be resumed. 

We can relate these stability indexes,  , to the hydrodynamic derivatives by substituting the 

solutions back into the equations of motion. If this is done, a quadratic equation in   is obtained: 

 2 0A B C + + =  (0-59) 

A, B, and C are as follows: 
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The two roots, both of which must be negative for controls-fixed stability are: 
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For both stability roots to be negative ( all changes with respect to time are decreasing), two 

conditions must be met: 
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• For conventional ships A is large and positive.  

• It can be shown that B is usually large and positive and on the same order of magnitude as A. 

•  This means that the determining factor will be C. 

For both stability roots to be negative,   0!C  Therefore, 
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Rewriting we can say, 
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We can calculate the directional straight-line stability after having performed the PMM tests on a 

model, but what can we say generally about controls-fixed straight-line stability from what we know 

about the hydrodynamic derivatives? 

The terms 
rN
  and 

vY
  are always negative, and generally large relative to 

rY
  and 

vN
 . If the bow is 

dominate (the usual condition), 
rY
  and 

vN
  are negative. So, in a conventional craft, the ration v

v

N

Y





will be small and since 
Δ

r

r

N

Y m


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  is likely to be larger, the ship will have directional stability. For a 

conventional hull (where the bow dominates), directional stability can be increased by increasing the 

magnitude of 
vY
  and 

rN
 .  Adding a larger rudder in the stern of the ship increases the directional 

stability of the ship by decreasing the magnitudes of 
rY
  and 

vN
 . 

1.8.5 Analysis of Turning Ability 

The response of the ship to deflection of the rudder, and the resulting forces and moments produced 

by the rudder, can be divided into 2 portions:  

1) An initial transient one in which significant surge, sway and yaw accelerations occur. 

2) A steady turning portion in which rate of turn and forward speed are constant and the path 

of the ship is circular 

Figure 0-21 shows the turning path of a ship. Generally, the turning path of a ship is characterized by 

four numerical measures: advance, transfer, tactical diameter, and steady turning diameter. All but 

the last are related to heading positions of the ship rather than tangents to the turning path. The 

advance is the distance from the origin at "execute" to the x-axis of the ship when that axis has turned

90 . The transfer is the distance from the original approach course to the origin of the ship when the 

x-axis has turned 90 . The tactical diameter is the distance from the approach course to the x-axis of 

the ship when that axis has turned 180°. These parameters of a ship's turning circle are useful for 

characterizing maneuvers in the open sea. 

1.8.5.1 The Three Phases of a Turn 

Phase I: The first phase starts the instant the rudder begins to deflect and may be completed by the 

time the rudder reaches full deflection. The rudder force ( )RY   and the rudder moment ( )RN   

produce accelerations and are opposed solely by the inertial reaction of the ship (hydrodynamic 

responses have not yet materialized). For this phase the ship has not changed direction, so

/ 0v U r = = = . The linearized, dimensional equations for the first phase of turning are 
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These accelerations (  and  )v r  exist only for a moment, for they quickly give rise to a drift 

angle,  , and a rotation, r , of the ship. 

 

Figure 0-21 Turning Path of a Ship 

Phase II: The second phase starts with the introduction of the drift angle,  , and a rotation, r , of 

the ship. Here the accelerations of the ship coexist with the velocities and all the terms of the  

equations of motion along with the excitation terms ( )RY   and ( )RN   are fully operative. The 

crucial event at the beginning of the second phase of the turn is the creation of a vY v force− positively 

directed towards the center of the turn. This force is introduced due to the drift angle,  . The 

magnitude of this force soon becomes larger than the R forceY  − which is directed to the outside 

of the circle. The acceleration  v  ceases to grow to the outside of the circle and eventually becomes 

zero as the inwardly directed vY v force−  comes into balance with the outwardly directed force of the 

ship. In the second phase of the turn, the path of the center of gravity of the ship at first responds to 

the RY  -force and tends towards the outside of the circle before the vY v force−  grows large enough 

to enforce the inward turn. 

Phase III: Finally, after some oscillation (some of which is due to the settling down of the main 

propulsion machinery and is characteristic of the particular ty pe of machinery and its control system) 

the second phase of turning ends with the establishment of the final equilibrium of forces. When this 

equilibrium is reached, the ship settles down to a turn of constant radius.  

This is the third, or steady, phase of the turn. In this phase v and r have non-zero values, but v  and 

r  are zero. For this phase of the turn, the linearized equations of motion are: 
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These two simultaneous equations can be solved for r  and v provided that the stability derivatives 

( ), , ,  and v r v rY Y N N and the control derivatives ( ) and Y N 
 are known. Note that 
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Solving the non-dimensional version of the linearized equations of motion shown above, we can solve 

for the turning radius, R , and the sway velocity, v  : 
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A positive R  denotes a starboard turn. The equation for the turn radius shows  

• The steady turning radius is proportional to ship length and inversely proportional to rudder 

angle. 

• Side velocity is equal to the drift angle and that is directly proportional to the rudder angle.  

• Denominator in the equation for R introduces the effect of the rudder on the hull 

( ) and N Y 
  

o Sign of denominator is always positive  

o If the numerator is negative (straight-line stability) and the rudder is at the stern, a 

negative R will give a positive R . 

To decrease the turning radius we can: 

1) Decrease 
vY
 - could increase /L T  ratio, but this is de-stabilizing  

2) Generally increase vN   (if vN   is negative) - this is a result of different bow and stern shapes. 

Changes could be made by cutting away skeg and deadwood aft or increasing forefoot 

forward.  

3) Increase N 
  (obvious choice) - the trick is to do it without increasing 1 /   too much. Want to 

move the rudder as far aft as possible and make the rudder as efficient as possible. 

4) Increase Y 

  ( only if vN   is negative) - can do this with a larger and/ or more efficient rudder. 



 

1.8.6 Rudder Design Considerations 

 

Figure 0-22 Rudder Definitions 

1.8.6.1 Rudder Definitions 

Figure 0-22 shows some important dimensions on a standard spade rudder. 

• Mean Span - average of leading and trailing edge spans  

• Mean Chord - average of the root and tip chords  

• Profile Area - product of mean span and mean chord  

• Aspect Ratio - ratio of mean span to the mean chord  

• Taper Ratio - ratio of the tip chord to the root chord  

• Sweepback Angle - angle between 1/4 chord line and vertical  

• Mean Thickness - average of the max thickness of the foil at the root and tip 

1.8.6.2 Lift, Drag and Angle of Attack 

The lift ( L) from an airfoil is defined as the component of force perpendicular to the freestream 

velocity vector. The drag (D) from an airfoil is defined as the component of force parallel to the free-

stream velocity. 
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Figure 0-23 Forces on an Airfoil 

The lift increases with increasing angle of attack. However, the lift cannot increase indefinitely with 

angle of attack. Eventually the adverse pressure gradient causes separation over the entire upper 

surface of the foil, resulting in a loss of lift. The maximum obtainable lift coefficient is called 
,maxLC · 

• rudder stall often precedes a broach 

 

Figure 0-24 Lift Curve 

 



 

1.8.6.3 Constraints on Rudder Design 

In profile, the rudder needs to fit within dimensions dictated by the hull shape.  

• The span is limited by the vessel draft.  

o It shouldn't extend below the baseline  

o It shouldn't penetrate the water surface 

• The chord is limited by propeller clearance and stern shape.  

o The usual distance between the propeller and the rudder is 0.2-propeller diameter 

The rudder should be designed for minimum drag at all speeds. 

 

Figure 0-25 Typical Rudder Section 

• The usual section shape is NACA 0015 (see Figure 0-25) to 0021 (relatively thick). These foils 

have a relatively constant center of pressure and thick sections are better structurally. 

o thickness-to-chord ratio is 0.15 to 0.21 

o symmetric shape  

o relatively low drag  

o max thickness at 30% chord length 

• High aspect ratio  

o  = span/chord  

o very good lift-to-drag ratio 

The rudder, rudder stock, rudder support and steering engine are considered together.  

• Minimize size and weight of steering equipment 

o keep rudder weight as small as possible 

o keep torque on rudder stock as small as possible 

▪ balanced rudder - allows for smaller stock  

▪ semi-balanced rudder - support vs. moment 

• Keep equipment as simple as possible  

o reduced repairs 

o simplifies layout 

Undesirable effects of the rudder on the ship should be kept to a tolerable level (i.e. rudder induced 

vibration). From a hydrodynamic perspective, the basic considerations in rudder design can be 

summarized as follows: 

• Full form ships need larger rudders  

• Large rudders provide superior performance  

• Put the rudder in the propeller wake to improve efficiency  



 

• High aspect ratios give better efficiency  

o limited by hull shape (span by draft; chord by stern shape) 

• Rate of swing  

o increased rate of swing is good for small ships  

o large ships benefit more from rudder area than from swing rate 

A good first estimate of rudder area can be achieved using the 1975 Det Norske Veritas (DNV) Rules. 
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Table 0-1 General vessel hull form coefficients 

 

The formula only applies for single rudders operating in a propeller wake. For all other arrangements 

DNV requires a 30% increase in area. (You want to put rudders behind propellers to increase the flow 

over the rudder at low speeds - makes the rudder more effective). 

The equation gives (essentially) a rudder area coefficient. It is useful to compare values from the 

equation with values used in industry (see Table 0-1 and Table 0-2). In choosing a design, the rudder 

performance is more affected by span length than chord length. An increase in the aspect ratio 

increases the lift/drag ratio. 



 

Table 0-2 Rudder area coefficients 
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