

ELEC-E8126 Robotic Manipulation Course information

Ville Kyrki 13.1.2020

What do you expect from the course?

Contents

- Aspects of state-of-the-art robot manipulation
 - Perception
 - Planning trajectories
 - Planning grasps
 - Learning manipulation skills
 - Coordinated motions
 - Handling contact

Learning goals – What's the course about?

After completing the course, a student can

- explain main concepts related to robotic manipulation
- read scientific literature in robotics to choose approaches for a particular problem
- implement state-of-the-art algorithms

State-of-the-art examples

- Learning dynamic manipulation tasks
 - https://youtu.be/W_gxLKSsSIE
- Learning assembly tasks
 - https://youtu.be/JeVppkoloXs
- Learning dextrous in-hand manipulation
 - https://www.youtube.com/watch?v=6fo5NhnyR8I

Prerequisities

- Programming (C++ will be used in assignments)
- Robotics basics (e.g. kinematics)
- Control engineering basics (e.g. feedback, PID)
- Math (calculus, vector and matrix algebra)
- Motivation to work hard!

Follow MyCourses!

Teaching

- Independent study
 - Readings
- Lectures
 - Discuss concepts, summarize, give new viewpoints
 - Mon 10:15-12 (periods 3-4)
- Assignments / quizzes
 - Weekly electronic quizzes based on lectures and readings
- Assignments / mini-project exercises
 - 6 exercises / mini-projects, to be completed individually

Grading and evaluation

- To pass, 50% of maximum total grade must be achieved.
- Grading
 - Quiz-assignments 25%
 - Exercise-assignments 75%
- Extra points from active participation (lectures/exercises).

Workload estimate

- Lectures 24 h
- Exercise sessions 22 h
- Independent study / Readings and quizzes 28 h
- Independent study / Solving exercises 56 h
- Total 130 h

Material

- MyCourses
 - Lecture slides
 - Links to readings and videos
- Primary book
 - Lynch & Park, "Modern Robotics: Mechanics, Planning, and Control"
- Secondary books
 - LaValle, "Planning algorithms"
 - Murray, Li & Sastry, "Mathematical Introduction to Robotic Manipulation"

Teachers

- Lecturer
 - Ville Kyrki (ville.kyrki@aalto.fi)

- TAs (assignments and project)
 - Fares Abu-Dakka
 - Eshagh Kargar
 - Tran Nguyen Le

Contacting teachers

- Primary
 - At lectures/exercises
 - Course Slack channel
- Secondary
 - Email

Questions?