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ABSTRACT

Interval judgments are a way of handling preferential and informational imprecision in
multicriteria decision analysis (MCDA). In this article, we study the use of intervals in the
simple multiattribute rating technique (SMART) and SWING weighting methods. We
generalize the methods by allowing the reference attribute to be any attribute, not just the
most or the least important one, and by allowing the decision maker to reply with intervals
to the weight ratio questions to account for his/her judgmental imprecision. We also study
the practical and procedural implications of using imprecision intervals in these methods.
These include, for example, how to select the reference attribute to identify as many
dominated alternatives as possible. Based on the results of a simulation study, we suggest
guidelines for how to carry out the weighting process in practice. Computer support can
be used to make the process visual and interactive. We describe the WINPRE software for
interval SMART/SWING, preference assessment by imprecise ratio statements (PAIRS),
and preference programming. The use of interval SMART/SWING is illustrated by a
job selection example.

Subject Areas: Decision Support Systems, Imprecision, Multicriteria
Decision Making, and Uncertainty Modeling.

INTRODUCTION

Multicriteria decision analysis (MCDA) is an approach to systematically evaluate
a set of alternatives with multiple criteria. Interval judgments provide a convenient
way to account for preferential uncertainty, or imprecision, and incomplete infor-
mation (Weber, 1987). In MCDA models, intervals can be used, for example, to
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describe the range of allowed variation in the weight ratio and value estimates due
to imprecision.

Interval modeling has been applied in various MCDA methods. ARIADNE
(Alternative Ranking Interactive Aid based on DomiNance structural information
Elicitation; Sage & White, 1984; White, Sage, & Dozono, 1984) was the first
decision support system to use interval judgments through direct constraints on
values and weights. HOPIE (Holistic Orthogonal Parameter Incomplete Estima-
tion; Weber, 1985) was based on holistic interval judgments on a set of hypothetical
alternatives allowing also constraints for pairwise comparisons of the alternatives.
Preference programming (Arbel, 1989; Salo & Hämäläinen, 1995, 2003) general-
izes the pairwise comparisons of the AHP (Analytic Hierarchy Process; Saaty, 1980,
1994; Salo & Hämäläinen, 1997) to intervals. In PAIRS (Preference Assessment
by Imprecise Ratio Statements; Salo & Hämäläinen, 1992), the attributes are also
compared in pairs, but the alternatives are evaluated within a value tree framework.
In PRIME (Preference Ratios In Multiattribute Evaluation; Salo & Hämäläinen,
2001), the attribute weights are elicited through interval tradeoff comparisons of
value differences. Lee, Park, Eum, and Park (2001) and Eum, Park, and Kim (2001)
have developed extended interval methods for identifying dominance and potential
optimality.

In this article, we discuss the use of interval judgments in the SMART (Sim-
ple Multi-Attribute Rating Technique; Edwards, 1977; von Winterfeldt & Edwards,
1986) and SWING (von Winterfeldt & Edwards, 1986) methods. They are simple
multiattribute weighting methods based on ratio estimation. While the idea of mod-
eling imprecise information with intervals is not new, the use of intervals explicitly
in SMART and SWING has not been previously presented in the literature. In our
discussion, we deal with SMART and SWING simultaneously as one method, and
refer to this generalized method as interval SMART/SWING.

In practice, the true usefulness of the methods is determined by procedural
aspects. Easy-to-use approaches such as SMART and SWING are nowadays the
common basis of many applied MCDA studies (Belton & Stewart, 2001). Thus, we
believe that the related generalized interval SMART/SWING approach would be
of interest to the practitioners as it preserves the cognitive simplicity of the original
methods.

Computationally the interval SMART/SWING weighting process leads to a
similar optimization problem as in the PAIRS method, and the tools presented with
PAIRS can be directly used in the calculations. However, from the procedural and
practical elicitation viewpoints, the interval SMART/SWING method has charac-
teristics that should be addressed in the determination of the weight intervals and
in the analysis of the results. These originate mainly from the fact that in interval
SMART/SWING the preference comparisons are done with respect to a certain
reference attribute only. The main objective of this article is to discuss these pro-
cedural and practical aspects of the method. We shall, for example, discuss the
implications of having a certain reference attribute, and study the effects of using
different attributes as a reference. Based on the results of a simulation study, we
also suggest guidelines for how to select the reference attribute.

Computer support is needed to solve the overall value intervals, and it can fa-
cilitate the process by making it interactive and visual. To help the reader get an idea
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of the practical possibilities, we shall also describe the WINPRE (Workbench for
INteractive PREference Programming; Hämäläinen & Helenius, 1997) software,
which supports interval SMART/SWING, PAIRS, and preference programming
approaches.

This article is organized as follows. First, we describe the relevant ratio
estimation methods. Then, we discuss the use of intervals in preference judgments,
and practical and procedural issues related to the selection of the reference attribute.
The use of the method with the WINPRE software is demonstrated next by an
illustrative example, and finally, we give the concluding remarks.

RATIO ESTIMATION METHODS

Multiattribute value theory (MAVT) is an MCDA approach, in which the overall
values of the alternatives are composed of the ratings of the alternatives with respect
to each attribute, and of the weights of the attributes. If the attributes are mutually
preferentially independent (Keeney & Raiffa, 1976), an additive value function can
be used to calculate the overall values. The overall value for alternative x is

v(x) =
n∑

i=1

wi vi (xi ), (1)

where n is the number of attributes, wi ≥ 0 is the weight of attribute i, xi is the
consequence or the measurement value of alternative x with respect to attribute i,
and vi(xi) is its rating. One should note that other terms, such as a component value,
an attribute value, and a score, are also used in literature to characterize vi(xi). The
sum of the weights is normalized to one, and the ratings are scaled onto the range
[0, 1], for example, by using value functions. Weights wi can be given directly by
point allocation (Schoemaker & Waid, 1982), or by different weighting procedures
such as SMART or SWING.

In SWING, the decision maker (DM) is first asked to consider a hypothet-
ical alternative in which all the attributes are on their worst consequence levels.
Then, the DM is asked to identify the most important attribute, that is, an attribute
whose consequence he/she most preferably would change from its worst level to
its best level. This is given a hundred points. Next, the DM is asked to identify an
attribute, whose consequence he/she next preferably would change to its best level.
To this, the DM is asked to assign fewer points to denote the relative importance
of the change in this compared to the change in the most important attribute. The
procedure continues similarly on the other attributes. The actual attribute weights
are elicited by normalizing the sum of the given points to one.

In SMART, the DM assigns 10 points to the least important attribute. Then,
he/she assigns more points to the other attributes to address their relative impor-
tance. The weights are elicited by normalizing the sum of the points to one. How-
ever, it has been stressed that the comparison of the importances of the attributes
is meaningless, if it does not reflect the consequence ranges of the attributes as
well (von Winterfeldt & Edwards, 1986; Edwards & Barron, 1994). These can
be taken into account by applying SWING weighting to SMART. That is, in the
comparison of the importances of the attributes, the DM should explicitly focus on
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Table 1: A set of ratio methods classified by the type of judgments used.

Exact Point Estimates Interval Estimates

Minimum number of SMART, SWING Interval SMART/SWING
pairwise judgments

More than minimum number AHP, Regression PAIRS, Preference
of judgments allowed analysis programming

the attribute changes from their worst consequence level to the best level. Edwards
and Barron (1994) named this variant as SMARTS (SMART using Swings), but
the term SMART is also commonly used for this variant.

SMART and SWING are algebraic methods, that is, the weights are derived
from n − 1 linearly independent judgments on preference relations (Weber &
Borcherding, 1993), which is the minimum number of judgments required to elicit
n weights. Another way is to derive the weights from a larger set of judgments
with some estimation method (see Table 1). In an extreme case, the set of all the
possible n × (n − 1)/2 pairwise judgments is used. For example, in the AHP the
weights are elicited from this set with the eigenvalue procedure (Saaty, 1980).
Interval methods can be classified in the same way. When using interval estimates
the minimum number of judgments is 2 × (n − 1), as both the lower and upper
bounds are given for the preference relations. Interval SMART/SWING uses the
minimum number of judgments, but there are also interval methods which allow
the use of more judgments, such as PAIRS and preference programming.

INTERVAL SMART/SWING

In interval SMART/SWING, we generalize the SMART and SWING methods (i)
by allowing the reference attribute to be any attribute, not just the most or the
least important one, and (ii) by allowing the DM to use interval judgments on the
weight ratio questions and on the evaluation of the alternatives to represent related
imprecision.

Reference Attribute

By allowing the reference attribute to be any attribute, interval SMART/SWING
makes it possible to use, for example, some easily measurable attribute, such as
money, as a reference. This can often make the weight elicitation process easier and
consequently decrease imprecision related to the weights. This kind of an approach
has also been recommended in other methods, for example, in the tradeoff and Even
Swap methods, it has been suggested to make the easiest tradeoffs first (Keeney,
1992; Hammond, Keeney, & Raiffa, 1998, 1999).

In this generalization the reference attribute is given a fixed number of points,
while the other attributes receive points that reflect their relative importance. In
practice, any number of points can be assigned to the reference attribute, as far as
the points assigned to the other attributes are relative to these points. For example,
if the DM is familiar with the SMART method, it is natural to assign 10 points to
the reference attribute in interval SMART/SWING, too.
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The actual weights are elicited by normalizing the sum of the points to one,
as in SMART and SWING. Thus, the distinction between these methods is based
on procedural differences only. If the DM is consistent in his/her weighting, the
weights elicited with different methods should be the same. However, behavioral
research has shown that different weighting methods may give diverging results
(Weber & Borcherding, 1993; Pöyhönen & Hämäläinen, 2001). As possible ex-
planations for this, it has been suggested, for example, the DMs’ tendency to give
points in multiples of 10, or tendency to consider the ranking of the attributes
rather than the strength of the preferences (Pöyhönen, Vrolijk, & Hämäläinen,
2001). Thus, here as well as on any other MCDA method, the DM should be well
informed about the proper use of the method to avoid such procedural biases. This
is especially important when using any attribute as a reference, as the points given
can be both higher and lower than those for the reference attribute.

Interval Judgments

The other generalization of interval SMART/SWING is to allow the DM to reply
with intervals to the weight ratio questions to describe possible imprecision in
these. Then, the reference attribute is given a fixed number of points, but the points
for the other attributes are given as intervals representing the imprecision in the
judgments. From these intervals we can derive constraints for the attributes’ weight
ratios in a straightforward manner by taking the extreme ratios of the points given
to the reference attribute and the other attributes, that is,

ref

maxi
≤ wref

wi
≤ ref

mini
, ∀i = 1, . . . , n, i �= ref , (2)

where ref stands for the points given to the reference attribute and maxi (mini) for
the maximum (minimum) number of points given to a nonreference attribute i. For
example, if the reference attribute was given 1.0 point and attribute i an interval
from 0.5 to 3 points, the constraints for the weight ratio between these would be
1/3 ≤ wref /wi ≤ 1/0.5 = 2, or with another notation wref /wi ∈ [1/3, 2]. The
constraints in (2), in addition to the weight normalization constraint

∑n
i=1 wi = 1,

determine the feasible region of the weights, S.
Similar intervals can be given to the ratings of the alternatives to describe

imprecision in these. In practice, these intervals can be assigned directly (e.g.,
0.2 ≤ vi(xi) ≤ 0.5) or, for example, by setting bounds for the value functions from
which the intervals can be derived (Salo and Hämäläinen, 1992).

As a result, one gets overall value intervals for the alternatives describing the
possible variation in the overall values due to allowed variation in the weights and
the ratings. The lower bound for the overall value of alternative x (v

¯
(x)) is elicited

as its minimum, when allowing the weights and the attribute values to vary within
the given constraints. That is,

v
¯

(x) = min
w∈S

n∑
i=1

wi v
¯ i (xi ), (3)

where v
¯ i(xi) is the lower bound for vi(xi), and w = (w1, . . . , wn) ∈ S. The upper

bound is obtained analogously. The minimization problem (3) can be solved by
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linear programming. Technically this problem is similar to the one of the PAIRS
method, and for computational details, see Salo and Hämäläinen (1992).

An analysis of the alternatives’ value intervals can be employed to deter-
mine the dominance relations between the alternatives (Weber, 1987; Salo &
Hämäläinen, 1992). Alternative x dominates alternative y if the value of x is greater
than the value of y for every feasible combination of the weights, that is, if

min
w∈S

n∑
i=1

wi (v
¯ i (xi ) − v̄i (yi )) > 0. (4)

More specifically, one can say that this is a definition of pairwise dominance.

Example

To illustrate the interval SMART/SWING analysis, consider a case with two al-
ternatives (A and B) and three attributes (1, 2, and 3). Attribute 1 is chosen as the
reference attribute and given 1.0 point (see Figure 1). Attribute 2 is given an interval
from 0.5 to 2.0 points and attribute 3 an interval from 1.0 to 3.0 points to reflect
judgmental imprecision in the importances of these. The weight ratio constraints
are derived from the ratios of these according to (2), and they are w1/w2 ∈ [1.0/2.0,
1.0/0.5] = [1/2, 2] and w1/w3 ∈ [1.0/3.0, 1.0/1.0] = [1/3, 1]. These define the
feasible region of the weights S. Figure 2 illustrates this region on the weight space
{w = (w1, w2, w3): wi ≥ 0,

∑3
i=1 wi = 1}. For simplicity, we assume that there

is no imprecision in the ratings (i.e., the lower and upper bounds of each rating
interval are the same) and set these as v

¯1(A) = v̄1(A) = 0.0, v
¯1(B) = v̄1(B) = 1.0,

v
¯2(A) = v̄2(A) = 1.0, v

¯2(B) = v̄2(B) = 0.8, v
¯3(A) = v̄3(A) = 1.0, and v

¯3(B) =
v̄3(B) = 0.0.

As a result we get the overall values intervals of [0.60, 0.83] for alternative
A and [0.31, 0.65] for alternative B (see Figure 1). Now, alternative A dominates
alternative B, as the value of A is greater than the value of B for any single weight
combination within the feasible region S. Thus, although the overall value intervals
overlap, on the basis of dominance, alternative A can be considered to be the best
alternative.

Remarks

In interval SMART/SWING, the preference relations between the nonreference
attributes are not explicitly stated. However, upper bounds for the weight ratios
between these can be implicitly derived from the constraints (2). For example,
in a case of three attributes, an upper bound for the weight ratio between two
nonreference attributes 2 and 3 can be derived from constraints ref/max2 ≤ wref /w2

and wref /w3 ≤ ref/min3, from which we get w2 ≤ max2/ref × wref ≤ max2/ref ×
(ref/min3×w3) ⇒ w2/w3 ≤ max2/min3. In our example, max2 = 2 and min3 =
1, and by calculating the lower bound similarly we get the weight ratio interval
w2/w3 ∈ [1/6, 2] (the dotted lines in Figure 2). However, these constraints are
clearly redundant as they do not restrict the feasible region more than the other
constraints do.

The feasible region of the weights obtained with interval SMART/SWING
will never become empty, as may happen in the methods using more than minimum
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Figure 1: Interval SMART/SWING analysis with three attributes (1, 2, and 3) and
two alternatives (A and B). A screen capture from the WINPRE software.

Figure 2: Feasible region S on the simplex representing the weight space.

number of judgments (e.g., in PAIRS). On the other hand, in these methods an empty
feasible region would indicate inconsistency in the DM’s preference assessment. In
such a case the DM is requested to evaluate his/her preferences. Although in interval
SMART/SWING the DM cannot give inconsistent judgments, it would often be
useful to separately check the correctness of the statements. This can be carried out
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by assessing a few weight ratio constraints also between the nonreference attributes,
even if this is not explicitly required by the method (Weber & Borcherding, 1993).

In this article, we only concentrate on nonhierarchical value trees having one
attribute level. However, the method can also be applied in hierarchical trees with
many attribute levels, similarly as PAIRS. Then, the interval weighting is carried
out on each branch of the value tree separately. For computational details see Salo
and Hämäläinen (1992).

HOW TO SELECT THE REFERENCE ATTRIBUTE

A common goal in MCDA is to identify dominated alternatives. In interval
SMART/SWING, the choice of the reference attribute may affect the occurrence of
the dominances. Next we shall discuss how the reference attribute can be efficiently
selected, that is, so that as many dominated alternatives as possible are identified
with as few procedural actions as possible.

In general, the smaller the feasible region is, the more dominated alternatives
are likely to be identified. Therefore, a natural way is to select the reference attribute
so that imprecision intervals become as tight as possible. However, procedurally the
evaluation of these intervals is carried out only after selecting the reference attribute.
Thus, in general this piece of information cannot be assumed to be available at this
phase of the process. Yet there are also cases where the DM may be able to easily
identify the attribute with least imprecision beforehand, for example, the above-
mentioned money may be such an attribute to many DMs.

On the other hand, the shape of the feasible region and its position on the
weight space may also have an effect on the occurrence of the dominances. To
illustrate this, let us further consider our example in the previous section (Figure 2).
From the whole weight space we can identify an area in which alternative A
dominates alternative B (the shaded area in Figure 3). This area can be formed
according to (4), that is, by including all the weight vectors w = (w1, . . . , wn),
such that

∑n
i=1 wi (v

¯ i (A) − v̄i (B)) > 0, in it. If the feasible region of the weights
is now within this area as a whole, the corresponding dominance occurs, which
is clearly the case in our example (Figure 3). Thus, if considering the shape of
the feasible region, it would be desirable that the feasible region would be evenly
stretched into all directions, so that it would be entirely included in as many of
these areas of dominance as possible.

The size of the feasible region could be analytically measured, for example,
by an area (or a content in a general case), or it could be approximated, for example,
with the consistency measure of Salo and Hämäläinen (1997). However, there are
not straightforward analytical ways to simultaneously take into account the shape
and the position of the region. Thus, we carried out a simulation experiment to
study the effects of selecting different attributes as a reference.

Simulation Study

The objective of the simulation study was to find out what would be the best choice
for the reference attribute. The strategies compared were the ones where the ith
most important attribute (i = 1, . . . , n) was chosen as a reference attribute. Thus,
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Figure 3: The dark coloring indicates an area, where alternative A dominates
alternative B.

we assumed that the DM can specify the ranking for the relative importances of
the attributes.

We generated a set of problems, and in each problem instance the efficiency
of each strategy was measured. The goal was to determine whether there are sta-
tistical differences between the average efficiencies of the strategies. In addition,
we studied the effects of the problem size, which was characterized by the number
of the attributes (n) and the number of the alternatives (m). We conducted 1,000
simulation rounds on each combination of the values of n = 3, 5, 8 and m = 3, 5,
8. We did not study any larger problems, because the effects of parameter varia-
tion already emerged with these values. The simulations were carried out with the
MATLAB software.

On each simulation round, the problem instance was generated as follows.
We randomly generated pointwise (i.e., the lower and the upper bounds were the
same) measurement values xi from (0, 1) normal distribution for each alternative x
on each attribute i. Thus, these values were independent of each other. The ratings
vi(xi) were then derived from these values by mapping the measurement value
ranges linearly to interval [0, 1]. That is,

vi (xi ) = (xi − x
¯ i )/(x̄i − x

¯ i ), (5)

where x̄i and x
¯

i represent the maximum and minimum measurement values of
attribute i, respectively. By assuming that unit increases in the measurement values
are equally preferred on each attribute, the weight of an attribute i(wo

i ) is relative
to the range of the corresponding measurement values, that is,

wo
i = (x̄i − x

¯ i )

/ n∑
j=1

(x̄ j − x
¯ j ). (6)
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Thus, as a result of this process we got a problem instance having pointwise esti-
mates for both the weights of the attributes and the ratings of the alternatives.

The imprecision on each strategy was modeled by assigning error ratio R
(Salo & Hämäläinen, 2001) on all the ratios between the generated weights of
the reference attribute (wo

ref ) and any other attribute i(wo
i ). Thus, we assumed that

relatively each weight ratio had equal imprecision assigned. In practice, each weight
ratio was multiplied by factor R to get the upper bound for it, and divided by R to
get the lower bound. That is,

1

R

wo
re f

wo
i

≤ wref

wi

≤ R
wo

re f

wo
i

, ∀i = 1, . . . , n, i �= ref , (7)

where wo
i is the initially generated pointwise weight of attribute i, and ref denotes

the reference attribute. For example, if wo
ref = 0.5, wo

2 = 0.2 and R = 1.5, the weight
ratio interval for wref /w2 would be [(1/1.5) × (0.5/0.2), 1.5 × (0.5/0.2)] = [1.67,
3.75]. As a result, we got constraints for the same weight ratios that would have
been assigned with the interval SMART/SWING process. The simulations were
carried out with error ratio R = 1.5. In addition, to study the possible effects of
error ratio R, simulations with R = 1.2, 1.4, 1.8, 2, and 3 were carried out for the
case n = m = 5.

This setting appears realistic in many cases, as real events are often nor-
mally distributed. However, some real life cases would require essentially different
distributions for the weights and the ratings. For example, a case having speci-
fied grading scales on each attribute would require a simulation setting with fixed
ranges for the measurement values. Thus, the simulation was also tested by using
other distributions, for example, the uniform distribution both on the weight space
and on the ratings of the alternatives. However, the conclusions drawn from the
simulations carried out with these other distributions were essentially the same as
with this setting.

Two further strategies were also studied: a strategy where imprecision inter-
vals were assigned for all the pairwise judgments (PAIRS), and a strategy where
the constraints were sequentially assigned for adjacent pairs of attributes, that is,
between the most and the second important ones, the second and the third important
ones, and so on. The objective was to have a reference to techniques not having a
certain reference attribute selected. However, we do not discuss how to elicit the
constraints in these strategies in practice, but take these as directly given.

The efficiency of each strategy was measured by two different measures. The
first one was the average number of dominated alternatives obtained with each
strategy. The second one was the average of the maximum loss of value, that is,
the maximum value difference between initially (at point wo) the best alternative
x∗ and all the other alternatives,

max(v(x) − v(x∗)), ∀w ∈ S, x ∈ X\{x∗}, (8)

where S is the feasible region of the weights, and X the set of all the alternatives.
If the maximum loss of value is negative, the value of alternative x∗ is greater than
any other alternative at every point of the feasible region, that is, it dominates all
the other alternatives.

The simulation results are presented in Tables 2 and 3. The strategies are
named after the rank of the reference attribute in the order of importance. For
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example, strategy 1 represents the strategy where the most important attribute, that
is, an attribute having the highest initial weight wo

i , was chosen as a reference. “Seq”
and “All” stand for the strategies using sequential and all the possible judgments,
respectively. The percentages in Table 2 represent the share of the maximum number
of alternatives that can be made dominated with each strategy (m − 1).

Finally, the differences in the efficiencies between all the possible strategy
pairs in all problem sizes were statistically studied. In practice, we calculated the
differences both in the maximum loss of value and in the number of dominated
alternatives for each strategy pair in each problem instance. Then we tested whether
the averages of these differences significantly differed from zero. According to
some normality tests (Lilliefors, Jarque-Bera) the data cannot be assumed to be
normally distributed, and thus we used the nonparametric Wilcoxon sign rank test
for this testing.

Discussion

The simulation results show that if the error ratios on all the preference judgments
are the same, in general a strategy of having a more important attribute as a reference
is significantly more efficient (with alpha level 0.05). In the statistical tests on the
maximum loss of value, this applied on all problem sizes and strategy pairs except
between strategies 4 and 5 in the case n = m = 8. In the tests on the number of
dominated alternatives, there were a few strategy pairs, in which the strategy with
a more important reference attribute was not significantly more efficient. These
occurred mainly in the cases n = 8 between the strategies where an intermediate
attribute was as a reference. However, for example, in all the tests between strategy 1
and a strategy where the least important attribute was as a reference, strategy 1
identified significantly more dominated alternatives.

In this respect the most efficient way is to choose the most important attribute
as a reference attribute. On average, this strategy identified most dominances and
had the smallest losses of value in all the problem sizes and with all the error ratios.
However, the use of the strategy assumes that the most important attribute can be
identified, but often this can be easily done. The use of the most important attribute
as a reference also has other advantages. It is certainly meaningful to the DM,
whereas comparisons to some less important attribute may become imprecise due
to negligible importance of this. The DM has also presumably given more thought
to the most important attribute than to the less important ones, and through this
may have reduced the related imprecision.

On the other hand, the results also show that even a small reduction in the
error ratio affects the efficiency more than choosing the most important attribute as
a reference. For example, in the case n = m = 5, R = 1.4, all the strategies except
strategy 5 identified more dominances than strategy 1 in the case n = m = 5, R =
1.5. Thus, if the DM can easily pick out an attribute containing least imprecision,
this is likely to be worth choosing as a reference attribute instead of the most
important one.

To sum up these observations, we suggest the following rules to select the
reference attribute:
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1. If the DM can easily identify an attribute containing least imprecision, this
should be selected as a reference attribute.

2. If the imprecision related to the attributes cannot be differentiated, the
most important attribute should be selected as a reference attribute.

If the DM can identify neither the attribute containing least imprecision nor the
most important attribute, the attributes are likely to be such on equal terms that no
specific recommendations can be given.

As a result of the initial weighting process, there may still be nondominated
alternatives so that further adjustments to the parameters are required until the
best alternative can be identified. The DM can try to give more precise preference
judgments, for example, by tightening the already stated constraints. Another way
is to try to reduce imprecision related to the values of the alternatives. Especially
if the set of alternatives has been reduced by eliminating dominated alternatives,
the workload needed to consider the imprecision related to the alternatives is also
smaller.

Decision rules can also be applied to rank alternatives for which dominances
do not hold (Salo & Hämäläinen, 2001). Rules based on centralization, such as the
central values of the overall value intervals or the use of the central weights, can also
be recommended here. However, some other rules such as maximin or maximax
(i.e., maximizing the minimum or the maximum of the overall value interval) may
cause bias when applied in interval SMART/SWING. This is because there are no
explicit constraints between nonreference attributes, and thus these will generally
have wider weight ratio intervals. Consequently, the alternatives strong in these
attributes will also have wider intervals for the overall values.

Comparison to the Strategies Using Sequential
and All the Possible Judgments

In the sequential strategy, the number of explicitly given judgments is 2 ×
(n − 1), that is, the same as when using a reference attribute. However, all the
explicitly given judgments are needed to elicit an upper bound for the weight ratio
constraint between the most and the least important attribute. Consequently, this
constraint would contain all the imprecision in these judgments. In comparison,
by using some reference attribute, the bounds for the weight ratios between any
nonreference attributes are elicited only from two explicitly given judgments, as
demonstrated in the remarks of the previous section. Thus, by default the sequential
strategy is expected to produce wider intervals than strategies using a certain refer-
ence attribute, and the more attributes we have the more inefficient the sequential
strategy is expected to be. This is supported by the simulation results. In the cases
n = 3, there is no difference as then the sequential strategy actually corresponds
with strategy 2, but in the cases n = 8 the sequential strategy is generally the most
inefficient one.

The DM can also carry out pairwise preference comparisons between all the
attributes. Then the number of the given judgments increases from 2 × (n − 1)
to n × (n − 1). For example, in the case n = 8 this means an increase from 14
judgments to 56. However, as the first 2 × (n − 1) judgments are given by using
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the same reference attribute, from these we can derive some constraints for all
the attribute pairs, whereas the further judgments only tighten these constraints.
Thus, expectedly the further judgments shall not be as efficient in identifying new
dominances as the 2 × (n − 1) first judgments. The simulation results also clearly
support this. For example, in the case n = m = 8, R = 1.5, by giving the first 25%
(14 of 56) of all the possible pairwise judgments, 73.1% of the dominances were
identified. If one further gave all the rest of the judgments, the percentage increased
only to 85.3%. Thus, the result suggests that instead of assigning constraints on all
the possible attribute pairs, the DM should consider other ways of trying to reduce
the imprecision, for example, in the ratings of the alternatives.

From the behavioral viewpoint, it is plausible to assume that the impreci-
sion related to some attribute decreases when more preference judgments on this
are given, because then this attribute becomes more familiar. In the case of the
sequential strategy, this would further reduce its efficiency, as the attributes under
judgment change all the time. In the case of giving all the pairwise judgments there
may be some influence in favor of this strategy. However, we see that this effect is
so small compared to the extra workload needed to give all the judgments that we
still cannot suggest using this strategy to further reduce the imprecision.

EXAMPLE WITH COMPUTER SUPPORT

As an example, we consider Vincent Sahid’s job decision problem (Figure 4)
adapted from Hammond et al. (1998). Vincent’s task is to select the best job from
five alternatives evaluated with respect to six attributes (Table 4). In the original
example, the problem was approached with the Even Swaps method (Hammond
et al., 1998, 1999). Now we describe how to apply interval SMART/SWING to
model the possible imprecision in the example. One should note that the given
intervals are based on our subjective interpretation of the case description, as the
original example did not give these explicitly.

Figure 4: Value tree for Vincent Sahid’s job decision.
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Table 4: Consequences table for Vincent Sahid’s job decision (Hammond et al.,
1998).

Job A Job B Job C Job D Job E

Monthly salary $2000 $2400 $1800 $1900 $2200
Flexibility of
work schedule

Moderate Low High Moderate None

Business skills
development

Computer Manage
people,
computer

Operations,
computer

Organization Time
management,
multiple tasking

Vacation
(annual days)

14 12 10 15 12

Benefits Health, dental,
retirement

Health, dental Health Health,
retirement

Health, dental

Enjoyment Great Good Good Great Boring

We illustrate the process by using the WINPRE software, available in the
Decisionarium Web site (www.decisionarium.hut.fi; Hämäläinen, 2003). WINPRE
provides a graphical user interface to support different phases of the analysis, for
example, the creation of the value tree, the elicitation of the attribute weights and
the analysis of results. The analysis of the results is truly interactive, as WINPRE
gives instantaneous feedback on how the overall values and dominance relations
change due to changes in the attribute weights and in the alternatives’ ratings.
Another software developed later by our research team to support interval ratio
methods is PRIME Decisions (Salo, Gustafsson, & Gustafsson, 1999). It supports
the PRIME method, and allows interval SMART/SWING to be used in the weight
elicitation. For a detailed discussion of PRIME Decisions, see Gustafsson, Salo,
and Gustafsson (2001).

Interval SMART/SWING is suitable for this problem especially for the fol-
lowing reasons. First, there are different types of imprecision (Wallsten, 1990 or
French, 1995) related to the attributes, which can all be modeled with intervals.
Second, there are relatively many attributes. Thus, with interval SMART/SWING
the number of attribute comparisons does not become too high, as it depends only
linearly on the number of attributes.

In attributes business skills development and benefits, there may be impre-
cision, for example, due to incomplete job descriptions. We model this by using
intervals to cover the possible differences between the given job descriptions and
the reality. Attributes flexibility of work schedule and enjoyment are evaluated by
classifying the alternatives into a set of verbal explanations. However, often there
is some imprecision around these explanations, for example, two alternatives may
both be classified as good on some attribute, although in practice the other one
may be somewhat better. This is modeled by associating a rating interval with each
of the verbal explanations. For example, on attribute enjoyment we use intervals:
boring = [0.0, 0.2], good = [0.5, 0.7], and great = [0.8, 1.0] (see Figure 5).

Exact point estimates can also be used by setting the upper and lower bounds
of the intervals the same. In this example, the consequences in attributes salary and
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Figure 5: Interval evaluation for the attribute enjoyment.

Table 5: Value intervals for the attributes.

Attribute and Its Range Job A Job B Job C Job D Job E

Monthly salary [$1800, $2400] [1/3, 1/3] [1, 1] [0, 0] [1/6, 1/6] [2/3, 2/3]
Flexibility of work schedule [0, 1] [0.5, 0.7] [0.2, 0.4] [0.8, 1.0] [0.5, 0.7] [0.0, 0.0]
Business skills development [0, 1] [0.3, 0.7] [0.7, 1.0] [0.5, 0.8] [0.0, 0.3] [0.6, 0.9]
Vacation [10, 15] [0.8, 0.8] [0.4, 0.4] [0.0, 0.0] [1.0, 1.0] [0.4, 0.4]
Benefits [0, 1] [0.8, 1.0] [0.3, 0.4] [0.0, 0.0] [0.5, 0.6] [0.3, 0.4]
Enjoyment [0, 1] [0.8, 1.0] [0.5, 0.7] [0.5, 0.7] [0.8, 1.0] [0.0, 0.2]

vacation for each alternative are pointwise estimates, which are mapped linearly on
the value scale. Table 5 presents each alternative’s value intervals on the attributes.

In attribute weighting, there may be imprecision, for example, due to the
DM’s inability to assess his/her weights precisely. Figure 6 presents the interval
SMART/SWING weighting in our example. Monthly salary is chosen as the refer-
ence attribute for two reasons. First, it is an easily measurable and understandable
attribute. Thus, the attribute comparisons can be expected to be an easier process
than, for example, in the case where business skills development is to be compared
with the other attributes. Second, salary is the most important attribute (jointly
with enjoyment), and thus all the comparisons are carried out to less important
attributes.

As a result we get the overall value intervals for the alternatives and the
possible dominance relations (Figure 7). Now alternatives Job C and Job E are
dominated by Job B (and Job E also by Job A). Thus, any combination of the
weights satisfying the given constraints cannot give Job C or Job E a better overall
value than Job B has.

We can continue our analysis by specifying the given information to get more
accurate results. We can, for example, define subclasses for the verbal descriptions.
As alternatives Job C and Job E are dominated, new information is only needed
for the classes concerning Jobs A, B, and D. For example, Jobs A and D both
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Figure 6: Interval SMART/SWING weighting in Vincent Sahid’s job selection
example.

Figure 7: Overall value intervals and dominance relations.

have a moderate flexibility (rating interval [0.5, 0.7]) and great enjoyment (rating
interval [0.8, 1.0]). By examining the situation more closely, the DM could end up
concluding that these alternatives indeed are of equal flexibility (e.g., both having
rating 0.6) and of equal enjoyment (e.g., both having rating 1.0). In light of this
new piece of information, Job A begins to dominate Job D (Figure 8). Although the
alternatives are still equally preferred on these two attributes, this new more precise
piece of information has decreased the imprecision between these alternatives.
Similarly we can continue by adjusting the other attributes or alternatives until the
best alternative is found.

Another approach is to try to eliminate only the obviously inferior alternatives.
We might not want to find out the best alternative, but instead an alternative that
performs satisfactorily in all circumstances. For example, in this case we could
arbitrarily select either Job A or B instead of trying to make the model more
precise, as both of the alternatives perform reasonably well.
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Figure 8: Overall value intervals and dominance relations in light of more precise
information.

CONCLUSIONS

In view of the practical applicability of MCDA methods, the easiness of the method
is often very important (Stewart, 1992). SMART and SWING are easy-to-use ratio
estimation methods. In this article, we have generalized them to allow the selection
of different reference attributes and the use of intervals to model imprecision. The
aim is to provide the DM with a possibility to also model imprecision without
making the methods too complex to use. Consequently, these methods can be
adapted to cover a wider range of decision-making situations.

Technically, the operations are straightforward, as these can be carried out
similarly to the PAIRS method. However, the DM should realize that the selec-
tion of the reference attribute can influence the amount of remaining imprecision.
Based on the simulation results, we suggested practical rules to efficiently select
the reference attribute. As a whole, the interval SMART/SWING method pro-
vides an easy way to model imprecision without a significant loss in the ease of
weight elicitation process, assuming that the impacts of the behavioral aspects are
recognized.

Computer support is available to facilitate the use of interval methods. We
described the WINPRE software for visually supporting interval SMART/SWING,
PAIRS, and preference programming. Our example demonstrated a particular way
to carry out the interval SMART/SWING weighting process, that is, adding infor-
mation step by step until the best alternative is found. With this kind of a process,
the DM’s tasks can be reduced, as dominated alternatives are eliminated during
the analysis. WINPRE’s dynamical way of showing the results online makes the
identification of dominated alternatives fast and easy.

In this article, we have presented the basic way of applying intervals in the
SMART and SWING methods. However, the proposed method could be extended
in various ways. One may, for example, want to assign distributions on the given
intervals to more accurately define the given imprecision. This would lead to a
stochastic simulation approach, which has already been applied, for example, in
the AHP and preference programming (Saaty & Vargas, 1987; Arbel & Vargas,
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1993; Stam & Silva, 1997; Hahn, 2003). It would also be technically possible to
use an interval as a reference, but then the interpretation of the intervals should
be reconsidered. Nevertheless, any extensions to the proposed method as well as
practical implications of these are beyond the scope of this article and will be a
subject of future research. [Received: January 2003. Accepted: October 2004.]
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Raimo P. Hämäläinen received the Masters Degree and Dr. Tech. degrees in sys-
tems theory and applied mathematics from the Helsinki University of Technology
(HUT), Helsinki, Finland, in 1972 and 1976, respectively. From 1979 to 1981,
he was Professor of Mathematics at the Vaasa School of Economics and Busi-
ness Administration, Finland. He worked as a visiting scholar in the University of
California, Los Angeles, in 1980–1981, 1985–1986, and 1991–1992. Currently, he
is Professor of Applied Mathematics and Operations Research and the Director of
the Systems Analysis Laboratory, HUT. His research interests include optimiza-
tion, game and decision theory, including bargaining, and e-learning. Recently,



Mustajoki, Hämäläinen, and Salo 339
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