Basic problems:

1. [Dasgupta et al., Ex. 7.10] For the following network, with edge capacities as shown, find the maximum flow from S to T, along with a matching cut:

2. [Dasgupta et al., Ex. 5.1/5.2] Consider the following graph.

 (a) Run Kruskal’s algorithm on this graph. In what order are the edges added to the MST? For each edge in this sequence, give a cut that justifies its addition.

 (b) Run Prim’s algorithm on the same graph. Whenever there is a choice of vertices, always use alphabetic ordering (e.g. start from vertex A). Draw a table showing the intermediate values of the cost array.

 (c) How many minimum spanning trees does the graph have altogether?

3. [Dasgupta et al., Ex. 5.3] Consider the following task.

 Input: A connected, undirected graph G.

 Question: Is there an edge you can remove from G while still leaving G connected?

 Can you decide on the existence of such an edge in time $O(|V|)$? How about finding one?

4. [Dasgupta et al., Ex. 5.20] Give a linear-time algorithm that takes as input a tree and determines whether it has a perfect matching: a set of edges that touches each vertex exactly once.
Advanced problems:

5. [Dasgupta et al., Ex. 5.21] A feedback edge set of an undirected graph $G = (V, E)$ is a subset of edges $E' \subseteq E$ that intersects every cycle of the graph. Thus, removing the edges E' will render the graph acyclic.

Give an efficient algorithm for the following problem:

Input: Undirected graph $G = (V, E)$ with positive edge weights w_e.

Output: A feedback edge set $E' \subseteq E$ of minimum total weight $\sum_{e \in E'} w_e$.

6. [Dasgupta et al., Ex. 7.24] Direct bipartite matching. Let $G = (V_1 \cup V_2, E)$ be a bipartite graph (so that each edge has one endpoint in V_1 and one in V_2), and let $M \subseteq E$ be a matching in the graph (that is, a set of edges that don’t touch). A vertex is said to be covered by M if it is the endpoint of one of the edges in M. An alternating path is a path of odd length that starts and ends with a non-covered vertex, and whose edges alternate between M and $E \setminus M$.

(a) In the bipartite graph below, a matching M is shown in bold. Find an alternating path.

![Bipartite Graph](image)

(b) Prove that a matching M is maximum if and only if there does not exist an alternating path with respect to it.

(c) Design an algorithm that finds an alternating path in $O(|V| + |E|)$ time using a variant of breadth-first search.

(d) Give a direct $O(|V| \cdot |E|)$ algorithm for finding a maximum matching in a bipartite graph. *(Hint: Note that $\min\{a, b\} \cdot (a + b) \leq 2ab$.)*