
Lecture 3

Learning goals

• To have a vague idea how to describe many-body physics with wavefunctions;
the Hartree-Fock model as an example.

• To understand the fundamental di↵erence between bosons and fermions.
• To learn that wavefunctions of bosons (fermions) must be (anti)symmetrized.
• To understand why number states (Fock states) are useful in describing
many-body quantum systems, to learn how bosonic annihilation and creation
operators act on them and how the Hamiltonian can be expressed in terms
of these operators.

6 Hartree-Fock Model

Literature: R.L. Libo↵, Introductory Quantum Mechanics (Fourth edition) (Addi-
son Wesley), Chapter 13.10

The Hartree-Fock self-consistent model describes in an approximate way the
e↵ect of interactions on a quantum system. In the example considered here, it
takes into account the e↵ects on one atomic electron caused by the other atomic
electrons and the nucleus. In general, the term Hartree-Fock refers to this type of
(simplified) quantum description of interacting particles. Note that exact solution
(solving the Schrödinger equation/diagonalizing the Hamiltonian) of interacting
quantum systems of many particles is usually extremely hard (for large number of
particles; 2-4 particles can be done easily). The Hartree-Fock description will be
considered again when we study second quantization. Later in the course we will
consider interacting quantum many-body systems, where Hartree-Fock descriptions
alone is not su�cient.

The ingredients of the model are the following assumptions:
1) Each electron moves in a central field equal to the nuclear potential and that due
to the charge densities of the remaining atomic electrons.
2) The Schrödinger equation is solved for each electron in its own central field, and
resulting wavefunctions are made self-consistent with the fields from which they
are calculated.
3) The atomic wavefunction is a product of single-electron orthonormalized wave-
functions:

 (r1, . . . , rZ) = '1 (r1) . . .'Z (rZ) . (6.1)

With the statements 1) and 2):

Ĥk'k (rk) = Ek'k (rk) , (6.2)

where

Ĥk ⌘

�~2r2

k

2m
+W (rk)

�
(6.3)

W (rk) = VC (rk) + Vk (rk) (6.4)
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VC (rk) ⌘ � Ze2

4⇡✏0rk
(6.5)

Vk (rk) =
1

4⇡✏0

Z X

j 6=k

|'j (rj)|2
e2

rjk
drj (6.6)

rjk = |rj � rk| (6.7)

Spin-orbit e↵ects are neglected. The above means that there are Z simultaneous
nonlinear integrodi↵erential equations for the Z functions (Z electrons). The solution
is an iterative scheme:
1. Approximate the central potential

W (rk) �! W (1) (rk) (6.8)

2. Electron wavefunctions calculated using that


�~2r2

k

2m
+W (1) (rk)

�
'(1)

k (rk) = E(1)

k '(1)

k (rk) (6.9)

3. Charge densities are calculated, to be used in calculating the potential in Equation
(6.6)

e2
���'(1)

k (rk)
���
2

(6.10)

4. Second order iteration atomic potential becomes, see Equation (6.4)

W (2) (rk) (6.11)

Repeated until
��W (n+1) (rk)�W (n) (rk)

�� < ".
Note: this contained only the Hartree contribution. The Fock contribution is

the exchange of indistinguishable particles. Here it is proportional to
R
'1 (rj)'2 (rk)

1

rjk
and may be neglected if the overlap of '1and '2 is small.

7 Second quantization

Literature: F. Schwabl, Advanced Quantum Mechanics, Third edition (Springer),
Chapters 1.2-1.4

Second quantization is a convenient technique to take into account quantum
statistics in many-body systems by using operators. Here we first have a look at how
to describe many-body systems without operators, just considering wavefunctions,
and then introduce the operators.

F. Schwabl, Chapter 1.1 is background material, not part of the course, where
a mathematically more rigorous treatment of the permutation symmetry presented
below can be found.

The Hamiltonian for N identical particles

H = H (1,2, . . . ,N) (7.1)
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is symmetric with respect to the 1, ..., N particles. Here 1 = x1,�1 denotes both
position and spin. A meaningful Hamiltonian (7.1) has to be symmetric, since for
identical particles physically observable quantities such as the energy (Hamiltonian)
have to be invariant under permutations of the particles. If one permutes particles
in an eigenfunction of the Hamiltonian (7.1), the permuted function also has to be
an eigenfunction of the Hamiltonian (7.1) and with the same energy. Therefore, the
permuted wavefunctions are experimentally indistinguishable.

But what else can be said about the wavefunction of a system? A wavefunc-
tion is not a directly observable quantity in the same way as physical observables.
What happens to the wavefunction under permutations? Write the wavefunction as

 =  (1,2, . . . ,N) . (7.2)

Apply a permutation:

Pij (. . . , i, . . . , j, . . .) =  (. . . , j, . . . , i, . . .) (7.3)

It is natural to demand that doing the same perturbation twice, one should return
to the initial state:

P 2

ij = 1. (7.4)

Therefore, the eigenvalues of the permutation operator (7.3) are:

pij = ±1. (7.5)

What should the symmetry properties of a wavefunction be? In principle, there are
N! di↵erent permutations, and one could make any linear combinations from these.

EXPERIMENTAL FACT: There are two types of particles, bosons and
fermions, for which the wavefunctions are either totally symmetric or totally anti-
symmetric, respectively:

Pij s,a (. . . , i, . . . , j, . . .) = ± s,a (. . . , j, . . . , i, . . .) . (7.6)

Symmetric wavefunction – spin integer particles.
Antisymmetric wavefunction – spin half integer particles.
This relation between symmetry and spin can be proved with relativistic quantum
field theory (not part of the course). However, the fact that there are only sym-
metric and antisymmetric wavefunctions cannot be proven, it is simply what the
experiments tell us about the nature.

Let us now write down completely (anti)symmetric basis states, with which
any (fermion) boson system can then be described. Notation:

|i↵i� ⌘ '↵ (x�,��) (7.7)

↵ refers to a single-particle state, � refers to a particle.
Assume that the single particle states are complete and orthonormal.
Basis states for an N -particle system:

|i1, . . . , i↵, . . . , iN i = |i1i1 . . . |i↵i↵ . . . |iN iN (7.8)

(Anti)symmetric basis states:
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S± |i1, i2, . . . , iN i ⌘ 1p
N !

X

P

(±1)P P |i1, i2, . . . , iN i (7.9)

Sum over all permutations P (there are N ! of them). For Fermions, get ± depending
on odd/even # of permutations.

For two particles:

| s,ai =
1p
2
[|1i

1
|2i

2
± |2i

1
|1i

2
] (7.10)

For N particles: a nightmare. Let us do the second quantization in order to
simplify life.
QUIZ
QUIZ
QUIZ

7.1 Bosons

For bosons, it is possible to have, e.g., |1i
1
|1i

2
, that is two particles occupying the

same state. Any fully symmetric, normalized state for bosons can be specified with
occupation numbers, telling how many particles are in a specific state.

Symmetric basis states:

|n1, n2, . . .i = S+ |i1, i2, . . . , iN i 1p
n1!n2! . . .

(7.11)

ni is the number of particles in state i
1p

n1!n2!...
is the normalisation since the same states occur, e.g. |1i

1
|1i

2
+|1i

1
|1i

2
. For

instance '1 (x1)'1 (x2)'2 (x3) is the same as '1 (x2)'1 (x1)'2 (x3) but di↵erent
from '1 (x3)'1 (x2)'2 (x1) .

Note: sum of all occupation numbers must be the total number of particles:

1X

i=1

ni = N (7.12)

The idea in second quantization is: let us just use the states |n1, n2, . . .i, find
operators that act in a convenient way on these states, and write all the physics
of the problem in terms of them. In this way, we can avoid worrying about the
permutations; the e↵ect of permutations is ”hidden” in the states |n1, n2, . . .i and
in the way operators act on them.

7.1.1 Fock space

The Fock space is a space where the basis vectors are defined by the occupation
numbers. The states that span the space must have

Orthogonality:

hn1, n2, . . . |n0
1
, n0

2
, . . .i = �n1n0

1
�n2n0

2
. . . (7.13)

Completeness:

X

n1,n2,...

|n1, n2, . . .i hn1, n2, . . .| = 1̂ (7.14)
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Some operators, like x and p, acting on an N-particle state leave it as an N-particle
state. But there are also operators that can change the occupation number.

Let us define the annihilation and creation operators. As will be seen, other
operators can be expressed in terms of these. The point with annihilation and
creation operators is that they act in a particularly convenient way on the states of
the Fock space.

The creation operator is:

a†i |. . . , ni, . . .i =
p
ni + 1 |. . . , ni + 1, . . .i (7.15)

The adjoint (annihilation) operator:

h. . . , n0
i, . . .| ai =

p
n0

i + 1 h. . . , n0
i + 1, . . .| (7.16)

) h. . . , n0
i, . . .| ai |. . . , ni, . . .i =

p
ni�n0

i
+1,ni

(7.17)

) ai |. . . , ni, . . .i =
p
ni |. . . , ni � 1, . . .i , for ni � 1 (7.18)

ai |. . . , ni = 0, . . .i = 0 (7.19)

These relations together with the completeness relation mean that the operators
fulfill the Bose commutation relations (to show this is an exercise, see Exercise
Set 3):

[ai, aj ] = 0,
h
a†i , a

†
j

i
= 0,

h
ai, a

†
j

i
= �ij . (7.20)

Now, we can construct all states by using the annihilation and creation
operators and starting from the ground state. This is also called the vacuum state,
however, it is not necessarily the same as physical vacuum. The vacuum state could
be, for instance, a state where no particle moves. Then the creation operator could
create one particle that actually moves with some velocity. Sometimes, of course, the
vacuum state can be real vacuum, such as in the case of quantized electromagnetic
field, where in the vacuum state there are no photons, and the creation operator
creates photons.

Ground (vacuum) state:

|0i ⌘ |0, 0, . . .i (7.21)

Single-particle states:

a†i |0i , . . . (7.22)

Two-particle states:

1p
2

⇣
a†i

⌘2
|0i , a†ia

†
j |0i , . . . (7.23)

N-particle states:

|n1, n2, . . .i =
1p

n1!n2! . . .

⇣
a†
1

⌘n1
⇣
a†
2

⌘n2

. . . |0i , . . . (7.24)

Normalization:
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a† |n� 1i =
p
n |ni (7.25)

|ni =
1p
n
a† |n� 1i (7.26)

QUIZ
QUIZ
QUIZ

7.1.2 The particle number operator

Occupation number in state |ii:

n̂i = a†iai (7.27)

Total number of particles:

N̂ =
X

i

n̂i; (7.28)

N̂ |n1, n2, . . .i = N |n1, n2, . . .i (7.29)

Consider a noninteracting system, where |ii are the eigenstates of the Hamil-
tonian with energy Ei. Then it is easy to write the Hamiltonian

H0 =
X

i

n̂iEi (7.30)

) H0 |n1, n2, . . .i =
 
X

i

niEi

!
|n1, n2, . . .i (7.31)

The commutation and other properties of the number operator are equal to
those in the case of a harmonic oscillator.

7.1.3 General single- and many-particle operators

In the second quantized formalism, we aim at a description where everything, the
states as well as the Hamiltonian and other operators, is expressed in terms of the
creation and annihilation operators.

An example of a single-particle operator: the kinetic energy p2

2m or a potential
U(x):

A� =
p2

�

2m
, U(x�) (7.32)

Total operator (sum of single-particle operators for all particles):

T = A1 +A2 + . . .+AN =
X

�

A� (7.33)

Here � is the particle label, i is the state label.
Matrix elements:

Aij = hi| A |ji (7.34)
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so

A =
X

i,j

Aij |ii hj| (7.35)

The total operator (7.33) becomes

T =
X

i,j

Aij

NX

�=1

|ii� � hj| (7.36)

This can be represented in terms of the creation and annihilation operators:

X

�

|ii� � hj| |. . . , ni, . . . , nj , . . .i (7.37)

(i 6= j. Use notation |i1, i2, . . . , iN i from (7.11))

=
X

�

|ii� � hj|S+ |i1, i2, . . . , iN i 1p
n1!n2! . . .

(7.38)

(
P

� |ii� � hj| is symmetric, so it commutes with S+)

= S+

X

�

|ii� � hj| |i1, i2, . . . , iN i 1p
n1!n2! . . .

(7.39)

from this it follows (shown inExercise Set 3) (return to notation |. . . , ni, . . . , nj , . . .i)

= nj

p
ni + 1

1
p
nj

|. . . , ni + 1, . . . , nj � 1, . . .i

=
p
nj

p
ni + 1 |. . . , ni + 1, . . . , nj � 1, . . .i

= a†iaj |. . . , ni, . . . , nj , . . .i (7.40)

So, compare rows (7.37) and (7.40) above:

)
NX

�=1

|ii� � hj| = a†iaj . (7.41)

Thus any single particle operator (7.36) can be expressed as

T =
X

i,j

Aija
†
iaj , (7.42)

where Aij = hi| A |ji. If Aij = Ei�ij )

H0 =
X

i

Eia
†
iai. (7.43)

QUIZ
QUIZ
QUIZ
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In the same way, for two-particle operators

F =
1

2

X

↵ 6=�

f̂ (2) (x↵,x�) (7.44)

one can first express the operator in the basis of |ii� :

F =
1

2

X

i,j,k,m

hi, j| f̂ (2) |k,mi
NX

� 6=↵

|ii↵ |ji� ↵ hk| � hm| , (7.45)

where the symmetry of f̂ (2) that makes the matrix element independent of ↵ and
� was used. Now one can introduce the operators using the relation 7.41 (it is a
useful trick to add and substract the term ↵ = � to/from the formula). The result
becomes

F =
1

2

X

i,j,k,m

hi, j| f̂ (2) |k,mi a†ia
†
jamak, (7.46)

where

hi, j| f̂ (2) |k,mi =
Z

dx

Z
dy'⇤

i (x)'
⇤
j (y) f

(2) (x,y)'k (x)'m (y) . (7.47)
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