
PHYS-E0420 Many-body Quantum mechanics
Exercise 1: some models

Exercise 1

a)
The time-dependent Schrödinger equation

ih̄
∂

∂t
|ψ(t)〉 = Ĥ(t) |ψ(t)〉 (1)

can be integrated on both sides with respect to time from 0 to t to obtain another form of the
equation. The left side becomes

ih̄
∫ t

0

dt ′
∂

∂t ′
|ψ(t ′)〉 = ih̄(|ψ(t)〉− |ψ(0)〉) . (2)

For the right side, we simply obtain ∫ t

0

dt ′Ĥ(t ′) |ψ(t ′)〉 (3)

Combine the results and reorder and you get

|ψ(t)〉 = |ψ(0)〉+ 1

ih̄

∫ t

0

dt ′Ĥ(t ′) |ψ(t ′)〉 . (4)

b)
We may iterate the alternative form of Schrödinger equation (4) as |ψ(t)〉 appears both on left
side and inside the integral on the right side. After the first step, we obtain

|ψ(t)〉 = |ψ(0)〉+ 1

ih̄

∫ t

0

dt ′Ĥ(t ′) |ψ(0)〉+ 1

(ih̄)2

∫ t

0

dt ′
∫ t ′

0

dt ′′Ĥ(t ′)Ĥ(t ′′) |ψ(t ′′)〉 . (5)

Continuing in this manner, the expressions develops into series

|ψ(t)〉 =

(
1̂+

1

ih̄

∫ t

0

dt ′Ĥ(t ′) +
1

(ih̄)2

∫ t

0

dt ′
∫ t ′

0

dt ′′Ĥ(t ′)Ĥ(t ′′) + ...

)
|ψ(0)〉 , (6)

where the nth term is

|ψ(n)(t)〉 = 1

(ih̄)2

∫ t

0

dt1

∫ t1

0

dt2 · · ·
∫ tn−1

0

dtnĤ(t1)Ĥ(t2) · · · Ĥ(tn) |ψ(0)〉 , (7)

where by superscript n we denote it being the nth term. This assertion can be proved using
induction. We already proved the first step, i.e. the case n = 1. The inductive step goes similarly
using the iteration of inputting the formula (4) into |ψ(tn)〉 . The result is the previous last term
with Ĥ and the new term with |ψ(tn)〉 If the iteration is still continued, the desired term remains.



c)
To continue, we note that the Hamiltonian operators in (7) are ordered in time such that the
rightmost operator comes first in time and the leftmost last (also for any subsequence of the
total sequence). Let us introduce the time ordering operator T̂ that orders the operators in
lowering time order i.e.

T (Â(t)B̂(t ′)) =

{
Â(t)B̂(t ′) if t > t ′

B̂(t ′)Â(t) if t < t ′
(8)

where Â, B̂ are arbitrary operators, and accordingly for more operators. Furthermore, we have∫ t

0

dt ′
∫ t

0

dt ′′T (Ĥ(t ′)Ĥ(t ′′)) |ψ(0)〉

=

∫ t

0

dt ′
∫ t ′

0

dt ′′Ĥ(t ′)Ĥ(t ′′) |ψ(0)〉+
∫ t

0

dt ′
∫ t

t ′
dt ′′Ĥ(t ′′)Ĥ(t ′) |ψ(0)〉

(9)

We have to change the order of integration in the second term. This can be done by noting that
the region

0 ≤ t ′ ≤ t
t ′ ≤ t ′′ ≤ t

(10)

can also be equivalently written as

0 ≤ t ′′ ≤ t
0 ≤ t ′ ≤ t ′′

(11)

as can be seen that the conditions follow from each other. Therefore, we see by swapping t ′

and t ′′ in the second term and using the equivalent description for the region that the terms are
equal. Using the result, we get that∫ t

0

dt ′
∫ t

0

dt ′′T (Ĥ(t ′)Ĥ(t ′′)) = 2
∫ t

0

dt ′
∫ t ′

0

dt ′′Ĥ(t ′)Ĥ(t ′′) . (12)

Inspired by this, let us assert that

|ψ(n)(t)〉 = 1

n!(ih̄)n

∫ t

0

dt1

∫ t

0

dt2 · · ·
∫ t

0

dtnT (Ĥ(t1)Ĥ(t2) · · · Ĥ(tn)) |ψ(0)〉 (13)

We can prove this assertion by induction. The first step is already taken since the case n = 1 is
trivial. Let us prove that the assertion holds for n = k + 1 by assuming the case n = k .

|ψ(k+1)(t)〉 = 1

(ih̄)k+1

∫ t

0

dt1

∫ t1

0

dt2 · · ·
∫ tk

0

dtk+1Ĥ(t1)Ĥ(t2) · · · Ĥ(tk+1) |ψ(0)〉

=
1

k !(ih̄)k+1

∫ t

0

dt1

∫ t1

0

dt2 · · ·
∫ t1

0

dtk+1T (Ĥ(t1)Ĥ(t2) · · · Ĥ(tk+1)) |ψ(0)〉
(14)

Where we used the fact t ≥ t1 ≥ ti for any i > 1 and so the induction assumption is applicable.
Now, as T takes care of symmetrization, only the time ordering of integrals defines the value.
If we want to have all the integral boundaries at t we have to relax the assumption that t1 is
last in order. If we do this, then we obtain terms for the t1 being at any position in the ordering.
There are k + 1 such terms. All of them are equal because of symmetry: the time ordering
takes care of ordering the instances right and each time is similar. Also all the integrals behave
symmetrically, and so none of the integrals should behave differently. Therefore, we obtain that



we have to divide by k + 1 to have all t1 converted to t in the integration boundaries. This proves
the claim.

Another way to see this is to note that each possible combination of times that have the
time ordering are gone through in the original form indexed 1, 2, 3 et cetera. If all the times are
permuted and ordered with the time ordering operator, we have that the same integration is
done as many time as the ti can be ordered, i.e. n! times if there are n Hamiltonians. This is
the case because the time ordering operator T always orders the operators in the same order,
independent of the variables of integration. Thus, in the end we have to divide by n! leading to
the result.

Also, similar to the case with n = 2 there are n! simplexes (simplex=generalize triangle nto
arbitrary dimension) in the whole integration as one can choose first one coordinate axis for
the first edge, then second, and third et cetera and the order of coordinates chosen defines
the simplex. They cover the whole space. Each simplex is however symmetric because of time
time-ordering operator. The original integral was over one of such simplex. Thus the overall
result, integrating over all t for each integral is n! times the ordered result. Thus, integral over
each is the same.

d)
Now, if we take the time ordering operator out of the equation, we obtain for the time evolution
operator (the terms that multiply the state at original time to obtain the state at a later time)

U(t) = T
∞∑

n=0

1

n!
1

(ih̄)n

(∫ t

0

dt ′Ĥ(t ′)
)n

= Te− i
h̄

∫t
0

dt ′Ĥ(t ′)

(15)

by the definition of exponential function. We have used the fact that in the form with operator T ,
the integrals do not depend on variables outside so they can be taken to be independent∫ t

0

dt1

∫ t1

0

dt2 · · ·
∫ t1

0

dtk+1T (Ĥ(t1)Ĥ(t2) · · · Ĥ(tk+1) =
(∫ t

0

dt1Ĥ(t1)
)n

. (16)

e)
The only case in which the operator T can be omitted from the above equation to obtain

U(t) = exp−
i
h̄

∫ t

0

dτĤ(τ) (17)

is that the Hamiltonian operators at different times commutate with each other. Then the
ordering of any two operators in the expansion can be changed at will.
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Exercise 4
In this exercise we calculate the time derivative of time evolution operator and consider some
following properties.

a)
Let us use the series definition of exponential

d
dt

T exp
(
−

i
h̄

∫ t

t0

dτH(τ)

)
=

d
dt

T
∞∑

n=0

1

n!(ih̄)n

(∫ t

t0

dτH(τ)

)n

= T
∞∑

n=1

1

(n − 1)!(ih̄)n−1

1

ih̄
d
dt

∫ t

t0

dτH(τ)

(∫ t

t0

dτH(τ)

)n−1

,

(18)

where we have used the property that a convergent series can be differentiated term by
term. The derivative of the integral is simply H(t). By making a change in summation variable
n − 1→ n, we obtain

d
dt

T exp
(
−

i
h̄

∫ t

t0

dτH(τ)

)
=
1

ih̄
T exp

(
−

i
h̄

∫ t

t0

dτH(τ)

)
H(t) = −

i
h̄

T exp
(
−

i
h̄

∫ t

t0

dτH(τ)

)
(19)

as was to be shown.

b)
Let us write UI(t) in another form, starting from

UI(t) = T exp
(
−ih̄
∫ t

t0

dτVI(τ)

)
. (20)

This may be written as

UI(t) = T
∞∑

n=0

1

n!

(
−

i
h̄

∫ t

t0

dτVI(τ)

)n

=

∞∑
n=0

1

(ih̄)n

∫ t

t0

dτn

∫ τn

t0

dτn−1 · · ·
∫ τ2

t0

dτ1VI(τn)VI(τn−1) · · ·VI(τ1)

=

∞∑
n=0

λn

(ih̄)n

∫ t

t0

dτn

∫ τn

t0

dτn−1 · · ·
∫ τ2

t0

dτ1

U0(0, τn)H ′
S(τn)U−1

0 (0, τn)U0(0, τn−1)H ′
S(τn−1)U−1

0 (0, τn−1) · · ·U0(0, τ1)H ′
S(τ1)U

−1
0 (0, τ1)

=

∞∑
n=0

λn

(ih̄)n

∫ t

t0

dτn

∫ τn

t0

dτn−1 · · ·
∫ τ2

t0

dτ1

U0(0, τn)H ′
S(τn)U0(τn, τn−1)H ′

S(τn−1) · · ·U0(τ2, τ1)H ′
S(τ1)U0(τ1, 0)

(21)

where the connection between interaction and Schrödinger pictures and properties of U0 were
used. Also, the third equality follows from the earlier considerations.
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Ek-E l=1: t=1...10

Exercise 1.5






