QMS Problem Set 1

W1: Plotting the functions with $a=1$



- From the plots we can see that $e^{-a x^{2}}$ can be normalized and $e^{-a x}$ cannot
- Hence $e^{-a x}$ is not an acceptable Nf
- $e^{-a x^{2}}$ can be an acc ptalole wave function
- it has finite values and hence finite integral (Born interpretation)
- it is single-valued and continuous
- it has a continuous first derivative (exponential function) = it can be derived twice

W2: Operating with $\frac{d}{d x}$
i) $\frac{d}{d x} \cos (k x)=-k \sin (k x) \|$ not an eigen function
ii) $\frac{d}{d x} e^{i k x}=i k e^{i k x}$ \#eigenfunction isth eigenvalue ilk
iii $\frac{d}{d x} k x=k \quad$ In ot an eigenfunction
iv) $\frac{d}{d x} e^{-a x^{2}}=-2 a x e^{-a x^{2}} \|$ not an eigenfunction because $-2 a x$ is not constant

W3: The particle in a box $n=1$
Wavefunction $\psi_{1}(x)=\sqrt{\frac{2}{L}} \sin \left(\frac{\pi x}{L}\right)$
Probability density $\left|\psi_{1}\right|^{2}(x)=\frac{2}{L} \sin ^{2}\left(\frac{\pi x}{L}\right)$


The expectation value of $x$ marked: $\langle x\rangle$ tells the average value of $x$ in multiple measurements done on identical systems. The probability density is symmetrical so it is equally likely to find the particle on either side of $\frac{L}{2}$. Thus the measurements average to $\frac{L}{2}$

P1: Normalization ensures that the warefunction complies to the Born interpretation.

Born interpretation states that the probalaitity of finding the particle with wo $\psi$ is proportional to $\left|\psi^{2}\right| d x$.
Consider the whole volume where $Q$ can exist: - finding the particle inside is certain

$$
\Rightarrow P(\text { find particle })=1=100 \%
$$

Hence $\int_{\tau}|\psi|^{2} d \tau=1$
Normalization of the wave function ensures that the condition $\int_{\tau}|\psi|^{2} d \tau=1$ holds.

With this exercise I am using Mathematic a There's Wolthan Alpha and others online.

Afree particle with wavefunction $\psi(x)=e^{-a x^{2}}$

$$
a=0.2 \frac{1}{m^{2}}
$$

The wavefunction is unnormalized so leto normalize it first:
$\ln [1]:=$ Integrate $e^{\wedge}\left(-0.2^{\star} 2 x^{\wedge} 2\right)$ from -infty to infty

Definite integral:

$$
\int_{-\infty}^{\infty} e^{-0.2 \times 2 x^{2}} d x=2.8025
$$

Then Let's calculate the integral when

$$
x \geqslant 1 m
$$

$\ln [3]:=$

Definite integral:

$$
\int_{1}^{\infty} \frac{e^{-0.2 \times 2 x^{2}}}{2.8025} d x=0.185546
$$

The value from the integral is the probability: $\approx 18.6 \%$

P2: The value of a commentator essentially implies if the order of the two operations mather: $[\hat{A}, \hat{B}]=\hat{A} \hat{B}-\hat{B} \hat{A}$

- If the value is zero then therein no difference between $\hat{A} \hat{B}$ and $\hat{B} \hat{A}$

Another point of view:
If two operators commute they have the same set of eigenfunction $\nabla_{0}$

- As the function does not change in the operation $\hat{A} f(x)$ or $\hat{B} f(x)$ then the order of operations doe not matter

In Quantum Mechanics (QM) relate to the Heisenbergin uncertainty principle:

- If two operators do not commute, then the corresponding observables cannot be known simultaneously with an arbitrary precision

In short:
$[\hat{A}, \hat{B}]=0 \rightarrow$ no problems there
$[\hat{A}, \hat{B}] \neq 0 \rightarrow$ the uncertainty principle
i) $\left[\hat{H}, \hat{P}_{x}\right]$ where $V(x)=V_{0}$
$=\hat{H}_{P} \psi-\hat{P}_{x} \hat{H} \psi \quad \|$ use $\psi$ as a "dummy function"

$$
\begin{aligned}
& =\left(\frac{\hat{p}_{x}^{2}}{2 m}+v_{0}\right) \hat{p}_{x} \psi-\hat{p}_{x}\left(\frac{\hat{p}_{x}^{2}}{2 m}+v_{0}\right) \psi \\
& =\frac{\hat{p}_{x}^{2}}{2 m} \hat{p}_{x} \psi+v_{0} \hat{p}_{x} \psi-\hat{p}_{x} \frac{\hat{p}_{x}^{2}}{2 m} \psi-\hat{p}_{x}\left(v_{0} \psi\right) \\
& =\frac{\hat{p}_{x}^{3}}{2 m} \psi+v_{0} \hat{p}_{x} \psi-\frac{\hat{p}_{x}^{3}}{2 m} \psi-v_{0} \hat{p}_{x} \psi \\
& =0
\end{aligned}
$$

$$
\text { ii) } \begin{aligned}
& {\left[\hat{H}, \hat{p}_{x}\right] \text { where } V(x)=\frac{1}{2} k_{f} x^{2} } \\
= & \hat{H}_{p} \psi-\hat{p}_{x} \hat{H} \psi \\
= & \left(\frac{\hat{p}_{x}^{2}}{2 m}+\frac{1}{2} k_{f} x^{2}\right) \hat{p}_{x} \psi-\hat{p}_{x}\left(\frac{\hat{p}_{x}^{2}}{2 m}+\frac{1}{2} k_{f} x^{2}\right) \psi \\
= & \frac{\hat{p}_{x}^{2}}{2 m} \hat{p}_{x} \psi+\frac{1}{2} k_{f} x^{2} \hat{p}_{x} \psi-\hat{p}_{x} \frac{\hat{p}_{x}^{2}}{2 m} \psi-\hat{p}_{x}\left(\frac{1}{2} k_{f} x^{2} \psi\right) \\
= & \frac{\hat{p}_{x}^{2}}{2 m} \psi+\frac{1}{2} k_{f} x^{2} \hat{p}_{x} \psi-\frac{\hat{p}_{x}^{3}}{2 m} \psi-\left[\frac{1}{2} k_{f} x^{2} \hat{p}_{x} \psi+\psi \hat{p}_{x}\left(\frac{1}{2} k_{x} x^{2}\right)\right]
\end{aligned}
$$

$=-\psi \hat{p}_{x}\left(\frac{1}{2} k_{f} x^{2}\right) \quad \|$ Remove the dimming function

$$
\| \hat{p}_{x}=-i \hbar \frac{d}{d x}
$$

$$
=-i \hbar\left(-k_{f} x\right)
$$

$$
=i \hbar k_{f} x
$$

$P 3=$ a/ The probability dewritics for all particle in a box wavefunctions are symmetrical in relation to $\frac{L}{2}$. Therefore particle position measurements result on average to $\frac{L}{2}$
b) Therin two options for the particle to move: positive $x$ direction or negative $x$ direction. If the probabilities for both directions match (ie. 50:50) then the results of momentum measurements average to zero.

Turns out they do match:
The partide in a box wave function in a superposition $\left[\psi=c_{1} \psi_{1}+c_{2} \psi+\ldots\right]$ of two momentum operator eigenfunctions:

$$
\sqrt{\frac{2}{L}} \sin \left(\frac{n \pi x}{L}\right)=\sqrt{\frac{2}{L}} \frac{e^{\left(\frac{i n \pi x}{L}\right)}-e^{\left(\frac{-i n \pi x}{L}\right)}}{2 i}
$$

The superposition coefficients $c_{1}, c_{2}, \ldots$ squared $\left|c_{n}\right|^{2}$ are proportional to the probability of $\psi_{n}$ emerging from the measurement.
c) $\left\langle x^{2}\right\rangle=\left.\int_{\tau} \psi^{*} x^{2} \psi d \tau\right|_{\text {For a particle in a box of }} ^{\text {length } L \text { the wok space }} \begin{aligned} & \text { is essentially } x \in[0, L]\end{aligned}$

$$
\begin{aligned}
& \left\langle x^{2}\right\rangle=\frac{2}{L} \int_{0}^{L} \sin \left(\frac{n \pi x}{L}\right) x^{2} \sin \left(\frac{n \pi x}{L}\right) d x \\
& \left\langle x^{2}\right\rangle=\frac{2}{L} \int_{0}^{L} x^{2} \sin ^{2}\left(\frac{n \pi x}{L}\right) d x \| \begin{array}{l}
\text { Use the formula from Atkins' } \\
\text { Resources or Tables. pdf in Mys }
\end{array} \\
& \left\langle x^{2}\right\rangle=\frac{2}{L}\left[\frac{L^{3}}{6}-\left(\frac{L^{2}}{4\left(\frac{n \pi}{L}\right)}-\frac{1}{8\left(\frac{n \pi}{L}\right)^{3}}\right) \sin \left(\frac{2 n \pi}{L} L\right)-\frac{L}{4\left(\frac{n \pi}{L}\right)^{2}} \cos \left(\frac{2 n \pi}{L} L\right)\right] \\
& \left\langle x^{2}\right\rangle=\frac{2}{L}\left[\frac{L^{3}}{6}-\left(\frac{L^{3}}{4 n \pi}-\frac{L^{3}}{8 n^{3} \pi^{3}}\right) \sin (2 n \pi)-\frac{L^{3}}{4 n^{2} \pi^{2}} \cos (2 n \pi)\right] \\
& \left\langle x^{2}\right\rangle=[\frac{L^{2}}{3}-\left(\frac{L^{2}}{2 n \pi}-\frac{L^{2}}{4 n^{3} \pi^{3}}\right) \underbrace{\sin (2 n \pi)}_{\text {always } 0}-\frac{L^{2}}{2 n^{2} \pi^{2}} \underbrace{\cos (2 n \pi)}] \\
& \left.\left\langle x^{2}\right\rangle=\frac{L^{2}}{3}-\frac{L^{2}}{2 n^{2} \pi^{2}}\right] \\
& \left\langle x^{2}\right\rangle=L^{2}\left(\frac{1}{3}-\frac{1}{2 n^{2} \pi^{2}}\right)
\end{aligned}
$$

d) Classically energy and momentum are linked by formula $E=\frac{p^{2}}{2 m}$ where $p=$ momentum and $m=$ mass

That holds true also in quantum mechanics and kinetic energy operator can be written as $\hat{K}=\frac{\hat{p}^{2}}{2 m}$
Recall that in the box all energy is kinetic and hence the Hamiltonian is $\hat{H}=\frac{\hat{P}_{x}^{2}}{2 m}$ as well. Now the WF of the system must be an eigenfunction of $\hat{P}_{x}^{2}$ as well ie. $\left[\hat{H}, p_{x}^{2}\right]=0$ Thus the only possible result for measurement of $\hat{p}_{x}^{2}$ is the eigenvalue of $\hat{p}_{x}^{2}$ which can be calculated from the energy eigenvalue:

$$
\left\langle p_{x}^{2}\right\rangle=2 m \cdot \frac{n^{2} h^{2}}{8 m L^{2}}=\frac{n^{2} h^{2}}{4 L^{2}}
$$

Bonus:
a) $\langle x\rangle=\frac{L}{2} \quad\left\langle x^{2}\right\rangle=L^{2}\left(\frac{1}{3}-\frac{1}{2 n^{2} \pi^{2}}\right)$

$$
\begin{aligned}
& \Delta x=\sqrt{\left\langle x^{2}\right\rangle-\langle x\rangle^{2}} \\
& \Delta x=\sqrt{L^{2}\left(\frac{1}{3}-\frac{1}{2 n^{2} \pi^{2}}\right)-\left(\frac{L}{2}\right)^{2}} \\
& \Delta x=\sqrt{\frac{L^{2}}{3}-\frac{L^{2}}{2 n^{2} \pi^{2}}-\frac{L^{2}}{4}} \\
& \Delta x=\sqrt{\frac{L^{2}}{12}-\frac{L^{2}}{2 n^{2} \pi^{2}}} \\
& \Delta x=L \sqrt{\frac{1}{12}-\frac{1}{2 n^{2} \pi^{2}}} \\
& \langle p x\rangle=0 \\
& \Delta p=\sqrt{\left\langle p_{x}^{2}\right\rangle}=\frac{n^{2} h^{2}}{4 L^{2}} \\
& \Delta p=\sqrt{\frac{n^{2} h^{2}}{4 L^{2}}-0^{2}} \\
& \Delta p=\sqrt{\frac{n^{2} h^{2}}{4 L^{2}}} \\
& \Delta p=\frac{n h}{2 L}
\end{aligned}
$$

b)

$$
\begin{aligned}
& \Delta x \Delta_{p}=L \sqrt{\frac{1}{12}-\frac{1}{2 n^{2} \pi^{2}}}\left(\frac{n h}{2 L}\right) \\
& \Delta x \Delta_{p}=\frac{n h}{2} \sqrt{\frac{1}{12}-\frac{1}{2 n^{2} \pi^{2}}} \\
& \Delta x \Delta_{p}=\frac{n h}{2} \sqrt{\frac{2 n^{2} \pi^{2}}{24 n^{2} \pi^{2}}-\frac{12}{24 n^{2} \pi^{2}}} \\
& \Delta x \Delta_{p}=\frac{n h}{2} \sqrt{\frac{2 n^{2} \pi^{2}-12}{24 n^{2} \pi^{2}}} \\
& \Delta x \Delta_{p}=\sqrt{\frac{n^{2} h^{2}}{4} \frac{2 n^{2} \pi^{2}-12}{24 n^{2} \pi^{2}}} \\
& \Delta x \Delta_{p}=\sqrt{\frac{h^{2}}{4} \frac{2 n^{2} \pi^{2}-12}{24 \pi^{2}}} \\
& \Delta \times \Delta_{p}=\sqrt{\frac{h^{2}}{4} \frac{2 n^{2} \pi^{2}-12}{6(2 \pi)^{2}}} \\
& \Delta \times \Delta_{p}=\sqrt{\frac{\hbar^{2}}{4} \frac{2 n^{2} \pi^{2}-12}{6}} \\
& \Delta \times \Delta_{p}=\frac{\hbar}{2} \sqrt{\frac{n^{2} \pi^{2}-6}{3}}
\end{aligned}
$$

4 Herisenbengis uncertainty principle states that $\Delta x \Delta p \geqslant \frac{\hbar}{2}$

For $n=1 \quad \Delta x \Delta p=\frac{\hbar}{2} \sqrt{\frac{\pi^{2}-6}{3}} \geqslant \frac{\hbar}{2}$
For $n=2 \quad \Delta x \Delta p=\frac{\hbar}{2} \sqrt{\frac{4 \pi^{2}-6}{3}} \geqslant \frac{\hbar}{2}$
As $n^{2} \pi^{2}>6$ always, thus $\frac{\hbar}{2} \sqrt{\frac{n^{2} \pi^{2}-6}{3}} \geqslant \frac{\hbar}{2}$ holds for $n \geqslant 1$

