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Expectation tells only about location of distribution
For a random number X , the expected value (mean) µ = E(X ):

• is the probability-weighted average of X ’s possible values,∑
x x f (x) or

∫
x f (x)dx

• is roughly a central location of the distribution

• approximates the long-run average of independent random
numbers that are distributed like X

• tells nothing about the width of the distribution

Example

Some discrete distributions with the same expectation 1:

k 1

P(X = k) 1

k 0 1 2

P(Y = k) 1
3

1
3

1
3

k 0 1 2

P(Z = k) 1
2 0 1

2

k 0 1000000

P(W = k) 0.999999 0.000001



How to measure the difference of X from its expectation?

(First attempt.)

The absolute difference of X from its mean µ = E(X ) is a random
variable |X − µ|.

E.g. fair die, µ = 3.5, if we obtain X = 2, then X − µ = −1.5.

The mean absolute difference E
(
|X − µ|

)
:

• approximates the long-run average 1
n

∑n
i=1 |Xi − µ|, from

independent random numbers distributed like X

• e.g. fair die: 1
6(2.5 + 1.5 + 0.5 + 0.5 + 1.5 + 2.5) = 1.5.

• is mathematically slightly inconvenient, because (among other
things) the function x 7→ |x | is not differentiable at zero.

What if we instead use the squared difference (X − µ)2



Variance

(Second attempt.)

If X has mean µ = E(X ), then the squared difference of X from
the mean is a random number (X − µ)2.

E.g. fair die, µ = 3.5, if we obtain X = 2, then
(2− 3.5)2 = (−1.5)2 = 2.25.

The expectation of the squared difference is called the variance of
the random number X : Var(X ) = E[(X − µ)2]:

• approximates long-run average 1
n

∑n
i=1(Xi − µ)2

• e.g. fair die:
1
6(2.52 + 1.52 + 0.52 + 0.52 + 1.52 + 2.52) ≈ 2.917

• is mathematically convenient, (among other things) because
the squaring function x 7→ x2 has derivatives of all orders



Interpretation of variance

Variance has the units of squared something:

X Var(X )

Height m m2

Time s s2

Sales EUR EUR2

We go back to the original units by taking the square root. The
result is called standard deviation.

E.g. fair die: Standard deviation is√
1

6
(2.52 + 1.52 + 0.52 + 0.52 + 1.52 + 2.52) ≈

√
2.917 ≈ 1.708.

(Compare to the mean absolute difference 1.5.)



Standard deviation

Standard deviation, SD(X ) =
√

E[(X − µ)2] is the expectation of
the squared-difference, returned to original scale by square root.
Other notations also exist, like D(X ) and σX .

It measures:

• (roughly, in cumbersome square-squareroot-way) how much
realizations of X are expected to differ from their mean

• width of the distribution of X

For discrete distributions:

µ =
∑
x

x f (x)

SD(X ) =

√∑
x

(x − µ)2f (x)

For continuous distributions:

µ =

∫
x f (x)dx

SD(X ) =

√∫
(x − µ)2 f (x)dx



Example. Some distributions with mean 1

What are the standard deviations of X , Y , Z?

k 1

P(X = k) 1

k 0 1 2

P(Y = k) 1
3

1
3

1
3

k 0 2

P(Z = k) 1
2

1
2

SD(X ) =

√∑
k

(k − µ)2fX (k) =
√

(1− 1)2 × 1 = 0.

SD(Y ) =

√
(0− 1)2 × 1

3
+ (1− 1)2 × 1

3
+ (2− 1)2 × 1

3
=

√
2

3
≈ 0.82.

SD(Z ) =

√
(0− 1)2 × 1

2
+ (1− 1)2 × 0 + (2− 1)2 × 1

2
= 1.



Standard deviation: Alternative (equivalent) formula

Fact
If X has mean µ = E(X ), then it is also true that

SD(X ) =
√

Var(X ) =
√

E(X 2)− µ2.

(This is convenient for calculation, if E(X 2) is easy to calculate.)

Proof.

Var(X ) = E[(X − µ)2] = E[X 2 − 2µX + µ2]

= E[X 2]− E[2µX ] + E[µ2]

= E[X 2]− 2µE[X ] + µ2

= E[X 2]− µ2

=⇒
SD(X ) =

√
Var(X ) =

√
E[X 2]− µ2



Example: Black swan — Two-valued distribution

k 0 106

P(X = k) 1− 10−6 10−6

µ = E(X ) = 1

Calculate the standard deviation.

Method 1 (straight from the definition):

SD(X ) =

√∑
x

(x − µ)2f (x)

=
√

(0− 1)2 × (1− 10−6) + (106 − 1)2 × 10−6 ≈ 1000.

Method 2 (alternative formula):

E(X 2) =
∑
x

x2 f (x) = 02 × (1− 10−6) + (106)2 × 10−6 = 106.

=⇒ SD(X ) =
√
E(X 2)− µ2 =

√
106 − 12 ≈ 1000.



Example: Metro — Continuous uniform distribution

Waiting time X is uniformly distributed in interval [0, 10]. Then it
has mean µ = 5 (minutes). What is the standard distribution?

Method 1 (from definition):

SD(X ) =

√∫ ∞
−∞

(x − µ)2f (x)dx =

√∫ 10

0

(x − 5)2
1

10
dx = · · ·

Method 2 (by alternative formula):

E(X 2) =

∫ ∞
−∞

x2 f (x)dx =

∫ 10

0

x2
1

10
dx =

1

10

[
1

3
x3

]10
0

≈ 33.33.

=⇒ SD(X ) =
√
E(X 2)− µ2 =

√
33.33− 52 ≈ 2.89 minutes.



Finnish households, distribution of #rooms

(Online demo.)



SD of shifted and scaled random numbers

Fact (Previous lecture)

(i) E(a) = a.

(ii) E(bX ) = bE(X ).

(iii) E(X + a) = E(X ) + a.

Fact

(i) SD(a) = 0.

(ii) SD(bX ) = |b| SD(X ).

(iii) SD(X + a) = SD(X ).

Proof.
(i) is easy. Let us prove (ii). Denote µ = E(X ).

Var(bX ) = E[
(
bX − E(bX )

)2
] = E[

(
bX − bµ

)2
]

= E[b2 (X − µ)2] = b2 E[(X − µ)2] = b2 Var(X ),

thus

SD(bX ) =
√

Var(bX ) =
√
b2
√

Var(X ) = |b| SD(X ).

(iii) would be similar, try it on your own.



Try it: Uniform and triangular distributions

X has uniform distribution over [−1, 1], with density fX (x) = 0.5.
Y also distributed over [−1, 1], with density fY (y) = 1− |y |.

Poll: Guess if the standard deviations of X and Y are equal.
Task: Calculate them.

Recall: SD(X ) =
√

E[(X − µX )2]. Note that µX = µY = 0. Use
integration.
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Chebyshev’s inequality: probability of large differences

Fact (Chebyshev’s inequality)

For any random variable that has mean µ and
standard deviation σ, it is true that the event
{X = µ± 2σ} = {X ∈ [µ−2σ, µ+2σ]} has
probability at least

P(X = µ± 2σ) ≥ 3

4
.

Pafnuty Chebyshev
1821–1894

More generally P(X = µ± rσ) ≥ 1− 1
r2

for any r ≥ 1.

• X is rather probably (≥ 75%)
within two std. deviations from its mean

• X is very probably (≥ 99%)
within ten std. deviations from its mean

Chebyshev’s inequality gives a lower bound for the “near mean”
probability, and an upper bound for “tail” probability.



Example: Document lengths
In a certain journal, word counts of articles have mean 1000 and
standard deviation 200. We don’t know the exact distribution. Is it
probable that a randomly chosen article’s word count is

(a) within [600, 1400] ? (two std.dev. from mean)

(b) within [800, 1200] ? (one std.dev. from mean)

Solution

(a) From Chebyshev’s inequality

P(X ∈ [600, 1400]) = P(X = µ± 2σ) ≥ 1− 1

22
= 75%,

so at least 75% of articles are like this.

(b) Here Chebyshev says nothing very useful. All it says is

P(X ∈ [800, 1200]) = P(X = µ± σ) ≥ 1− 1

12
= 0.

We would need better information about the actual distribution.



Example: Document lengths (take two)
In a certain journal, word counts of articles have mean 1000 and
standard deviation 200. We also happen to know they are have the
so-called normal distribution. Is it probable that a randomly chosen
article’s word count is

(a) within [600, 1400] (two std.dev. from mean)

(b) within [800, 1200] (one std.dev. from mean)

Solution

(a) From the CDF of normal distribution (e.g. in R: 1-2*pnorm(-2))

P(X ∈ [600, 1400]) = P(X = µ±2σ) = P(
X − µ
σ

= 0±2) ≈ 95%.

(b) From the CDF of normal distribution (e.g. in R: 1-2*pnorm(-1))

P(X ∈ [800, 1200]) = P(X = µ±σ) = P
(
X − µ
σ

= 0± 1

)
≈ 68%.

We got much higher probabilities because we knew the distribution.



Example: Document lengths (take three)
In a certain journal, word counts of articles have mean 1000 and
standard deviation 200; in fact, they have distribution

k 750 1000 1250

P(X = k) 32% 36% 32%

Is it probable that a randomly chosen article’s word count is

(a) within [600, 1400] (two std.dev. from mean)

(b) within [800, 1200] (one std.dev. from mean)

Solution
Directly from the distribution table, we see that the word count is

(a) certainly (100%) within [600, 1400]

(b) but not very probably (only 36%) within [800, 1200]

Food for thought: How was this example generated? We wanted a distribution that

has SD=200, and two possible values symmetric around the mean. But how to choose

their probabilities so that we get the SD we wanted?



Proving Chebyshev (continuous; dicrete similar)

Let r > 0. Suppose X has density f (x), mean µ and standard
deviation σ. Let MID be the interval [µ− rσ, µ+ rσ] and TAIL its
complement. Now

Var(X ) = σ2 =

∫
R

(x − µ)2f (x)dx =

∫
MID

(. . .) +

∫
TAIL

(. . .)

≥
∫
TAIL

(x − µ)2f (x)dx ≥
∫
TAIL

(rσ)2f (x)dx

= r2σ2
∫
TAIL

f (x)dx = r2σ2 P(x ∈ TAIL).

Cancel σ2 and move r2 to other side:

P(X ∈ TAIL) ≤ 1

r2
.

Note: From Chebyshev, one can actually prove the (Weak) Law of Large Numbers.
One extra ingredient is needed, namely the variance of a sum; see next lecture and
https://en.wikipedia.org/wiki/Law_of_large_numbers

https://en.wikipedia.org/wiki/Law_of_large_numbers
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Shape of the joint distribution

Standard deviation measures the dispersion of one r.v. around its
mean.

For two random variables, we would like to know X and Y
typically differ (from their means) to the same direction and how
strong this effect is.
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Covariance
Cov(X ,Y ) = E[(X − µX )(Y − µY )], measures how strongly
X and Y vary in the same direction.

Discrete∑
x

∑
y

(x − µX )(y − µY ) f (x , y)

Continuous∫ ∞
−∞

∫ ∞
−∞

(x−µX )(y−µY ) f (x , y)dxdy .

The covariance

• is > 0, if X − µX and Y − µY have often the same sign

• is < 0, if X − µX and Y − µY have often opposite signs

• its unit is the product of original units, e.g. m2 or kg·m

Now we do not want to take the square root (why)?
(Covariance be negative, and its unit might not be a square)

Note special case:

Cov(X ,X ) = E[(X − µX )(X − µX )] = E[(X − µX )2] = Var(X ).



Covariance: Alternative formula

Often more convenient in calculations than the definition.

Fact
Cov(X ,Y ) = E(XY )− E(X )E(Y ).

Proof.

Cov(X ,Y ) = E[(X − µX )(Y − µY )]

= E[XY − µXY − µYX + µXµY ]

= E[XY ]− µXE[Y ]− µYE[X ] + E[µXµY ]

= E[XY ]− µXµY − µYµX + µXµY

= E[XY ]− µXµY .



Symmetry and (bi)linearity of covariance

Fact
The covariance Cov(X ,Y ) is symmetric and linear in each of its
arguments:
Cov(Y ,X ) = Cov(X ,Y )
Cov(X1 + X2,Y ) = Cov(X1,Y ) + Cov(X2,Y ).
Cov(X ,Y1 + Y2) = Cov(X ,Y1) + Cov(X ,Y2).
Cov(aX ,Y ) = aCov(X ,Y )
Cov(X , bY ) = b Cov(X ,Y )
Cov(aX , bY ) = ab Cov(X ,Y )

More generally:

Cov

 m∑
i=1

aiXi ,
n∑

j=1

bjYj

 =
m∑
i=1

n∑
j=1

aibj Cov(Xi ,Yj)



Proving linearity of covariance
Let’s denote Y =

∑n
j=1 bjYj . Using the “alternative formula” of covariance, and

linearity of expectation,

Cov

(∑
i

aiXi ,Y

)
= E[(

∑
i

aiXi )Y ]− E[(
∑
i

aiXi )]E[Y ]

=
∑
i

aiE[XiY ]−
(∑

i

aiE[Xi ]

)
E[Y ]

=
∑
i

aiE[XiY ]−
∑
i

aiE[Xi ]E[Y ]

=
∑
i

ai (E[XiY ]− E[Xi ]E[Y ]) =
∑
i

ai Cov(Xi ,Y ).

By symmetry and the above, we obtain∑
i

ai Cov(Xi ,Y ) =
∑
i

ai Cov(Y ,Xi )

=
∑
i

ai Cov(
∑
j

bjYj ,Xi )

=
∑
i

ai
∑
j

bj Cov(Yj ,Xi )

=
∑
i

∑
j

aibj Cov(Xi ,Yj ).



Covariance: Summary

The covariance of random variables X and Y is

Cov(X ,Y ) = E[(X − µX )(Y − µY )] = E(XY )− E(X )E(Y )

where µX = E(X ) ja µY = E(Y ).

Discrete∑
x

∑
y

(x − µX )(y − µY ) f (x , y)

Continuous∫ ∞
−∞

∫ ∞
−∞

(x−µX )(y−µY ) f (x , y)dxdy .

Covariance is symmetric and linear:

Cov(Y ,X ) = Cov(X ,Y )

Cov

 m∑
i=1

aiXi ,

n∑
j=1

bjYj

 =
m∑
i=1

n∑
j=1

aibj Cov(Xi ,Yj)



Correlation (coefficient)

It would be awkward to “normalize” covariance by square root
(because covariance can be negative).

Also, we would like to know the covariance relative to the scaling
of the two variables. (Think what happens to covariance if both
variables multiplied by 1000.)

Here we apply a different kind of normalization . . .

Correlation (coefficient)

Cor(X ,Y ) =
Cov(X ,Y )

SD(X ) SD(Y )

measures how X and Y vary jointly, in normalized units.

It turns out that always −1 ≤ Cor(X ,Y ) ≤ +1.
(Proof requires Cauchy-Schwarz inequality, not shown here.)



Independent random numbers are uncorrelated

Fact
If X and Y are (stochastically) independent, then
E(XY ) = E(X )E(Y ) and Cor(X ,Y ) = 0.

Proof.
In the discrete case:

E(XY ) =
∑
x

∑
y

xy fX ,Y (x , y)

=
∑
x

∑
y

xy fX (x)fY (y)

=

(∑
x

x fX (x)

)(∑
y

y fY (y)

)
= E(X )E(Y ).

Applying the covariance formula
Cov(X ,Y ) = E(XY )− E(X )E(Y ) = E(X )E(Y )− E(X )E(Y ) = 0.
Thus also Cor(X ,Y ) = 0.



Example. Two binary random variables
X and Y are both uniformly
distributed among two values
{−1,+1}.

Moreover
P(X = +1,Y = +1) = c .

Find joint distribution
and correlation.

Y
−1 +1 Sum

X −1 c 1
2 − c 1

2

+1 1
2 − c c 1

2

Sum 1
2

1
2

E(X ) = 0
E(X 2) = (−1)2 × 1

2 + (+1)2 × 1
2 = 1

SD(X ) =
√
E(X 2)− (E(X ))2 =

√
1− 02 = 1

E(Y ) = E(X ) = 0, SD(Y ) = SD(X ) = 1.

E(XY ) = (−1)2 × c + 2× (−1)(+1)× ( 1
2 − c) + (+1)2c = 4c − 1

Cov(X ,Y ) = E(XY )− E(X )E(Y ) = 4c − 1

Cor(X ,Y ) =
Cov(X ,Y )

SD(X ) SD(Y )
= 4c − 1



Example: Finnish households, #persons and #rooms

(X=number of persons in the household, Y=number of rooms)

X
1 2 3 4 5 6 sum

Y 1 0.126 0.013 0.002 0.001 0.000 0.000 0.142
2 0.196 0.086 0.012 0.005 0.001 0.000 0.301
3 0.073 0.097 0.034 0.019 0.005 0.001 0.228
4 0.038 0.079 0.031 0.030 0.010 0.003 0.191
5 0.015 0.041 0.017 0.021 0.009 0.002 0.105
6 0.004 0.012 0.006 0.007 0.003 0.001 0.032

sum 0.453 0.328 0.101 0.082 0.029 0.008 1.000

(More on online lecture.)



Example. Linear deterministic dependence

Suppose we have two random variables X ,Y such that always
Y = a + bX (exactly!), and X has some distribution with mean
E(X ) = µ and standard deviation SD(X ) = σ.

Calculate the correlation of X and Y .

Cov(X ,Y ) = Cov(X , a+bX ) = Cov(X , a)+Cov(X , bX ) = b Var(X ).

SD(Y ) = SD(a + bX ) = |b|SD(X )

Cor(X ,Y ) =
Cov(X ,Y )

SD(X ) SD(Y )
=

b Var(X )

|b|SD(X )2
=

b

|b|
.

Cor(X ,Y ) =


+1, if b > 0,

0, if b = 0,

−1, if b < 0.



(x , y) pairs drawn from some correlated distributions
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ρ = −0.60 ρ = 0.28 ρ = 0.80



Variance of a sum
What is Var(X + Y )?

Using the bilinearity of variance, we have (for any X ,Y )

Var(X + Y ) = Cov(X + Y , X + Y )

= Cov(X ,X ) + Cov(X ,Y ) + Cov(Y ,X ) + Cov(Y ,Y )

= Var(X ) + 2 · Cov(X ,Y ) + Var(Y ).

If we also know that X and Y are independent, then

Var(X + Y ) = Var(X ) + Var(Y ).

For a longer sum of independent rv’s, repeated application gives
e.g.

Var(X + Y + Z ) = Var(X ) + Var(Y ) + Var(Z ).

(If not independent, you also need the covariance terms.)



Next lecture is about sums of (many) random variables, and
normal approximation. . .
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