MS-A0503 First course in probability and statistics

2B Standard deviation and correlation

Jukka Kohonen

Deparment of mathematics and systems analysis
Aalto SCI
Academic year 2020-2021
Period III

Contents

Standard deviation

Probability of large differences from mean (Chebyshev)

Covariance and correlation

Expectation tells only about location of distribution

For a random number X, the expected value (mean) $\mu=\mathbb{E}(X)$:

- is the probability-weighted average of X 's possible values, $\sum_{x} x f(x)$ or $\int x f(x) d x$
- is roughly a central location of the distribution
- approximates the long-run average of independent random numbers that are distributed like X
- tells nothing about the width of the distribution

Example

Some discrete distributions with the same expectation 1:

k	1
$\mathbb{P}(X=k)$	1

k	0	1	2
$\mathbb{P}(Z=k)$	$\frac{1}{2}$	0	$\frac{1}{2}$

k	0	1	2
$\mathbb{P}(Y=k)$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$

k	0	1000000
$\mathbb{P}(W=k)$	0.999999	0.000001

How to measure the difference of X from its expectation?
(First attempt.)
The absolute difference of X from its mean $\mu=\mathbb{E}(X)$ is a random variable $|X-\mu|$.
E.g. fair die, $\mu=3.5$, if we obtain $X=2$, then $X-\mu=-1.5$.

The mean absolute difference $\mathbb{E}(|X-\mu|)$:

- approximates the long-run average $\frac{1}{n} \sum_{i=1}^{n}\left|X_{i}-\mu\right|$, from independent random numbers distributed like X
- e.g. fair die: $\frac{1}{6}(2.5+1.5+0.5+0.5+1.5+2.5)=1.5$.
- is mathematically slightly inconvenient, because (among other things) the function $x \mapsto|x|$ is not differentiable at zero.

What if we instead use the squared difference $(X-\mu)^{2}$

Variance

(Second attempt.)
If X has mean $\mu=\mathbb{E}(X)$, then the squared difference of X from the mean is a random number $(X-\mu)^{2}$.
E.g. fair die, $\mu=3.5$, if we obtain $X=2$, then
$(2-3.5)^{2}=(-1.5)^{2}=2.25$.
The expectation of the squared difference is called the variance of the random number $X: \operatorname{Var}(X)=\mathbb{E}\left[(X-\mu)^{2}\right]$:

- approximates long-run average $\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}$
- e.g. fair die:

$$
\frac{1}{6}\left(2.5^{2}+1.5^{2}+0.5^{2}+0.5^{2}+1.5^{2}+2.5^{2}\right) \approx 2.917
$$

- is mathematically convenient, (among other things) because the squaring function $x \mapsto x^{2}$ has derivatives of all orders

Interpretation of variance

Variance has the units of squared something:

	X	$\operatorname{Var}(X)$
Height	m	m^{2}
Time	s	s^{2}
Sales	EUR	EUR 2

We go back to the original units by taking the square root. The result is called standard deviation.
E.g. fair die: Standard deviation is

$$
\sqrt{\frac{1}{6}\left(2.5^{2}+1.5^{2}+0.5^{2}+0.5^{2}+1.5^{2}+2.5^{2}\right)} \approx \sqrt{2.917} \approx 1.708
$$

(Compare to the mean absolute difference 1.5.)

Standard deviation

Standard deviation, $\operatorname{SD}(X)=\sqrt{\mathbb{E}}\left[(X-\mu)^{2}\right]$ is the expectation of the squared-difference, returned to original scale by square root. Other notations also exist, like $\mathbb{D}(X)$ and σ_{X}.

It measures:

- (roughly, in cumbersome square-squareroot-way) how much realizations of X are expected to differ from their mean
- width of the distribution of X

For discrete distributions:

$$
\begin{aligned}
\mu & =\sum_{x} x f(x) \\
\mathrm{SD}(X) & =\sqrt{\sum_{x}(x-\mu)^{2} f(x)}
\end{aligned}
$$

For continuous distributions:

$$
\begin{aligned}
\mu & =\int x f(x) d x \\
\mathrm{SD}(X) & =\sqrt{\int(x-\mu)^{2} f(x) d x}
\end{aligned}
$$

Example. Some distributions with mean 1

What are the standard deviations of X, Y, Z ?

k	1
$\mathbb{P}(X=k)$	1

k	0	1	2
$\mathbb{P}(Y=k)$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$

k	0	2
$\mathbb{P}(Z=k)$	$\frac{1}{2}$	$\frac{1}{2}$

$$
\begin{aligned}
& \mathrm{SD}(X)=\sqrt{\sum_{k}(k-\mu)^{2} f_{X}(k)}=\sqrt{(1-1)^{2} \times 1}=0 . \\
& \mathrm{SD}(Y)=\sqrt{(0-1)^{2} \times \frac{1}{3}+(1-1)^{2} \times \frac{1}{3}+(2-1)^{2} \times \frac{1}{3}}=\sqrt{\frac{2}{3}} \approx 0.82 . \\
& \mathrm{SD}(Z)=\sqrt{(0-1)^{2} \times \frac{1}{2}+(1-1)^{2} \times 0+(2-1)^{2} \times \frac{1}{2}}=1 .
\end{aligned}
$$

Standard deviation: Alternative (equivalent) formula

Fact
If X has mean $\mu=\mathbb{E}(X)$, then it is also true that

$$
\mathrm{SD}(X)=\sqrt{\operatorname{Var}(X)}=\sqrt{\mathbb{E}\left(X^{2}\right)-\mu^{2}}
$$

(This is convenient for calculation, if $\mathbb{E}\left(X^{2}\right)$ is easy to calculate.) Proof.

$$
\begin{aligned}
& \operatorname{Var}(X)=\mathbb{E}\left[(X-\mu)^{2}\right]=\mathbb{E}\left[X^{2}-2 \mu X+\mu^{2}\right] \\
&=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[2 \mu X]+\mathbb{E}\left[\mu^{2}\right] \\
&=\mathbb{E}\left[X^{2}\right]-2 \mu \mathbb{E}[X]+\mu^{2} \\
&=\mathbb{E}\left[X^{2}\right]-\mu^{2} \\
& \operatorname{SD}(X)=\sqrt{\operatorname{Var}(X)}=\sqrt{\mathbb{E}\left[X^{2}\right]-\mu^{2}}
\end{aligned}
$$

Example: Black swan - Two-valued distribution

k	0	10^{6}
$\mathbb{P}(X=k)$	$1-10^{-6}$	10^{-6}

$$
\mu=\mathbb{E}(X)=1
$$

Calculate the standard deviation.

Method 1 (straight from the definition):

$$
\begin{aligned}
\operatorname{SD}(X) & =\sqrt{\sum_{x}(x-\mu)^{2} f(x)} \\
& =\sqrt{(0-1)^{2} \times\left(1-10^{-6}\right)+\left(10^{6}-1\right)^{2} \times 10^{-6}} \approx \mathbf{1 0 0 0} .
\end{aligned}
$$

Method 2 (alternative formula):

$$
\begin{gathered}
\mathbb{E}\left(X^{2}\right)=\sum_{x} x^{2} f(x)=0^{2} \times\left(1-10^{-6}\right)+\left(10^{6}\right)^{2} \times 10^{-6}=10^{6} . \\
\Longrightarrow \quad \mathrm{SD}(X)=\sqrt{\mathbb{E}\left(X^{2}\right)-\mu^{2}}=\sqrt{10^{6}-1^{2}} \approx \mathbf{1 0 0 0} .
\end{gathered}
$$

Example: Metro - Continuous uniform distribution

Waiting time X is uniformly distributed in interval $[0,10]$. Then it has mean $\mu=5$ (minutes). What is the standard distribution?

Method 1 (from definition):

$$
\mathrm{SD}(X)=\sqrt{\int_{-\infty}^{\infty}(x-\mu)^{2} f(x) d x}=\sqrt{\int_{0}^{10}(x-5)^{2} \frac{1}{10} d x}=\cdots
$$

Method 2 (by alternative formula):

$$
\begin{aligned}
& \mathbb{E}\left(X^{2}\right)=\int_{-\infty}^{\infty} x^{2} f(x) d x=\int_{0}^{10} x^{2} \frac{1}{10} d x=\frac{1}{10}\left[\frac{1}{3} x^{3}\right]_{0}^{10} \approx 33.33 \\
& \Longrightarrow \quad \operatorname{SD}(X)=\sqrt{\mathbb{E}\left(X^{2}\right)-\mu^{2}}=\sqrt{33.33-5^{2}} \approx 2.89 \text { minutes. }
\end{aligned}
$$

Finnish households, distribution of \#rooms
(Online demo.)

SD of shifted and scaled random numbers

Fact (Previous lecture)
(i) $\mathbb{E}(a)=a$.
(ii) $\mathbb{E}(b X)=b \mathbb{E}(X)$.
(iii) $\mathbb{E}(X+a)=\mathbb{E}(X)+a$.

Fact

(i) $\mathrm{SD}(a)=0$.
(ii) $\operatorname{SD}(b X)=|b| \operatorname{SD}(X)$.
(iii) $\mathrm{SD}(X+a)=\operatorname{SD}(X)$.

Proof.
(i) is easy. Let us prove (ii). Denote $\mu=\mathbb{E}(X)$.

$$
\begin{aligned}
\operatorname{Var}(b X) & =\mathbb{E}\left[(b X-\mathbb{E}(b X))^{2}\right]=\mathbb{E}\left[(b X-b \mu)^{2}\right] \\
& =\mathbb{E}\left[b^{2}(X-\mu)^{2}\right]=b^{2} \mathbb{E}\left[(X-\mu)^{2}\right]=b^{2} \operatorname{Var}(X),
\end{aligned}
$$

thus

$$
\mathrm{SD}(b X)=\sqrt{\operatorname{Var}(b X)}=\sqrt{b^{2}} \sqrt{\operatorname{Var}(X)}=|b| \operatorname{SD}(X) .
$$

(iii) would be similar, try it on your own.

Try it: Uniform and triangular distributions

X has uniform distribution over $[-1,1]$, with density $f_{X}(x)=0.5$.
Y also distributed over $[-1,1]$, with density $f_{Y}(y)=1-|y|$.

Poll: Guess if the standard deviations of X and Y are equal. Task: Calculate them.

Recall: $\mathrm{SD}(X)=\sqrt{\mathbb{E}\left[\left(X-\mu_{X}\right)^{2}\right]}$. Note that $\mu_{X}=\mu_{Y}=0$. Use integration.

Contents

Standard deviation

Probability of large differences from mean (Chebyshev)

Covariance and correlation

Chebyshev's inequality: probability of large differences

Fact (Chebyshev's inequality)
For any random variable that has mean μ and standard deviation σ, it is true that the event $\{X=\mu \pm 2 \sigma\}=\{X \in[\mu-2 \sigma, \mu+2 \sigma]\}$ has probability at least

$$
\mathbb{P}(X=\mu \pm 2 \sigma) \geq \frac{3}{4} .
$$

Pafnuty Chebyshev 1821-1894

More generally $\mathbb{P}(X=\mu \pm r \sigma) \geq 1-\frac{1}{r^{2}}$ for any $r \geq 1$.

- X is rather probably ($\geq 75 \%$)
within two std. deviations from its mean
- X is very probably ($\geq 99 \%$)
within ten std. deviations from its mean
Chebyshev's inequality gives a lower bound for the "near mean" probability, and an upper bound for "tail" probability.

Example: Document lengths

In a certain journal, word counts of articles have mean 1000 and standard deviation 200. We don't know the exact distribution. Is it probable that a randomly chosen article's word count is
(a) within $[600,1400]$? (two std.dev. from mean)
(b) within $[800,1200]$? (one std.dev. from mean)

Solution

(a) From Chebyshev's inequality

$$
\mathbb{P}(X \in[600,1400])=\mathbb{P}(X=\mu \pm 2 \sigma) \geq 1-\frac{1}{2^{2}}=75 \%
$$

so at least 75% of articles are like this.
(b) Here Chebyshev says nothing very useful. All it says is

$$
\mathbb{P}(X \in[800,1200])=\mathbb{P}(X=\mu \pm \sigma) \geq 1-\frac{1}{1^{2}}=0
$$

We would need better information about the actual distribution.

Example: Document lengths (take two)

In a certain journal, word counts of articles have mean 1000 and standard deviation 200. We also happen to know they are have the so-called normal distribution. Is it probable that a randomly chosen article's word count is
(a) within $[600,1400]$ (two std.dev. from mean)
(b) within $[800,1200]$ (one std.dev. from mean)

Solution

(a) From the CDF of normal distribution (e.g. in R: 1-2*pnorm(-2))

$$
\mathbb{P}(X \in[600,1400])=\mathbb{P}(X=\mu \pm 2 \sigma)=\mathbb{P}\left(\frac{X-\mu}{\sigma}=0 \pm 2\right) \approx 95 \% .
$$

(b) From the CDF of normal distribution (e.g. in R: 1-2*pnorm(-1))

$$
\mathbb{P}(X \in[800,1200])=\mathbb{P}(X=\mu \pm \sigma)=\mathbb{P}\left(\frac{X-\mu}{\sigma}=0 \pm 1\right) \approx 68 \%
$$

We got much higher probabilities because we knew the distribution.

Example: Document lengths (take three)

In a certain journal, word counts of articles have mean 1000 and standard deviation 200; in fact, they have distribution

k	750	1000	1250
$\mathbb{P}(X=k)$	32%	36%	32%

Is it probable that a randomly chosen article's word count is
(a) within $[600,1400]$ (two std.dev. from mean)
(b) within $[800,1200]$ (one std.dev. from mean)

Solution

Directly from the distribution table, we see that the word count is
(a) certainly (100%) within [600, 1400]
(b) but not very probably (only 36%) within [800, 1200]

Food for thought: How was this example generated? We wanted a distribution that has $\mathrm{SD}=200$, and two possible values symmetric around the mean. But how to choose their probabilities so that we get the SD we wanted?

Proving Chebyshev (continuous; dicrete similar)

Let $r>0$. Suppose X has density $f(x)$, mean μ and standard deviation σ. Let MID be the interval $[\mu-r \sigma, \mu+r \sigma]$ and TAIL its complement. Now

$$
\begin{aligned}
\operatorname{Var}(X) & =\sigma^{2}=\int_{\mathbb{R}}(x-\mu)^{2} f(x) d x=\int_{\text {MID }}(\ldots)+\int_{\text {TAlL }}(\ldots) \\
& \geq \int_{\text {TAIL }}(x-\mu)^{2} f(x) d x \geq \int_{\text {TAIL }}(r \sigma)^{2} f(x) d x \\
& =r^{2} \sigma^{2} \int_{\text {TAIL }} f(x) d x=r^{2} \sigma^{2} \mathbb{P}(x \in \text { TAIL }) .
\end{aligned}
$$

Cancel σ^{2} and move r^{2} to other side:

$$
\mathbb{P}(X \in \text { TAIL }) \leq \frac{1}{r^{2}} .
$$

Note: From Chebyshev, one can actually prove the (Weak) Law of Large Numbers. One extra ingredient is needed, namely the variance of a sum; see next lecture and https://en.wikipedia.org/wiki/Law_of_large_numbers

Contents

Standard deviation

Probability of large differences from mean (Chebyshev)

Covariance and correlation

Shape of the joint distribution

Standard deviation measures the dispersion of one r.v. around its mean.

For two random variables, we would like to know X and Y typically differ (from their means) to the same direction and how strong this effect is.

Covariance

$\operatorname{Cov}(X, Y)=\mathbb{E}\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]$, measures how strongly X and Y vary in the same direction.

Discrete

$$
\sum_{x} \sum_{y}\left(x-\mu_{X}\right)\left(y-\mu_{Y}\right) f(x, y) \quad \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left(x-\mu_{X}\right)\left(y-\mu_{Y}\right) f(x, y) d x d y
$$

The covariance

- is >0, if $X-\mu_{X}$ and $Y-\mu_{Y}$ have often the same sign
- is <0, if $X-\mu_{X}$ and $Y-\mu_{Y}$ have often opposite signs
- its unit is the product of original units, e.g. m^{2} or $\mathrm{kg} \cdot \mathrm{m}$

Now we do not want to take the square root (why)? (Covariance be negative, and its unit might not be a square)

Note special case:

$$
\operatorname{Cov}(X, X)=\mathbb{E}\left[\left(X-\mu_{X}\right)\left(X-\mu_{X}\right)\right]=\mathbb{E}\left[\left(X-\mu_{X}\right)^{2}\right]=\operatorname{Var}(X)
$$

Covariance: Alternative formula

Often more convenient in calculations than the definition.
Fact
$\operatorname{Cov}(X, Y)=\mathbb{E}(X Y)-\mathbb{E}(X) \mathbb{E}(Y)$.
Proof.

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =\mathbb{E}\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right] \\
& =\mathbb{E}\left[X Y-\mu_{X} Y-\mu_{Y} X+\mu_{X} \mu_{Y}\right] \\
& =\mathbb{E}[X Y]-\mu_{X} \mathbb{E}[Y]-\mu_{Y} \mathbb{E}[X]+\mathbb{E}\left[\mu_{X} \mu_{Y}\right] \\
& =\mathbb{E}[X Y]-\mu_{X} \mu_{Y}-\mu_{Y} \mu_{X}+\mu_{X} \mu_{Y} \\
& =\mathbb{E}[X Y]-\mu_{X} \mu_{Y} .
\end{aligned}
$$

Symmetry and (bi)linearity of covariance

Fact

The covariance $\operatorname{Cov}(X, Y)$ is symmetric and linear in each of its arguments:
$\operatorname{Cov}(Y, X)=\operatorname{Cov}(X, Y)$
$\operatorname{Cov}\left(X_{1}+X_{2}, Y\right)=\operatorname{Cov}\left(X_{1}, Y\right)+\operatorname{Cov}\left(X_{2}, Y\right)$.
$\operatorname{Cov}\left(X, Y_{1}+Y_{2}\right)=\operatorname{Cov}\left(X, Y_{1}\right)+\operatorname{Cov}\left(X, Y_{2}\right)$.
$\operatorname{Cov}(a X, Y)=a \operatorname{Cov}(X, Y)$
$\operatorname{Cov}(X, b Y)=b \operatorname{Cov}(X, Y)$
$\operatorname{Cov}(a X, b Y)=a b \operatorname{Cov}(X, Y)$
More generally:

$$
\operatorname{Cov}\left(\sum_{i=1}^{m} a_{i} X_{i}, \sum_{j=1}^{n} b_{j} Y_{j}\right)=\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i} b_{j} \operatorname{Cov}\left(X_{i}, Y_{j}\right)
$$

Proving linearity of covariance

Let's denote $Y=\sum_{j=1}^{n} b_{j} Y_{j}$. Using the "alternative formula" of covariance, and linearity of expectation,

$$
\begin{aligned}
\operatorname{Cov}\left(\sum_{i} a_{i} X_{i}, Y\right) & =\mathbb{E}\left[\left(\sum_{i} a_{i} X_{i}\right) Y\right]-\mathbb{E}\left[\left(\sum_{i} a_{i} X_{i}\right)\right] \mathbb{E}[Y] \\
& =\sum_{i} a_{i} \mathbb{E}\left[X_{i} Y\right]-\left(\sum_{i} a_{i} \mathbb{E}\left[X_{i}\right]\right) \mathbb{E}[Y] \\
& =\sum_{i} a_{i} \mathbb{E}\left[X_{i} Y\right]-\sum_{i} a_{i} \mathbb{E}\left[X_{i}\right] \mathbb{E}[Y] \\
& =\sum_{i} a_{i}\left(\mathbb{E}\left[X_{i} Y\right]-\mathbb{E}\left[X_{i}\right] \mathbb{E}[Y]\right)=\sum_{i} a_{i} \operatorname{Cov}\left(X_{i}, Y\right) .
\end{aligned}
$$

By symmetry and the above, we obtain

$$
\begin{aligned}
\sum_{i} a_{i} \operatorname{Cov}\left(X_{i}, Y\right) & =\sum_{i} a_{i} \operatorname{Cov}\left(Y, X_{i}\right) \\
& =\sum_{i} a_{i} \operatorname{Cov}\left(\sum_{j} b_{j} Y_{j}, X_{i}\right) \\
& =\sum_{i} a_{i} \sum_{j} b_{j} \operatorname{Cov}\left(Y_{j}, X_{i}\right) \\
& =\sum_{i} \sum_{j} a_{i} b_{j} \operatorname{Cov}\left(X_{i}, Y_{j}\right) .
\end{aligned}
$$

Covariance: Summary

The covariance of random variables X and Y is

$$
\operatorname{Cov}(X, Y)=\mathbb{E}\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]=\mathbb{E}(X Y)-\mathbb{E}(X) \mathbb{E}(Y)
$$

where $\mu_{X}=\mathbb{E}(X)$ ja $\mu_{Y}=\mathbb{E}(Y)$.
Discrete
Continuous
$\sum_{x} \sum_{y}\left(x-\mu_{X}\right)\left(y-\mu_{Y}\right) f(x, y) \quad \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left(x-\mu_{X}\right)\left(y-\mu_{Y}\right) f(x, y) d x d y$.
Covariance is symmetric and linear:

$$
\begin{aligned}
\operatorname{Cov}(Y, X) & =\operatorname{Cov}(X, Y) \\
\operatorname{Cov}\left(\sum_{i=1}^{m} a_{i} X_{i}, \sum_{j=1}^{n} b_{j} Y_{j}\right) & =\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i} b_{j} \operatorname{Cov}\left(X_{i}, Y_{j}\right)
\end{aligned}
$$

Correlation (coefficient)

It would be awkward to "normalize" covariance by square root (because covariance can be negative).

Also, we would like to know the covariance relative to the scaling of the two variables. (Think what happens to covariance if both variables multiplied by 1000.)

Here we apply a different kind of normalization ...
Correlation (coefficient)

$$
\operatorname{Cor}(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\operatorname{SD}(X) \operatorname{SD}(Y)}
$$

measures how X and Y vary jointly, in normalized units.
It turns out that always $-1 \leq \operatorname{Cor}(X, Y) \leq+1$.
(Proof requires Cauchy-Schwarz inequality, not shown here.)

Independent random numbers are uncorrelated

Fact
If X and Y are (stochastically) independent, then
$\mathbb{E}(X Y)=\mathbb{E}(X) \mathbb{E}(Y)$ and $\operatorname{Cor}(X, Y)=0$.
Proof.
In the discrete case:

$$
\begin{aligned}
\mathbb{E}(X Y) & =\sum_{x} \sum_{y} x y f_{X, Y}(x, y) \\
& =\sum_{x} \sum_{y} x y f_{X}(x) f_{Y}(y) \\
& =\left(\sum_{x} x f_{X}(x)\right)\left(\sum_{y} y f_{Y}(y)\right)=\mathbb{E}(X) \mathbb{E}(Y) .
\end{aligned}
$$

Applying the covariance formula $\operatorname{Cov}(X, Y)=\mathbb{E}(X Y)-\mathbb{E}(X) \mathbb{E}(Y)=\mathbb{E}(X) \mathbb{E}(Y)-\mathbb{E}(X) \mathbb{E}(Y)=0$. Thus also $\operatorname{Cor}(X, Y)=0$.

Example. Two binary random variables

X and Y are both uniformly distributed among two values
$\{-1,+1\}$.
Moreover
$\mathbb{P}(X=+1, Y=+1)=c$.
Find joint distribution and correlation.

		Y		
		-1	+1	Sum
X	-1	c	$\frac{1}{2}-c$	$\frac{1}{2}$
	+1	$\frac{1}{2}-c$	c	$\frac{1}{2}$
Sum		$\frac{1}{2}$	$\frac{1}{2}$	

$\mathbb{E}(X)=0$
$\mathbb{E}\left(X^{2}\right)=(-1)^{2} \times \frac{1}{2}+(+1)^{2} \times \frac{1}{2}=1$
$\mathrm{SD}(X)=\sqrt{\mathbb{E}\left(X^{2}\right)-(\mathbb{E}(X))^{2}}=\sqrt{1-0^{2}}=1$
$\mathbb{E}(Y)=\mathbb{E}(X)=0, \operatorname{SD}(Y)=\operatorname{SD}(X)=1$.
$\mathbb{E}(X Y)=(-1)^{2} \times c+2 \times(-1)(+1) \times\left(\frac{1}{2}-c\right)+(+1)^{2} c=4 c-1$
$\operatorname{Cov}(X, Y)=\mathbb{E}(X Y)-\mathbb{E}(X) \mathbb{E}(Y)=4 c-1$

$$
\operatorname{Cor}(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\operatorname{SD}(X) \operatorname{SD}(Y)}=4 c-1
$$

Example: Finnish households, \#persons and \#rooms

($X=$ number of persons in the household, $Y=$ number of rooms)

		X						
		1	2	3	4	5	6	sum
Y	1	0.126	0.013	0.002	0.001	0.000	0.000	0.142
	2	0.196	0.086	0.012	0.005	0.001	0.000	0.301
	3	0.073	0.097	0.034	0.019	0.005	0.001	0.228
4	0.038	0.079	0.031	0.030	0.010	0.003	0.191	
	5	0.015	0.041	0.017	0.021	0.009	0.002	0.105
6	0.004	0.012	0.006	0.007	0.003	0.001	0.032	
	sum	0.453	0.328	0.101	0.082	0.029	0.008	1.000

(More on online lecture.)

Example. Linear deterministic dependence

Suppose we have two random variables X, Y such that always $Y=a+b X$ (exactly!), and X has some distribution with mean $\mathbb{E}(X)=\mu$ and standard deviation $\mathrm{SD}(X)=\sigma$.
Calculate the correlation of X and Y.

$$
\operatorname{Cov}(X, Y)=\operatorname{Cov}(X, a+b X)=\operatorname{Cov}(X, a)+\operatorname{Cov}(X, b X)=b \operatorname{Var}(X)
$$

$$
\begin{gathered}
\operatorname{SD}(Y)=\operatorname{SD}(a+b X)=|b| \operatorname{SD}(X) \\
\operatorname{Cor}(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\operatorname{SD}(X) \operatorname{SD}(Y)}=\frac{b \operatorname{Var}(X)}{|b| \operatorname{SD}(X)^{2}}=\frac{b}{|b|} \\
\operatorname{Cor}(X, Y)= \begin{cases}+1, & \text { if } b>0, \\
0, & \text { if } b=0, \\
-1, & \text { if } b<0 .\end{cases}
\end{gathered}
$$

(x, y) pairs drawn from some correlated distributions

$\rho=-0.60$

$\rho=0.28$

$$
\rho=0.80
$$

Variance of a sum

What is $\operatorname{Var}(X+Y)$?
Using the bilinearity of variance, we have (for any X, Y)

$$
\begin{aligned}
\operatorname{Var}(X+Y) & =\operatorname{Cov}(X+Y, X+Y) \\
& =\operatorname{Cov}(X, X)+\operatorname{Cov}(X, Y)+\operatorname{Cov}(Y, X)+\operatorname{Cov}(Y, Y) \\
& =\operatorname{Var}(X)+2 \cdot \operatorname{Cov}(X, Y)+\operatorname{Var}(Y)
\end{aligned}
$$

If we also know that X and Y are independent, then

$$
\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)
$$

For a longer sum of independent rv's, repeated application gives e.g.

$$
\operatorname{Var}(X+Y+Z)=\operatorname{Var}(X)+\operatorname{Var}(Y)+\operatorname{Var}(Z)
$$

(If not independent, you also need the covariance terms.)

Next lecture is about sums of (many) random variables, and normal approximation...

