MS-A0503 First course in probability and statistics Department of mathematics and systems analysis Aalto SCI J Kohonen Spring 2021 Exercise 3A

3A Standard deviation and correlation

Class problems

Remember that *mean* is another name for expected value.

3A1 (Correlation versus dependence) Discrete random variables X and Y have the following joint distribution.

	Y		
X	-1	0	1
-1	0	$\frac{1}{6}$	$\frac{1}{6}$
0	$\frac{1}{3}$	0	0
1	0	$\frac{1}{6}$	$\frac{1}{6}$

- (a) Determine the distribution, mean and standard deviation of X.
- (b) Determine the distribution, mean and standard deviation of Y.
- (c) Calculate the correlation between X and Y.
- (d) Determine whether X and Y are (stochastically) dependent or independent.

3A2 (Average of dice) An ordinary die is rolled many times. The individual results are denoted X_1, X_2, \ldots , and they are independent. The average of the first *n* results is denoted A_n .

- (a) Find mean and standard deviation of X_1 .
- (b) Find the distribution of $A_2 = \frac{1}{2}(X_1 + X_2)$.
- (c) Find mean and standard deviation of A_2 .
- (d) Find mean and standard deviation of

$$A_{100} = \frac{1}{100}(X_1 + X_2 + \dots + X_{100}).$$

Hint: In (c), you can either calculate directly from the distribution of A_2 , or you can apply linearity of expectation and covariance. In particular, observe that

$$Var(X_1 + X_2) = Cov(X_1 + X_2, X_1 + X_2) = Var(X_1) + 2 \cdot Cov(X_1, X_2) + Var(X_2).$$

How does this simplify when X_1 and X_2 are independent? In (d) it would be very laborious to find the exact distribution of A_{100} , so the previous formula is very convenient. How does it work for a sum of many random variables?

MS-A0503 First course in probability and statistics Department of mathematics and systems analysis Aalto SCI J Kohonen Spring 2021 Exercise 3A

Home problems

3A3 (Predicting temperatures) A meteorologist is modelling the relation between today's temperature T_0 and tomorrow's temperature T_1 with the equation

$$T_1 = T_0 + \Delta T$$

where ΔT is a random variable indicating the change in temperature. The random variables T_0 and ΔT are assumed independent. Moreover, we know that $E(T_0) = \mu$, $Var(T_0) = \sigma^2$, $E(\Delta T) = 0$, and $Var(\Delta T) = \theta^2$. The model parameters μ , σ and θ are known (and $\sigma > 0$ and $\theta \ge 0$).

- (a) Find $E(T_1)$.
- (b) Find $SD(T_1)$. Recall from exercise 3A2 how you can calculate the variance of a sum.
- (c) Find $Cov(T_1, T_0)$. Use the linearity of covariance.
- (d) Find $\operatorname{Cor}(T_1, T_0)$. Before you calculate it, try to guess, by thinking about the meaning of correlation, how the correlation should be if θ is small or zero, and if it is very large (much larger than σ).

The results should be formulas expressed in terms of the model parameters (μ, σ, θ) .

3A4 (Minimizing loss functions) Eastham is a town that stretches along a straight road, two kilometers from west to east, so we model it as a line segment of length 2. There are more people living in the east end than in the west end; the location of a randomly chosen inhabitant is a random variable X that has density function f(x) = x/2, when $0 \le x \le 2$. (Although in reality the population would be finite, here we think there are so many inhabitants that we can treat them as a continuous mass.)

- (a) Find the mean $\mu = E(X)$, and the median m, which is a point such that $P(X \le m) = \frac{1}{2}$.
- (b) Find $E(X^2)$ and SD(X).
- (c) Abel is a planner who wants to choose a location c for the town hall, somewhere in town. He tries to minimize the quadratic loss $q(c) = E((X - c)^2)$. In other words, he tries to minimize the average of all inhabitants' squared distances to the town hall. Express q as a simple function of c. What is the shape of this function? Find the value of c where q(c) is minimized. Is it one of the values μ and m?
- (d) Bertha is another planner that wants to choose a location c for the library, somewhere in town. She tries to minimize the *linear loss* $\ell(c) = E(|X - c|)$. In other words, she wants to minimize the average of all inhabitants' *distances* to the library. Express $\ell(c)$ as a simple function of c. Find the value of c where $\ell(c)$ is minimized. Is it one of the values μ and m? Compare the locations that Abel and Bertha chose, and try to give an intuitive explanation. Hint: Express the linear loss as an integral over the whole town. Then break it into two integrals, one for x < c and one for $x \ge c$.

For concreteness this problem is stated as a problem of physical placement and distances. But there is a more statistical interpretation too; more about this in the model solution.