
Aalto University
Department of Computer Science

CS-C2160 Theory of Computation
Solved Example Problems, Spring 2021

1 Finite Automata and Regular Languages

1. Problem:

Describe the following languages both in terms of regular expressions and in terms of
deterministic finite automata:

(a) {w ∈ {0, 1}∗ | w contains 101 as a substring},
(b) {w ∈ {0, 1}∗ | w does not contain 101 as a substring}.

Solution:

(a) A regular expression for this language is easy to construct:

(0|1)∗101(0|1)∗.

A nondeterministic finite automaton is also easy to come up with:

q0start q1 q2 q3

0, 1

1 0 1

0, 1

Let us then determinise this using the subset construction:

0 1

→ {q0} {q0} {q0, q1}
{q0, q1} {q0, q2} {q0, q1}
{q0, q2} {q0} {q0, q1, q3}

← {..., q3} {..., q3} {..., q3}

The last row of the table has been simplified based on the observation that from
a set containing the accepting state q3, one always moves again to some set con-
taining q3, and so all such states are equivalent. Thus, we obtain the following
deterministic automaton:

{q0}start {q0, q1} {q0, q2} {..., q3}
1

0

0

1

1

0

0, 1

(b) Observe that the language here is the complement of the language in part (a), and
the DFA provided in part (a) is complete, i.e. all possible transitions are explicitly
listed. Therefore, complementing the DFA from part (a) yields a DFA for this
language:

q0start q1 q2 q3
1

0

0

1

1

0

0, 1

All accepting states are inaccessible from state q3, thus we may ignore it. To find
a corresponding regular expression, we first add a new initial and final state and
their connecting ε-transitions:

qsstart

q0 q1 q2

qf

ε

1

0

ε

0

1

ε0 ε

Remove state q1 :

qsstart

q0 q2

qf

ε

11∗0

0

ε | 11∗

0 ε

Remove state q2:

qsstart

q0

qf

ε

0 | (11∗00)∗

ε | 11∗ | 11∗0

Remove state q0:

qsstart qf
(0 | (11∗00)∗)∗(ε | 11∗ | 11∗0)

From the above, we may read off a regular expression describing the language:

(0 | (11∗00)∗)∗(ε | 11∗ | 11∗0).

2. Problem:

Describe the following languages both in terms of regular expressions and in terms of
deterministic finite automata:

(a) {w ∈ {0, 1}∗ | w contains an even number (possibly zero) of 1’s}
(b) {w ∈ {0, 1}∗ | w contains an odd number of 1’s}

(c)
{wb ∈ {0, 1}∗ | either w contains an even number (possibly zero) of 1’s and

b = 0, or w contains an odd number of 1’s and b = 1}.

(Hint: In part (c) it may, depending on your solution method, be useful to first design
a nondeterministic automaton.)

Solution:

(a) Language is recognised by the deterministic finite automaton

q0 q1

1

0

1

0

and described by the following regular expression

(0∗10∗1)∗0∗

(b) This language is the complement of the one considered in part (a). We can use a
lemma derived earlier in the course: the complement of a regular language can be
arrived at by constructing a new DFA for which one simply changes the rejecting
states of the original DFA to accepting states and vice versa.

q0 q1

1

0

1

0

We modify the regular expression of part (a) accordingly:

0∗1(0∗10∗1)∗0∗

(c) We use the DFA introduced in part (a) as a starting point, and add new comple-
mentary non-deterministic transitions from q0 and q1 to a new unique accepting
state qacc. However we also need to add transitions for the situations where the DFA
have already transitioned to state qacc but we still have more alphabet-symbols
left in the string. As a result we get the following NFA:

q0 q1

qacc

1

0

0

1

0

1

1

0

We determinise the NFA by applying the subset construction for which the space
of possible resulting states is the powerset of the number of original states in the
NFA. In our case this yields a space of 23 = 8 states for the resulting DFA.

However when we derive new transitions for the DFA, we can simplify the procedu-
re by only including those states that can be eventually reached from the starting
state q0. Transitions for the new transition function δ̂ are thus:

0 1

→ {q0} {q0, qacc} {q1}
{q1} {q1} {q0, qacc}

← {q0, qacc} {q0, qacc} {q1}

The resulting set of states in the determinised DFA is then

Q̂ = {q0, q1, {q0, qacc}}

Resulting DFA:

q0 q1

{q0, qacc}

1

0

1

0

1

0

First we concatenate the parity bit at the end of the regular expressions from parts
(a) and (b). Then by using the knowledge that regular expressions are closed under
union, we derive the whole regular expression as a union of two parts:

(0∗10∗1)∗0∗0 | 0∗1(0∗10∗1)∗0∗1

3. Problem: Design deterministic finite automata accepting each of the following langua-
ges:

(a) {w ∈ {a, b}∗ | w contains both aa and bb as substrings};
(b) {w ∈ {a, b}∗ | w does not contain the substring aba};
(c) {w ∈ {a, b}∗ | w contains a number of a’s that is an exact multiple of three}.

Solution:

(a) The substrings can come in any order, so we need to consider two cases. The upper
part accepts strings where ’aa’ is before ’bb’, and the lower part accepts ones where
’bb’ is before ’aa’.

q0

q1 q2 q3

q4 q5 q6

q7

a

b

a

b

b

a
ba

b

a

a

b
ab

a, b

(b) If we find the substring “aba”, we go to the error state q3. All other states are
accept states.

q0 q1 q2 q3
a

b

b

a

a

b

a, b

(c) Here state qi has a meaning: “There have been i mod 3 a’s so far”. Whenever we
are in state q0, the number of a’s so far is a multiple of three.

q0 q1 q2
a

b

a

b

a

b

4. Problem: Let

L = {w | w = a1a2 . . . an, n ≥ 0, ai ∈ {0, 1}, a1 = a3 = a5 = . . . = 1}.

In other words, L consists of those binary strings that have 1’s in odd-numbered posi-
tions. Show that L is regular.

Solution: By definition, a language is regular if there exists a finite automaton that
recognises it. Let’s try to construct such automaton. In our language, every symbol
in an odd-numbered position must be 1, and even-numbered positions can take any
symbol.

Let’s keep track of the position with two states: q0 for even-numbered and q1 for odd-
numbered. Both of these states can be accept states if we make sure that the transitions
between them follow the rules of our language, especially that transitions to state q1
are labelled with a 1. If we encounter a rule-breaking input, we enter our third state,
q2, which is not an accept state. All transitions from q2 point to itself.

q0start

q2

q1

0

1

0,1

0,1

This finite automaton now recognises our language L, and we can say that L is regular.

Another approach could be to construct a regular expression that describes the langua-
ge. Such a regular expression would consist of pairs of symbols, where first input symbol
of the pair is always 1 (odd-numbered positions) and the second can be either 0 or 1. If
the length of the string is odd, we end the string with symbol 1. With strings of even
length we don’t need to add anything. A regular expression fulfilling these conditions
is: (1(0 ∪ 1))∗(1 ∪ ε).

5. Problem:

Let

L = {w ∈ {0, 1}∗ | w contains an even number of 0’s or exactly two 1’s.}.

Show that L is regular.

Solution: We can show a language L is regular by designing a corresponding DFA
(NFA as well, because we can convert an NFA to a DFA) or regular expression for it.
Therefore, let’s design the corresponding automaton for L.

We want L to have either (i) an even number of 0’s or (ii) exactly two 1’s. Therefore, we
introduce a choice-making an ε-transition from the starting state to disjoint subparts
of the automaton that are fairly easy to design. If we choose to have a string according
to (i), we are immediately in a final state (q1) and will come back there after every two
zeros. On the other hand, to generate a string according to (ii), after generating two
1’s we will be in a final state (and there is no continuation on a 1 from there, because
we need exactly two 1’s).

q0start

q1 q2

q3 q4 q5

ε

ε

0

0

1 1

0 0 0

1 1

It is also quite easy to design a corresponding regular expression, which is ((1∗01∗0)∗ ∪ (0∗10∗10∗)).

II Context-Free Grammars and Languages

1. Problem:

(a) Design a context-free grammar for the language

L = {anbm | n ≥ 0 and m = n or m = 2n}.

Draw the corresponding parse tree for the sentence aabbbb.

(b) Prove (precisely!) that the language L in part (a) is not regular.

Solution:

(a) We can represent case m = n with variable A and case m = 2n with variable B.
The grammar is then:

S → A | B
A → aAb | ε
B → aBbb | ε

The parse tree for the sentence aabbbb is:

S

B

B

B

a

a

b b

b b

ε

(b) Suppose that L is regular. The pumping lemma says that for some p ≥ 1 the
following holds: if x ∈ L, |x| ≥ p, then x can be divided into three parts x = uvw
so that |uv| ≤ p, |v| ≥ 1, and uvnw ∈ L for all n ≥ 0.

Take the string x = apb2p. Clearly |x| ≥ p, so we know that the three parts must
be u = ai, v = aj and w = ap−i−jbp for some i + j ≤ p, i ≥ 0, j ≥ 1. Now by the
pumping lemma we should have uv0w ∈ L. But

uv0w = uw = aiap−i−jb2p = ap−jb2p

Which is not in L, because j ≥ 1 and so 2(p− j) 6= 2p. This is a contradiction, so
L cannot be regular.

2. Problem:

(a) Design context-free grammars for the languages L≤ = {aibj | 0 ≤ i ≤ j} and
L6= = {aibj | i 6= j}. (Hint: Note that i 6= j if and only if i < j or i > j.)

(b) Prove (precisely!) that the language L≤ in part (a) is not regular.

(c) Prove (precisely!) that the language L 6= in part (a) is not regular.

Solution:

(a) The language L≤ consists of strings where the number of a’s is at most number of
b’s, and the symbols are in alphabetical order. Grammar:

S → aSb | Sb | ε

The first production allows us to add any number of a’s we want, but ensures that
we then have equally many b’s. The second production is for adding extra b’s.

The language L6= consists of strings with unequal numbers of a’s and b’s, again in
alphabetical order. As it is hinted, we can do this by considering strings where i < j
or i > j. Grammar:

S → A | B
A → aAb | aA | a
B → aBb | Bb | b

The production S → A describes situations where i > j, ie. we have more a’s.
S → B on the other hand is for strings with more b’s. The productions for variables
A and B are constructed in a similar manner as with L≤, but now we replace the
ε-production with terminal a or b to make sure that we don’t have an equal number
of a’s and b’s.

(b) For a regular language we have the pumping lemma: there exists some p ∈ N such
that all strings of length p or longer have a partition x = uvw, where |uv| ≤ p,
|v| ≥ 1 and uviw ∈ L, ∀i ∈ N.

Let’s start our proof by assuming that L≤ is regular. Our goal is to find a contra-
diction to this statement. Now, after our assumption there should be some p ∈ N,
and we are able to choose a string from the language, for which the pumping lem-
ma holds. Let’s choose x = apbp. Now as |x| = 2p ≥ p, we have some partition
x = uvw. Because we have the requirement that |uv| ≤ p, uv must contain only
a’s: uv = an, where n ≤ p. Let v = m ≥ 1. Our partition is now u = an−m, v = am

and w = ap−nbp.

Now uviw should belong to the language with all i’s. Let’s choose i = 2. Now

uv2w = an−ma2map−nbp = an−m+2m+p−nbp = ap+mbp

As m ≥ 1, p+m > p, and so uv2w 6∈ L≤. This is our contradiction, and L≤ is not
regular.

(c) Let’s again start by assuming that L 6= is regular. As the regular languages are
closed under complement, ie. the complement language of a regular language is also
regular, language

Lc
6= = L= = {aibj | i = j}

must be regular, too. This can be shown for example by constructing a deterministic
finite automaton M for one language, and then creating another one M ′ for the

complement language by changing the accept states into non-accept states and vice
versa: F ′ = {q ∈ Q | q 6∈ F}. Now in M ′ we accept all the strings that are not
accepted by M , and reject all that are accepted by M .

Now, as L= is regular, the pumping lemma should hold. We can choose the same
string as in part (b), x = apbp ∈ L=, and notice that as L= ⊂ L≤, we have
uv2w 6∈ L≤ ⇒ uv2w 6∈ L=. This is our contradiction: L= is not regular as the
pumping lemma doesn’t hold, so L 6= cannot be regular either.

3. Problem:

(a) Design a context-free grammar for the language

L = {ucvcw | u, v, w ∈ {0, 1}∗, v = uR or v = wR (or both)}.

(Notation xR denotes the reverse of string x, i.e. string x written backwards.)

(b) Show that the grammar you gave in part (a) is ambiguous.

(c) Prove (precisely!) that the language in part (a) is not regular. (Hint: Consider e.g.
strings of the form 1nc1nc0n.)

Solution:

(a)

S → PcA | AcP
P → 1P1 | 0P0 | c
A → 1A | 0A | ε

The two productions associated to start variable S let us choose if we want to derive
a string in L of type (i) v = uR or (ii) v = wR. (Note that even with a given
choice, the other alternative may be valid as well, which leads to the ambiguity.)
Then variable P generates an odd-length palindromic string over {0, 1}∗ with a c
in the middle, and variable A generates every possible string over {0, 1}∗.

(b) To show the ambiguity of a grammar, it is enough to come up with one example
which has more than one parse tree. Here, all strings which are of both types (i)
and (ii) create such ambiguity. For instance, consider x = 1c1c1 which is one of the
simplest examples. (Actually x = cc would be the simplest, but does not make a
very illustrative example.) This has the following parse trees:

S

P

1 c 1

c A

1 A

ε

S

A

1 A

ε

c P

1 c 1

(c) Proof by contradiction. Suppose that the language L is regular. Then, according
to the pumping lemma there exists a p ≥ 1 such that we can write any string x ∈ L
with length at least p in form x = uvw where |uv| ≤ p and |v| ≥ 1, so that all
strings of form x′ = uvkw, k = 0, 1, 2, . . . are also in L.

Let x = 1pc1pc0p ∈ L which obviously is longer than p. Now, necessarily, u = 1r,
v = 1m and w = 1p−r−mc1pc0p where m ≥ 1. Therefore, also strings of form
x′ = 1r1km1p−r−mc1p0p = 1p+(k−1)mc1pc0p should belong to L for all values of k.
But choose for instance k = 2. Then we get x′ = 1p+mc1pc0p which is obviously not
in L. We have reached a contradiction, which means that the original assumption
is wrong and the language L is not regular.

4. Problem:

(a) Design a context-free grammar that generates the language

L = {ambncm+n | m,n ≥ 0}.

(b) Prove that the language L in part (a) is not regular.

Solution: Language L is generated by the following context-free grammar:

(a)

S → aSc | A | ε
A→ bAc | ε

The grammar is split into two parts: variable S first generates matching pairs of a
and c, and then variable A generates matching pairs of b and c. This arrangement
guarantees that the total number of c’s equals the sum of the numbers of a’s and
b’s, and also that the symbols appear in the correct order.

(b) We will use the pumping lemma for regular languages to show that language L is
not regular. For a contradiction, suppose that L is a regular language. Then by
the pumping lemma there exists p > 0 such that every string w ∈ L of length
|w| ≥ p can be decomposed into three parts w = xyz which satisfy the following
conditions:

(i) |xy| ≤ p,
(ii) |y| ≥ 1,

(iii) for each i ≥ 0, xyiz ∈ L.

Now let p > 0 be as stated above. Consider the word w = apbpc2p ∈ L and
decompose it into parts xyz as indicated. By condition (i) and the structure of the
chosen w, it must be the case that both x and y contain only a’s. Let thus y = aq

for some q ≥ 1 (condition (ii)). By condition (iii), the word w′ = xy2z = ap+qbpc2p

should then also be in L. But w′ is not in L, as the number of a’s and b’s in it
together do not equal the number of c’s (2p+ q 6= 2p) which would be required for
w′ ∈ L. We thus arrive at a contradiction, and conclude that L cannot be regular.

5. Problem:

Consider the following context-free grammar G:

S → s | T
T → if C then S | if C then S else S

C → c

(a) Give a parse tree for the string “if c then if c then s else s” in G.

(b) Show that G is ambiguous.

Solution:

(a) A parse tree is drawn below:

S

T

if C

c

then S

T

if C

c

then S

s

else S

s

(b) A grammar is ambiguous if there are two parse trees for some word in it. Therefore
it suffices to present a second parse for the string in part (a):

S

T

if C

c

then S

T

if C

c

then S

s

else S

s

6. Problem:

Prove that all regular languages are context-free, without appealing to the correspon-
dence between context-free grammars and pushdown automata. (Using this correspon-
dence would make the proof trivial, since finite state automata are a special case of
pushdown automata.) Illustrate your proof with an example.

Solution:

In order to prove that every regular language is context-free, we show by construction
how to transform a DFA accepting a regular language into a context-free grammar that
generates the same language.

Let B be a regular language. By definition, there exists a DFA M = (Q,Σ, δ, q0, F) such
that L(M) = B. Based on M , we design a context-free grammar GB = (V,Σ, R, S)
generating B in the following way:

• For each state q ∈ Q introduce corresponding variable Rq ∈ V .

• For every transition rule δ(qi, a) = (qj), where qi, qj ∈ Q and a ∈ Σ, add production
Rqi → aRqj .

• For every accepting state q ∈ F , add production Rq → ε.

• Define the start variable S as Rq0 .

This “right-linear” context-free grammar GB generates B, and thus B is a context-free
language.

Let us demonstrate this method with the regular language

L = {w ∈ {0, 1}∗ | w contains odd number of 0’s and odd number of 1’s}.

We will show how to obtain a grammar for this language from its recognising DFA, and
how to generate string 01001010 ∈ L using the grammar.

DFA:

q0 q1

q2 q3

0

1

0

11

0

1

0

We transform this DFA to a context-free grammar G = (V,Σ, R, S):

• For set of statesQ = {q0, q1, q2, q3} we introduce set of variables V = {Rq0 , Rq1 , Rq2 , Rq3}.

• After adding new rules and renaming Rq0 as the start variable S we have the
following grammar:

S → 0Rq1 | 1Rq2

Rq1 → 0S | 1Rq3

Rq2 → 0Rq3 | 1S
Rq3 → 0Rq2 | 1Rq1 | ε

This grammar generates string 01001010 in the following way:

S ⇒ 0Rq1 ⇒ 01Rq3 ⇒ 010Rq2 ⇒ 0100Rq3 ⇒ 01001Rq1 ⇒ 010010Rq0 ⇒ 0100101Rq2

⇒ 01001010Rq3 ⇒ 01001010ε = 01001010

III Turing Machines and Computability

1. Problem: Design a deterministic single-tape Turing machine that computes the func-
tion f(n) = n mod 3. The machine receives the string 1n as input, and at the end of the
computation it must leave n mod 3 ones at the beginning of the tape, where n mod 3
denotes the remainder when n is divided by 3. The other ones must be overwritten with
the symbol #.

(a) Present your Turing machine as a state diagram.

(b) Write an overview of the method your machine uses.

(c) Give the computation of your machine with the inputs 111 and 11111.

Solution:

(a)

q0 q1 q2 q3 q4

q5q6q7

q8

C/C, L 1/1, L 1/1, L 1/1, R

#/#, LC/C, L

1/#, L1/#, L

1/#, L

B/B, R1/1, R 1/1, RB/B, R

B/B, R

(b) The machine overwrites three 1’s at a time in a loop, until there are fewer than
three left.

The remaining 1’s should be at the start of the tape, so the machine initially moves
to the end and starts overwriting from there. The overwriting happens in a loop:
the machine checks whether there are at least three 1’s, and then overwrites them
if there are. If it finds the start marker when checking, that means there are fewer
than three 1’s left so it goes to the accept state and halts.

(c) The computation on input 111:
(q0, 111) ` (q0, 111) ` (q0, 111) ` (q0, 111ε) `
(q1, 111) ` (q2, 111) ` (q3, 111) ` (q4, 111) ` (q4, 111) ` (q4, 111ε) `
(q5, 111) ` (q6, 11#) ` (q7, 1##) ` (q1, ε###) ` (q8,###)

The computation on input 11111:
(q0, 11111) ` (q0, 11111) ` (q0, 11111) ` (q0, 11111) ` (q0, 11111) ` (q0, 11111ε) `
(q1, 11111) ` (q2, 11111) ` (q2, 11111) ` (q3, 11111) ` (q4, 11111) ` (q4, 11111ε) `
(q5, 11111) ` (q6, 1111#) ` (q7, 111##) ` (q1, 11###) `
(q1, 11###) ` (q1, ε11###) ` (q8, 11###)

2. Problem: Design a deterministic single-tape Turing machine that adds one to the
binary number it receives as input. For example, the machine should replace input string
1001 by the string 1010 and the input string 11 by the string 100. Give a description of
your algorithm, present the Turing machine as a state chart and give the computations
of the machine with the input strings 1011 and 111.

Solution: As the numbers are written most significant bit first, we might encounter a
situation, where we need to move the input to the right. Luckily, as we only increase
the number by one, the only scenario when this happens is when our input consists en-
tirely of 1’s, and the retyping of the input is kind of trivial: we add one 0 to the (right)
end of the tape, and change all the 1’s in the input to 0’s, except the first (leftmost) one.

When we do have 0’s in our input, we want to take a different approach. First we want
to move to the right end of the tape. Then we want to replace every 1 we encounter
with a 0, and first 0 with a 1. When we find the first zero, we can move to the accept
state.

We can determine which approach we want to take while we move from the left end to
the right end of the tape, depending on if we encounter any 0’s on our way.

q0start

q1 q2 acc

q4 q5

1/1, R

C/0, L

0/0, R

1/0, L

B/B, R 0/1, R

0/0, R
1/1, R

C/C, L

1/0, L

0/1, L

Let’s handle input strings 1011 and 111 using our brand-new machine. Here is the
computation on 1011:

(q0, 1011) ` (q0, 1011) ` (q4, 1011) `
(q4, 1011) ` (q4, 1011ε) ` (q5, 1011) `
(q5, 1010) ` (q5, 1000) ` (acc, 1100).

And here on 111:

(q0, 111) ` (q0, 111) ` (q0, 111) `
(q0, 111ε) ` (q1, 1110) ` (q1, 1100) `
(q1, 1000) ` (q1, ε0000) ` (q2, 0000) `
(acc, 1000).

3. Problem:

Design a deterministic single-tape Turing machine that duplicates its input: if the tape
initially contains a string w ∈ {0, 1}∗, then when the machine halts the tape contains the
string ww. Present your Turing machine as a state diagram, and give its computation
sequence on input 10.

Solution: Briefly, the idea is to read one symbol and then copy that to the end. We
should know which symbols have already been checked/copied, thus after reading a
symbol we change it to A if it was 1 and B if it was 0. Then, we will write A or B at
the end respectively for 1 and 0. When all the tape symbols become A or B, the input
has been completely copied and we should change the symbols back to 1 and 0.

q0start

q1 q2

q3 q4

q5 q6 acc

1/
A
,R

0/B
,R

C/A,L

C/B,L

1/1, R
0/0, R
A/A,R
B/B,R

A/A,L
B/B,L

1/1, R
0/0, R
A/A,R
B/B,R

A/A,L
B/B,L

1/
1,
L

0/
0,
L

1/1, L
0/0, L

A/A,R

B/B,R

1/1, L
0/0, L

A/1, R
B/0, R

B/B, R

B/B
, R

C/C, L

For input string 10 the computation sequence is the following:

(q0, 10) ` (q1, A0) ` (q1, A0ε) `
(q2, A0A) ` (q5, A0A) ` (q0, A0A) `
(q3, ABA) ` (q3, ABAε) ` (q4, ABAB) `
(q4, ABAB) ` (q4, ABAB) ` (q4, εABAB) `
(q6, ABAB) ` (q6, 1BAB) ` (q6, 10A) `
(q6, 101B) ` (q6, 1010ε) ` (acc, 1010)

IV Unclassified

1. Problem:

(a) Prove that if the languages L ⊆ {0, 1,#}∗ and L′ ⊆ {0, 1}∗ are context-free, then
so is the language L′′ = L[L′] ⊆ {0, 1}∗, whose words are obtained from the words
in L by replacing each #-symbol by some word in L′ (not necessarily always the
same).

(b) The same problem as in part (a), but with respect to semi-decidable (Turing-
recognisable) rather than context-free languages.

Solution:

(a) Let L ⊆ {0, 1,#} and L′ ⊆ {0, 1} be context-free, and let G and G′ be context-
free grammars generating the languages L and L′, respectively. Without loss of
generality, we may assume that all the variables in G and G′ are distinct. Let the
start symbol of G be S and the start symbol of G′ be S′ 6= S. Using G and G′, we
can then construct a grammar, call it G[G′], that generates the language L[L′] as
follows:

• The start symbol of G[G′] is the start symbol S of G.

• For each production A→ ω of G, replace each occurence of the terminal # in
ω by the start symbol S′ of G′. Add the modified productions to G[G′].

• Add every production A→ ω of G′ to G[G′].

The construction ensures that every word of L can be also derived from G[G′] with
each occurence of # replaced by S′, and vice versa. From each S′, any word in G′

can be derived, therefore G[G′] generates the language L[L′]

(b) Let T and T ′ be Turing machines recognising the languages L and L′, respectively.
We may construct a non-deterministic Turing machine T [T ′], which replaces non-
deterministically arbitrary substrings w′ (possibly w′ = ε) of the input w by the
character # if w′ ∈ L′ (i.e. w′ is accepted by T ′) to get a new string w̃, and then
simulates T with input w̃. By construction, T [T ′] recognises L[L′], and since de-
terministic and non-deterministic Turing-machines recognise the same languages,
we conclude that also L[L′] is Turing-recognisable i.e. semi-decidable.

2. Problem:

A language class C is closed under complement, if for every L ∈ C also L̄ ∈ C.

(a) Show that the class of regular languages is closed under complement.

(b) Show that the class of context-free languages is not closed under complement.
(Hint: The language L = {anbncn | n ≥ 0} is not context-free.)

(c) Show that the class of decidable languages is closed under complement.

Solution:

(a) We want to prove that if a language L is regular, then L̄ = Σ∗ \ L is also regular.
Assume then that L is regular. This means there is a finite automaton M that
recognises L. Based on this machine we can construct a machine M ′ that recognises
L̄, thereby proving that L̄ is regular. The construction is quite simple: M ′ is
identical to M expect that its accept states are normal states, and its normal
states accept states. Consider how M ′ behaves on some input x. If x ∈ L then
M accepts, meaning that the computation ends in an accepting state. But this
state is not accepting in M ′ and therefore M ′ rejects as it should since x ∈ L is
equivalent to x 6∈ L̄. If x /∈ L then M rejects, meaning that the computation ends
in a state that is not accepting. But such a state is accepting in M ′ and therefore
M ′ accepts, as it should since x /∈ L is equivalent to x ∈ L̄.

(b) We prove the statement by counterexample: we show that the complement L̄ of
the non-contextfree language L = {anbncn | n ≥ 0} is in fact context-free. Hence
there is a context-free language (L̄) whose complement (¯̄L = L) is not context-free.
Consider the language L̄. It contains all strings that don’t have the same amount
of a’s b’s and c’s appearing in order. We proceed to separate the language into
parts that we can show are context-free, eventually showing the entire language is
context-free.

Strings in L̄ can be of two types: they can either have differing numbers of a’s, b’s
and c’s, or the letters can be in the wrong order. In other words L̄ = L̄ord ∪ Lnum

where Lord = {aibjck | i, j, k ∈ N} and Lnum = {aibjck | i 6= j or j 6= k}. We can
further separate Lnum = La6=b ∪ Lb 6=c, where Lx 6=y means the language where the
numbers of letters x and y differ. We have then that

L̄ = L̄ord ∪ La6=b ∪ Lb6=c.

We will show that these component languages are context-free one by one, and
then show that the class of context-free languages is closed under union, thus
concluding that L̄ is context-free.

L̄ord We show that Lord is a regular language, so its complement L̄ord is also
regular by part (a). Since the class of regular languages is a subset of the class
of context-free languages, we can then conclude that L̄ord is context-free. We
show that Lord is regular by describing a nondeterministic finite automaton
that recognises it. The state diagram for such a machine is shown below.

qastart qb qc

a

ε

b

ε

c

La6=b We can describe this language with a context-free grammar. We can think
of the language as composed of two cases: either there are more a’s than b’s
or less a’s than b’s. The first rule of the grammar below expresses this idea.

S → MC | LC
M → aM | aE
L → Lb | Eb
E → aEb | ε
C → cC | ε

If we use the production S → MC then the M first adds one or more a’s to
the beginning of the string and then an equal number of a’s and b’s, leading
to an excess of a’s. Then the C adds some number of c’s at the end. In the
production S → LC some b’s are added at first, leading there to be fewer a’s
than b’s.

Lb 6=c The idea here is very similar to the previous part, the grammar is below

S → AM | AL
M → bM | bE
L → Lc | Ec
E → aEb | ε
A → aA | ε

Finally to show that the class of context-free languages is closed under union, let
L1 and L2 be two context-free languages, described by context-free grammars G1

and G2. A context-free grammar for L1∪L2 can then be constructed by combining
all productions from G1 and G2 (renaming variables if necessary), renaming their
start variables as S1 and S2 and adding a new start production S → S1 | S2.

(c) This argument is very similar to that for regular languages. Assume that L is
decidable, meaning that there is some Turing machine M that recognises it and
halts on all inputs. We can construct a Turing machine M ′ that is identical to M
expect that the accepting and rejecting states are swapped. Machine M ′ then also
halts on every input, and gives the opposite answer from M . Clearly M ′ recognises
the language L̄.

3. Problem:

Show that if a language L ⊆ Σ∗ is semi-decidable but not decidable, then its complement
language L̄ = Σ∗ − L is not semi-decidable. (You may assume as known any auxiliary
results related to this claim that have been presented during the course.)

Solution: Let L be a language that is semi-decidable but not decidable, and suppose
that its complement L̄ is also semi-decidable. We will show that then L would in fact
be decidable, a contradiction.

Since L is semi-decidable, there is by definition a Turing machine M1 that recognises
it, i.e. on any input x ∈ L, M1 halts and accepts. Similarily, there is a machine M2

that recognises L̄. We construct from these two machines a Turing machine M that
recognises L correctly and halts on all inputs, establishing that L is decidable, contrary
to our assumption.

We will describe M on a general level, but an exact definition could be written based
on this description. The machine M simulates the machines M1 and M2 in parallel on
two independent tapes. Given an input x, M runs both M1 and M2 with input x and
accepts if M1 halts and accepts, and rejects if M2 halts and accepts. Since an input x
either is in the language L or it is not, machine M always halts and gives the correct
answer on whether an input x is in language L or not. Hence L is decidable.

4. Problem:

Give a brief but precise justification, based on results presented on the course, for each
of the following statements: (i) all regular languages are context-free, (ii) all context-free
languages are decidable.

Solution:

(i) Any regular language L can, by definition, be recognised by some finite automaton.
Each finite automaton can be transformed into a (left- or right-recursive) context-
free grammar recognising the same language. This means that the language L is
also context-free.

(ii) Any context-free language L is, by definition, generated by some context-free
grammar G. Grammar G can be effectively transformed into an equivalent Choms-
ky normal form grammarG′, which can then be used in the CYK parsing algorithm
to decide whether a given input word is in the language L. The CYK-algorithm
can be implemented for example in C, which by the Church-Turing thesis implies
that the language L is decidable.

