

Basics of MRI ELEC- E8736

MATLAB exercise

Rui Gao, Lauri Palva & Simo Särkkä

Background

- An object was imaged with a 3 T MRI scanner at Aalto Advanced Magnetic Imaging Center.
- A set of receive coils were used for signal detection.
- The arrangement of the receive coils is explained in the next two slides.

Signal detection with coils

Surface coil

- A surface coil is essentially a loop of conducting material. This type of receiver coil is placed directly on or over the region of interest for increased magnetic sensitivity.
- MR imaging is increasingly performed using arrays of small surface coils placed near or on the body, often in conjunction with parallel imaging.

Surface coils

Signal detection with coils

Phased array coils

- In MRI, a phased array coil generally refers to a set of receive coils whose signals are combined to obtain a uniform image over a region larger than any individual coil could cover while taking advantage of the high SNR available from the smaller individual coils.
- The signals obtained from the individual coils are combined to give a single image. See Chapter 27.4 in Brown et al. (2014).

Imaging parameters

- Properties -			
l'ioperues	Prio Recon	Off	
	Load to viewer	On	
	Inline movie	Off	
	Auto store images	On	
	Load to stamp segments	Off	
	Load images to graphic se	egments Off	
	Auto open inline display	Off	
	Wait for user to start	Off	
	Start measurements	single	
Routine			
	Nr. of slice groups	1	
	Slices	35	
	Dist. factor	25 %	
	Position	L1.2 P15.7 H3.0 mm	
	Orientation	Coronal	
	Phase enc. dir.	R >> L	
	AutoAlign		
	Phase oversampling	0 %	
	FoV read	200 mm	
	FoV phase	100.0 %	
	Slice thickness	1.5 mm	
	TR	4500.0 ms	
	TE	108.0 ms	
	Averages	1	
	Concatenations	2	
	Filter	Prescan Normalize, Elliptical filter	
	Coil elements	HEA;HEP	

Imaging parameters

- Recolution -			
Resolution	Base resolution	512	
	Phase resolution	100 %	
	Phase partial Fourier	Off	
	Trajectory	Cartesian	
	Interpolation	Off	
	PAT mode	GRAPPA	
	Accel. factor PE	2	
	Ref. lines PE	27	
	Reference scan mode	Integrated	
	Image Filter	Off	
	Distortion Corr.	Off	
	TD	0.0 ms	
	Unfiltered images	Off	
	Prescan Normalize	On	
	Normalize	Off	
	B1 filter	Off	
	Raw filter	Off	
	Elliptical filter	On	
	Mode	Inplane	
Geometry-			
	Nr. of slice groups	1	
	Slices	35	
	Dist. factor	25 %	
	Position	L1.2 P15.7 H3.0 mm	
	Phase enc. dir.	R >> L	
	Phase oversampling	0 %	
	Multi-slice mode	Interleaved	
	Series	Interleaved	
	Nr. of sat. regions	0	
	Position mode	L-P-H	
	Fat suppr.	None	
	Water suppr.	None	
	Special sat.	None	
	Special sat.	None	
	Table position	Р	

Filling of *k*-space

Data is acquired in the spatial frequency domain (k-space).

Cartesian

http://mriquestions.com/k-space-trajectories.html

Inverse Fourier transformation

- The *k*-space is filled with data directly from MR signal.
- Image is recovered from k-space data using inverse Fourier transform

$$s(k_x, k_y) = \iint \int \int dx \, dy \, dz \, \rho(x, y, z) e^{-i2\pi(k_x x + k_y y)}$$

Fourier transformation

$$\hat{\rho}(x,y) = \int dk_x s(k_x,k_y) e^{i2\pi(k_x x + k_y y)} = \int dz \,\rho(x,y,z)$$

Inverse Fourier transformation

Data in k-space

Data

The data are contained in the files **slice6_116.mat** and **slice6_1732.mat**. The data files contain 32 (16 per data file) individual 1024 \times 522 *k*-space data matrices, each obtained from a different receiver coil. Each of these *k*-space data matrices can be used to reconstruct an imperfect and partial MRI image.

- Number of slices 1
- Slice thickness: 1.5 mm
- Slice number: 6 / 35
- Resolution: 1024 x 522
- Number of coils: 32

As described in Chapters 9, 10 and 11, reconstruct the 32 images corresponding to each receiver coil via discrete two-dimensional Fourier transform.

Hint: Recall the MATLAB functions fftshift and ifftshift to position the image correctly.

You should now have 32 reconstructed partial images of the object. To produce the final complete image, try combining the coil images by

- averaging
- the sum of sauares (SoS) reconstruction

$$Z_{x,y}^{\mathrm{SoS}} = \sqrt{\sum_{i=1}^{32} \left(Z_{x,y}^{\mathrm{coil}(i)} \right)^2}$$

where $Z_{x,y}^{\text{coil}(i)}$ stands for the pixel value at (x; y) of the ith coil image.

Compute the **signal-to-noise ratio** in the final SoS-reconstructed image.

Write a **short report** where you explain how image reconstruction is done and describe your signal-to-noise ratio calculations. Include some of the reconstructed 32 partial coil images as well as the final images obtained by averaging and the SoS. Also include separate MATLAB file(s).

The report is to be returned by **April 20** on MyCourses (Exercises section).

