

Aalto University School of Science and Technology

#### CS-E5745 Mathematical Methods for Network Science

#### Mikko Kivelä

Department of Computer Science Aalto University, School of Science mikko.kivela@aalto.fi

January 5, 2021

## Dynamical models of/on networks

#### Learning goals this week:

- Gain insights on the big picture on how to approach network dynamic problems analytically
- Ability to recognize and formulate approximations for these problems
- Ability to write down master/rate equations
- Newman: Networks, An Introduction Sections 14 and 17

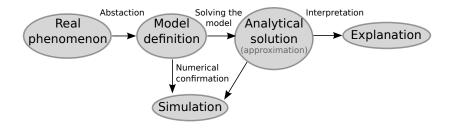


## Dynamical models of/on networks

- Models of networks: Network evolves according to some rules
- Models on networks: States of nodes evolve according to some rules
- Co-evolution models: Both network and states of nodes evolve simultaneously
- Similar techniques can be used to solve all of these

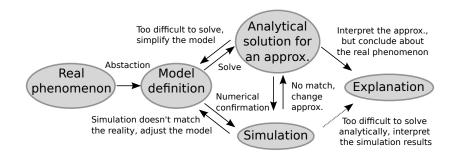


# Pipeline, as presented in a publication





# Pipeline, a more realistic picture





# Example: Barabási-Albert model

- Phenomena: Networks are born via growth, new nodes are more likely to connect to already popular nodes
- Data: Probability of link creation can be measured as a function of degree, power-law degree distributions
- Model: A variation of preferential attachment models (e.g., Price model):
  - 0. Start with  $t_0$  seed nodes with some connections, and set time to  $t = t_0$
  - 1. Increase time t = t + 1, add node with index t
  - 2. Add *m* links from *t* to other nodes, each link to node *i* prob.  $p_i = \frac{k_i}{\sum_j k_j}$
  - 3. GOTO 1.
- There could be multi-links (or the probabilities are different), but we ignore this

## Example: Barabási-Albert model

- We can solve the BA model *exactly* if we so wish
- Idea: Think about the BA model as a Markov chain where the state space is (a subset of) all graphs
  - Easy to write the transition probabilities between graphs
  - The result give us a probability distribution over all graphs for each time t
- Problem: the size of the state space explodes
  - >  $2^{T(T-1)/2}$  graphs with T nodes, but not all reachable
  - For every state at time t, there are  $\binom{t}{m}$  possible transitions
  - ► Total number of states at time *T* is  $N_T = \prod_{t=t_0}^T {t \choose m} \ge e^{mT}$  (for *T* large enough)
- This solution is not practical



# **Approximate solutions**

- Idea: Define a simple system that mimics the (expected) behavior of a complex system
- The state of the system at each time is reduced to a property or a vector of properties
  - The choise of properties is usually guided by the process
- The evolution rules are written in terms of average behavior (master/rate equation)
  - Either as difference or differential equation(s)
- Only mean behavior matters: statistical fluctuations are ignored
  - The properties are assumed to be independent
  - Dependencies can be added by including combinations of properties
- The resulting system is usually much easier to solve!



# Typical procedure in approximate solutions

- ► The "real" model for the system *S* is defined using stochatic rules *F* such that S(t) = F(S(t-1))
- Calculate some properties X of the system  $X(S) = \mathbf{X}$ 
  - The properties can be discrete in the system S but evolve to be continuous in X: e.g., probability that an edge exists
- ► Define deterministic rules *f* for the evolution of the properties  $\mathbf{X}(t) = f(\mathbf{X}(t-1))$ , s.t.  $f(\mathbf{X}) \approx \langle F(S) | X(S) = \mathbf{X} \rangle$

• Usually defined in elementwise way:  $X_i(t) = f_i(\mathbf{X}(t-1))$ 

- Set  $X(S(t_0)) = \mathbf{X}(t_0)$  and solve  $\mathbf{X}(t) = f(\mathbf{X}(t-1))$  for any value of t or for  $t \to \infty$ 
  - We now hope that  $X(\langle F^t(S(t_0)) \rangle) \approx f^t(\mathbf{X}(t_0))$
  - For continuous time one defines  $\frac{d}{dt}\mathbf{X}(t) = f(\mathbf{X}(t))$



### Example: Barabási-Albert model

- Idea: map each graph to a vector where each element corresponds to an edge, s.t. X<sub>i</sub> = 1 if edge exists, and 0 otherwise
  - Expected value of binary variable is the probability of getting 1
  - Notation: A<sub>ij</sub> is the probability that link between i and j exists
  - Set m = 1 for simplicity
- ► The update rule for **X**(*t*):
  - Calculate expected degree for each node  $\langle k_i \rangle = \sum_i A_{ij}$

• Set 
$$A_{it} = \frac{\langle k_i \rangle}{\sum_i \langle k_j \rangle}$$

The final state X(T) gives the probability of each edge existing at time T



# Practical guidelines for selecting variables for approximations

- Anything that can be measured from the state of the system could be selected as a property we track
  - Some selections make it difficult to come up with the update function
  - The selecting variables appearing in the update rule is a good idea
- The above approximation discards dependencies between the variables, but one can define a combination variables that keep track of these
  - Example: Probability for each triangle to exists, instead of a probability each link to exists



#### **Example: Barabasi-Alberts model**

Idea 1: map each graph into a vector of degrees of nodes
The expected degree of each node is tracked
Note: expected degrees are continuous variables
X<sub>i</sub>(t) is the expected degree of node *i* at time step t
Now we should write the equations X<sub>i</sub>(t) = f<sub>i</sub>(X(t-1))



#### **Example: Barabasi-Alberts model**

 Idea 2: map each graph into a vector of counts of nodes of each degree (or a degree distribution)

The expected number of nodes of each degee is tracked

- X<sub>k</sub>(t) is the expected number of nodes of degree k at time step t
- ▶ Now we should write the equations  $X_k(t) = f_k(\mathbf{X}(t-1))$



# Practical guidelines for writing master equations

- When the tracked variables are not binary variables, it might be more difficult to write the update equations
- Think about each element  $X_i(t)$  separately, divide it to
  - growth  $X_i^+(t) = f_i^+(\mathbf{X}(t-1))$  term and
  - decline  $X_i^-(t) = f_i^-(\mathbf{X}(t-1))$  term
- The total is  $X_i(t) X_i(t-1) = X_i^+(t) X_i^-(t) = f_i^+(\mathbf{X}(t-1)) + f_i^-(\mathbf{X}(t-1))$
- Are there any conserved quantities? (If something grows, others decline)
- Same applies for rate equations



#### **Example: Barabasi-Alberts model**

 X<sub>k</sub>(t) is the expected number of nodes of degree k at time step t

Addition of nodes to degree categories:

• 
$$X_k^+(t) = m \frac{(k-1)}{\sum_k k X_k(t-1)} X_{k-1}(t-1)$$
, when  $k > m$ 

• 
$$X_k^+(t) = 1$$
, when  $k = m$ 

Removal of nodes from degree categories:

$$X_k^-(t) = m_{\frac{k}{\sum_k k X_k(t-1)}} X_k(t-1)$$

• Note that  $\sum_k kX_k(t) = 2mN(t)$ 

#### **Example: Barabasi-Alberts model**

#### In total we have:

• 
$$X_k(t) = X_k(t-1) + \frac{(k-1)}{2N(t-1)}X_{k-1}(t-1) - \frac{k}{N(t-1)}X_k(t-1),$$
  
when  $k > m$ 

• 
$$X_m(t) = X_m(t-1) + 1 - \frac{m}{N(t-1)}X_m(t-1)$$



## Models on networks

- Above approach can also be used to solve models on networks
- The state of the systems is not a graph, a vector of states for the nodes
- Examples:
  - Infection spreading: Nodes are either infected or not infected
  - Opinion formation: Each nodes state represent its opinion (discreet or continuous value)



# Spreading models on networks

- Network spreading models follow the classic literature on mathematical epidemiology
- Models are determined by the possible states and transition rates between them
- States:
  - S: Susceptible
  - E: Exposed
  - I: Infected
  - R: Recovered (or Removed)
- Naming convention: state changes from left to right
- Typical models include: SI, SIS, SIRS, SEIR



# **Example: SIR on networks**

# $\blacktriangleright S \xrightarrow{\beta} I \xrightarrow{\gamma} R$

- Classic result (no network): Epidemic if  $R_0 = \frac{\beta}{\gamma} > 1$ 
  - i.e., when rate or infectino is larger than rate of recovery
- Degree-based approximation: Epidemic if  $\frac{\beta}{\gamma} > \frac{1}{\langle q \rangle}$

where \langle q \rangle is the expected excess degree

• Node-based approximation: Epidemic if  $\frac{\beta}{\gamma} > \frac{1}{\lambda_1}$ 

• where  $\lambda_1$  is the largest eigenvalue of an adjacency matrix



# SIR can be mapped to percolation

- Modification: all individuals stay infected for time *τ* (instead of I → R)
- Infected node: probability that an *edge* leading out is activated during infection is Φ = 1 − e<sup>−βτ</sup>
- Set edges occupied with probability  $\Phi \to$  components give you the possible sizes of epidemics
  - We can now calculate the statistics of epidemics using percolation theory on networks



- A general theory for approximating processes where each node can be in one of two states<sup>1</sup>
  - Examples: SI, SIS, voter model, ...
  - Assumption: network is produced by configuration model
- Probabilities that node of degree k is susceptible (infected) and has m infected neighbors: s<sub>k,m</sub> (i<sub>k,m</sub>)
- Dynamics determine the rates  $S \rightarrow I$ :  $F_{k,m}$  and  $I \rightarrow S$ :  $R_{k,m}$ 
  - Example: in the SIS model  $F_{k,m} = m\beta$  and  $R_{k,m} = \gamma$

#### <sup>1</sup>Phys. Rev. Lett. 107, 068701 (2011)



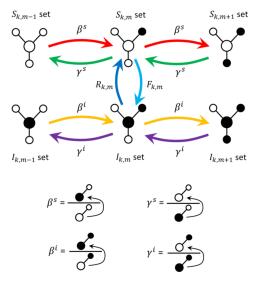
The master equations become complicated:

$$\frac{ds_{k,m}}{dt} = -F_{k,m}s_{k,m} + R_{k,m}i_{k,m}$$
$$-\beta^{s}(k-m)s_{k,m} + \beta^{s}(k-m+1)s_{k,m-1}$$
$$-\gamma^{s}ms_{k,m} + \gamma^{s}(m+1)s_{k,m+1}$$

• Where 
$$\beta^{s} = \frac{\langle \sum_{m=0}^{k} (k-m)F_{k,m}s_{k,m} \rangle}{\langle \sum_{m=0}^{k} (k-m)s_{k,m} \rangle}$$
,  $\gamma^{s} = \frac{\langle \sum_{m=0}^{k} (k-m)R_{k,m}i_{k,m} \rangle}{\langle \sum_{m=0}^{k} (k-m)i_{k,m} \rangle}$   
• Similar equation for  $i_{k}$ 

Similar equation for i<sub>k,m</sub>







Mathematical Methods for Networks January 5, 2021 23/25

- ► The  $(k_{max} + 1)(k_{max} + 2)$  master equations can be solved numerically, or further approximations can be made
- Pair approximation (PA):
  - $\rho_k$ : Probability that node of degree k is infected
  - *p<sub>k</sub>*: Probability that neighbor of a node of degree k is infected

•  $s_{k,m} \approx (1 - \rho_k) B_{k,m}(p_k)$ , where  $B_{k,m}(p) = {\binom{k}{m}} p^m (1 - p)^{k-m}$ 

- Mean-field approximation (MF):
  - *ρ<sub>k</sub>*: Probability that node of degree k is infected

• 
$$\mathbf{s}_{k,m} \approx (1 - \rho_k) \mathbf{B}_{k,m}(\langle \frac{k}{z} \rho_k \rangle)$$



