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12.6 Linear Approximations, Differentiability, and Differentials
As observed in Section 4.9, the tangent line to the graph y D f .x/ at x D a provides

y

xxa

P D .a; f .a//

y D f .x/

L.x/
f .x/

Figure 12.25 The linearization of f at

x D a

a convenient approximation for values of f .x/ for x near a (see Figure 12.25):

f .x/ � L.x/ D f .a/C f
0
.a/.x � a/:

Here, L.x/ is the linearization of f at a; its graph is the tangent line to y D f .x/

there. The mere existence of f 0.a/ is sufficient to guarantee that the error in the

approximation (the vertical distance between the curve and tangent at x) is small com-

pared with the distance h D x � a between a and x, that is,

lim
h!0

f .aC h/ �L.aC h/

h
D lim

h!0

f .aC h/ � f .a/ � f 0.a/h

h

D lim
h!0

f .aC h/ � f .a/

h
� f

0
.a/

D f
0
.a/ � f

0
.a/ D 0:

Similarly, the tangent plane to the graph of z D f .x; y/ at .a; b/ is z D L.x; y/,

where

L.x; y/ D f .a; b/C f1.a; b/.x � a/C f2.a; b/.y � b/

is the linearization of f at .a; b/. We can use L.x; y/ to approximate values of

f .x; y/ near .a; b/:

f .x; y/ � L.x; y/ D f .a; b/C f1.a; b/.x � a/C f2.a; b/.y � b/:

E X A M P L E 1 Find an approximate value for f .x; y/ D
p

2x2
C e2y at .2:2;�0:2/.

Solution It is convenient to use the linearization at .2; 0/, where the values of f and

its partials are easily evaluated:

f1.x; y/ D
2x

p

2x2
C e2y

;

f2.x; y/ D
e2y

p

2x2
C e2y

;

f .2; 0/ D 3;

f1.2; 0/ D
4

3
;

f2.2; 0/ D
1

3
:

Thus, L.x; y/ D 3C
4

3
.x � 2/C

1

3
.y � 0/, and

f .2:2;�0:2/ � L.2:2;�0:2/ D 3C
4

3
.2:2 � 2/C

1

3
.�0:2 � 0/ D 3:2 :

(For the sake of comparison, f .2:2;�0:2/ � 3:2172 to 4 decimal places.)

Unlike the single-variable case, the mere existence of the partial derivatives f1.a; b/

and f2.a; b/ does not even imply that f is continuous at .a; b/, let alone that the

error in the linearization is small compared with the distance
p

.x � a/2
C .y � b/2

between .a; b/ and .x; y/. We adopt this latter condition as our definition of what it

means for a function of two variables to be differentiable at a point.
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D E F I N I T I O N

5
We say that the function f .x; y/ is differentiable at the point .a; b/ if

lim
.h;k/!.0;0/

f .aC h; b C k/� f .a; b/ � h f1.a; b/ � kf2.a; b/
p

h2
C k2

D 0:

This definition and the following theorems can be generalized to functions of any num-

ber of variables in the obvious way. For the sake of simplicity, we state them for the

two-variable case only.

The function f .x; y/ is differentiable at the point .a; b/ if and only if the surface

z D f .x; y/ has a nonvertical tangent plane at .a; b/. This implies that f1.a; b/ and

f2.a; b/ must exist and that f must be continuous at .a; b/. (Recall, however, that the

existence of the partial derivatives does not even imply that f is continuous, let alone

differentiable.) In particular, the function is continuous wherever it is differentiable.

We will prove a two-variable version of the Mean-Value Theorem and use it to show

that functions are differentiable wherever they have continuous first partial derivatives.

T H E O R E M

3
A Mean-Value Theorem

If f1.x; y/ and f2.x; y/ are continuous in a neighbourhood of the point .a; b/, and if

the absolute values of h and k are sufficiently small, then there exist numbers �1 and

�2, each between 0 and 1, such that

f .aC h; b C k/� f .a; b/ D hf1.aC �1h; b C k/C kf2.a; b C �2k/:

PROOF The proof of this theorem is very similar to that of Theorem 1 in Section 12.4,

so we give only a sketch here. The reader can fill in the details. Write

f .aCh; bCk/�f .a; b/ D
�
f .aCh; bCk/�f .a; bCk/

�
C

�
f .a; bCk/�f .a; b/

�
;

and then apply the single-variable Mean-Value Theorem separately to f .x; b C k/ on

the interval between a and aC h, and to f .a; y/ on the interval between b and b C k

to get the desired result.

T H E O R E M

4
If f1 and f2 are continuous in a neighbourhood of the point .a; b/, then f is differen-

tiable at .a; b/.

PROOF Using Theorem 3 and the facts that

ˇ̌̌
ˇ h
p

h2
C k2

ˇ̌̌
ˇ � 1 and

ˇ̌̌
ˇ k
p

h2
C k2

ˇ̌̌
ˇ � 1;

we estimateˇ̌̌
ˇf .aC h; b C k/ � f .a; b/ � hf1.a; b/ � kf2.a; b/

p

h2
C k2

ˇ̌̌
ˇ

D

ˇ̌̌
ˇ h
p

h2
C k2

�
f1.aC �1h; b C k/ � f1.a; b/

	

C

k
p

h2
C k2

�
f2.a; b C �2k/ � f2.a; b/

	ˇ̌̌ˇ
�

ˇ̌
f1.aC �1h; b C k/� f1.a; b/

ˇ̌
C

ˇ̌
f2.a; b C �2k/� f2.a; b/

ˇ̌
:
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Since f1 and f2 are continuous at .a; b/, each of these latter terms approaches 0 as h

and k approach 0. This is what we needed to prove.

We illustrate differentiability with an example where we can calculate directly the error

in the tangent plane approximation.

E X A M P L E 2 Calculate f .x C h; y C k/� f .x; y/� f1.x; y/h� f2.x; y/k if

f .x; y/ D x3
C xy2.

Solution Since f1.x; y/ D 3x2
C y2 and f2.x; y/ D 2xy, we have

f .x C h; y C k/� f .x; y/� f1.x; y/h � f2.x; y/k

D .x C h/
3
C .x C h/.y C k/

2
� x

3
� xy

2
� .3x

2
C y

2
/h � 2xyk

D 3xh
2
C h

3
C 2yhk C hk

2
C xk

2
:

Observe that the result above is a polynomial in h and k with no term of degree less

than 2 in these variables. Therefore, this difference approaches zero like the square

of the distance
p

h2
C k2 from .x; y/ to .x C h; y C k/ as .h; k/ ! .0; 0/, so the

condition for differentiability is certainly satisfied:

lim
.h;k/!.0;0/

3xh2
C h3

C 2yhk C hk2
C xk2

p

h2
C k2

D 0:

This quadratic behaviour is the case for any function f with continuous second partial

derivatives. (See Exercise 23 below.)

Proof of the Chain Rule
We are now able to give a formal statement and proof of a simple but representative

case of the Chain Rule for multivariate functions.

T H E O R E M

5
A Chain Rule

Let z D f .x; y/, where x D u.s; t/ and y D v.s; t/. Suppose that

(i) u.a; b/ D p and v.a; b/ D q,

(ii) the first partial derivatives of u and v exist at the point .a; b/, and

(iii) f is differentiable at the point .p; q/. Then z D w.s; t/ D f .u.s; t/; v.s; t//

has first partial derivatives with respect to s and t at .a; b/, and

w1.a; b/ D f1.p; q/u1.a; b/C f2.p; q/v1.a; b/;

w2.a; b/ D f1.p; q/u2.a; b/C f2.p; q/v2.a; b/:

That is,

@z

@s
D

@z

@x

@x

@s
C

@z

@y

@y

@s
and

@z

@t
D

@z

@x

@x

@t
C

@z

@y

@y

@t
:

PROOF Define a function E of two variables as follows: E.0; 0/ D 0, and if .h; k/ ¤

.0; 0/, then

E.h; k/ D
f .p C h; q C k/� f .p; q/ � hf1.p; q/ � kf2.p; q/

p

h2
C k2

:
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Observe that E.h; k/ is continuous at .0; 0/ because f is differentiable at .p; q/.

Now,

f .p C h; q C k/� f .p; q/ D hf1.p; q/C kf2.p; q/C

p
h2
C k2 E.h; k/:

In this formula put h D u.aC�; b/�u.a; b/ and k D v.aC�; b/�v.a; b/ and divide

by � to obtain

w.aC �; b/ � w.a; b/

�
D

f .u.aC �; b/; v.a C �; b// � f .u.a; b/; v.a; b//

�

D

f .p C h; q C k/ � f .p; q/

�

D f1.p; q/
h

�
C f2.p; q/

k

�
C

r�
h

�

	2

C

�
k

�

	2

E.h; k/:

We want to let � approach 0 in this formula. Note that

lim
�!0

h

�
D lim

�!0

u.aC �; b/ � u.a; b/

�
D u1.a; b/;

and, similarly, lim�!0.k=�/ D v1.a; b/. Since .h; k/ ! .0; 0/ if � ! 0, we have

w1.a; b/ D f1.p; q/u1.a; b/C f2.p; q/v1.a; b/:

The proof for w2 is similar.

Differentials
If the first partial derivatives of a function z D f .x1; : : : ; xn/ exist at a point, we may

construct a differential dz or df of the function at that point in a manner similar to

that used for functions of one variable:

dz D df D

@z

@x1

dx1 C
@z

@x2

dx2 C � � � C
@z

@xn

dxn

D f1.x1; : : : ; xn/ dx1 C � � � C fn.x1; : : : ; xn/ dxn:

Here, the differential dz is considered to be a function of the 2n independent variables

x1, x2, : : : , xn, dx1, dx2, : : : , dxn.

For a differentiable function f; the differential df is an approximation to the

change �f in value of the function given by

�f D f .x1 C dx1; : : : ; xn C dxn/ � f .x1; : : : ; xn/:

The error in this approximation is small compared with the distance between the two

points in the domain of f I that is,

�f � dfp
.dx1/2

C � � � C .dxn/2
! 0 if all dxi ! 0; .1 � i � n/:

In this sense, differentials are just another way of looking at linearization.

E X A M P L E 3 Estimate the percentage change in the period T D 2�

s
L

g
of a

simple pendulum if the length, L, of the pendulum increases by

2% and the acceleration of gravity, g, decreases by 0.6%.
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Solution We calculate the differential of T :

dT D

@T

@L
dLC

@T

@g
dg

D

2�

2
p

Lg
dL �

2�
p

L

2g3=2
dg:

We are given that dL D

2

100
L and dg D �

6

1;000
g. Thus,

dT D

1

100
2�

s
L

g
�

�
�

6

1;000

�
2�

2

s
L

g
D

13

1;000
T:

Therefore, the period T of the pendulum increases by 1.3%.

Functions from n-Space to m -Space
(This is an optional topic.) A vector f D .f1; f2; : : : ; fm/ of m functions, each depend-

ing on n variables .x1; x2; : : : ; xn/, defines a transformation (i.e., a function) from R
n

to R
m; specifically, if x D .x1; x2; : : : ; xn/ is a point in R

n, and

y1 D f1.x1; x2; : : : ; xn/

y2 D f2.x1; x2; : : : ; xn/

:
:
:

ym D fm.x1; x2; : : : ; xn/;

then y D .y1; y2; : : : ; ym/ is the point in R
m that corresponds to x under the

transformation f. We can write these equations more compactly as

y D f.x/:

Information about the rate of change of y with respect to x is contained in the various

partial derivatives @yi=@xj , .1 � i � m; 1 � j � n/, and is conveniently organized

into an m � n matrix, Df.x/, called the Jacobian matrix of the transformation f:

Df.x/ D

0
BBBBBBBB@

@y1

@x1

@y1

@x2

� � �

@y1

@xn
@y2

@x1

@y2

@x2

� � �

@y2

@xn
:
:
:

:
:
:

:
:
:

@ym

@x1

@ym

@x2

� � �

@ym

@xn

1
CCCCCCCCA

If the partial derivatives in the Jacobian matrix are continuous, we say that f is differ-

entiable at x. In this case the linear transformation (see Section 10.7) represented by

the Jacobian matrix is called the derivative of the transformation f.

Remark We can regard the scalar-valued function of two variables, f .x; y/ say, as

a transformation from R
2 to R. Its derivative is then the linear transformation with

matrix

Df .x; y/ D
�
f1.x; y/; f2.x; y/

�
:

It is not our purpose to enter into a study of such vector-valued functions of a vector

variable at this point, but we can observe here that the Jacobian matrix of the compo-

sition of two such transformations is the matrix product of their Jacobian matrices.
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To see this, let y D f.x/ be a transformation from R
n to R

m as described above,

and let z D g.y/ be another such transformation from R
m to R

k given by

z1 D g1.y1; y2; : : : ; ym/

z2 D g2.y1; y2; : : : ; ym/

:
:
:

zk D gk.y1; y2; : : : ; ym/;

which has the k �m Jacobian matrix

Dg.y/ D

0
BBBBBBBB@

@z1

@y1

@z1

@y2

� � �

@z1

@ym

@z2

@y1

@z2

@y2

� � �

@z2

@ym

:
:
:

:
:
:

:
:
:

@zk

@y1

@zk

@y2

� � �

@zk

@ym

1
CCCCCCCCA

:

Then the composition z D g ı f.x/ D g
�
f.x/

�
given by

z1 D g1

�
f1.x1; : : : ; xn/; : : : ; fm.x1; : : : ; xn/

�
z2 D g2

�
f1.x1; : : : ; xn/; : : : ; fm.x1; : : : ; xn/

�
:
:
:

zk D gk

�
f1.x1; : : : ; xn/; : : : ; fm.x1; : : : ; xn/

�
has, according to the Chain Rule, the k � n Jacobian matrix

0
BBBBBBBB@

@z1

@x1

@z1

@x2

� � �

@z1

@xn
@z2

@x1

@z2

@x2

� � �

@z2

@xn
:
:
:

:
:
:

:
:
:

@zk

@x1

@zk

@x2

� � �

@zk

@xn

1
CCCCCCCCA
D

0
BBBBBBBB@

@z1

@y1

@z1

@y2

� � �

@z1

@ym

@z2

@y1

@z2

@y2

� � �

@z2

@ym

:
:
:

:
:
:

:
:
:

@zk

@y1

@zk

@y2

� � �

@zk

@ym

1
CCCCCCCCA

0
BBBBBBBB@

@y1

@x1

@y1

@x2

� � �

@y1

@xn
@y2

@x1

@y2

@x2

� � �

@y2

@xn
:
:
:

:
:
:

:
:
:

@ym

@x1

@ym

@x2

� � �

@ym

@xn

1
CCCCCCCCA

This is, in fact, the Chain Rule for compositions of transformations:

D.g ı f/.x/ D Dg
�
f.x/

�
Df.x/;

and exactly mimics the one-variable Chain Rule D.g ı f /.x/ D Dg
�
f .x/

�
Df .x/.

The transformation y D f.x/ also defines a vector dy of differentials of the vari-

ables yi in terms of the vector dx of differentials of the variables xj . Writing dy and

dx as column vectors we have

dy D

0
BBB@

dy1

dy2

:
:
:

dym

1
CCCA D

0
BBBBBBBB@

@y1

@x1

@y1

@x2

� � �

@y1

@xn
@y2

@x1

@y2

@x2

� � �

@y2

@xn
:
:
:

:
:
:

:
:
:

@ym

@x1

@ym

@x2

� � �

@ym

@xn

1
CCCCCCCCA

0
BB@

dx1

dx2
:
:
:

dxn

1
CCA D Df.x/dx:
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E X A M P L E 4 Find the Jacobian matrix Df.1; 0/ for the transformation from R
2

to R
3 given by

f.x; y/ D
�
xe

y
C cos.�y/; x

2
; x � e

y
�

and use it to find an approximate value for f.1:02; 0:01/.

Solution Df.x; y/ is the 3�2 matrix whose j th row consists of the partial derivatives

of the j th component of f with respect to x and y. Thus,

Df.1; 0/ D

0
@ ey xey

� � sin.�y/

2x 0

1 �ey

1
A
ˇ̌̌
ˇ̌̌
.1;0/

D

0
@ 1 1

2 0

1 �1

1
A :

Since f.1; 0/ D .2; 1; 0/ and dx D

�
0:02

0:01

�
, we have

d f D Df.1; 0/ dx D

0
@ 1 1

2 0

1 �1

1
A� 0:02

0:01

�
D

0
@ 0:03

0:04

0:01

1
A :

Therefore, f.1:02; 0:01/ � .2:03; 1:04; 0:01/.

For transformations between spaces of the same dimension (say from R
n to R

n), the

corresponding Jacobian matrices are square and have determinants. These Jacobian

determinants will play an important role in our consideration of implicit functions and

inverse functions in Section 12.8 and in changes of variables in multiple integrals in

Chapter 14.

Maple’s VectorCalculus package has a function Jacobian that takes two inputs,

a list (or vector) of expressions and a list of variables, and produces the Jacobian ma-

trix of the partial derivatives of those expressions with respect to the variables. For

example,

> with(VectorCalculus):

> Jacobian([x*y*exp(z), (x+2*y)*cos(z)],[x,y,z]);�
yez xez xyez

cos.z/ 2 cos.z/ �.x C 2y/ sin.z/

�

VectorCalculus has only been included since Maple 8. If you have an earlier release,

use linalg instead, and the function jacobian.

E Differentials in Applications
Differentials are sometimes used as an alternative representation for differentiable

functions. This is particularly so in the field of thermodynamics. In thermodynamics,

physical states of thermodynamic equilibrium are expressed mathematically in terms

of the existence of a function,

E D E.S; V; N1; : : : ; Nn/;

where E is internal energy, S is entropy, V is volume, and the Ni are numbers of atoms

or molecules of type i .

These quantities are interpreted physically, but they are just independent variables

in a function to which normal mathematical rules apply. Discussion of the physical

meaning of a quantity like entropy, for example, is largely beyond the scope of this

book. (One might remark that entropy is a logarithmic measure of the number of

underlying physical states that appear indistinguishable on human scales, but such a

description is completely unnecessary for this discussion.) E.S; V; N1; : : : ; Nn/ is

known as a function of state. Any explicit equation relating thermodynamic variables

is also known as an equation of state.
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Thermodynamics allows for any number of such variables to define the state.

There can be others than those indicated for different physical systems. All such vari-

ables are additive in that, for example, the energy of two physical systems together is

simply the sum of the energies of each system. The same is true for volume, entropy,

and number. These additive variables are called extensive variables. In thermodynam-

ics they are referred to as state variables or as state functions. That is because any one

of the other variables can be expressed as a function of E and the remaining variables.

For example, S D S.E; V; N1; : : : ; Nn/.

Differentials appear in thermodynamics as the normal way to express the existence

of a state function. In writing

dE D

@E

@S
dS C

@E

@V
dV C

@E

@N1

dN1 C � � � C
@E

@Nn

dNn;

we are saying that E depends on the variables whose differentials appear on the right

side of the equation. In fact, everything is so effectively done with differentials that

often no explicit function E is needed or even known.

Historically, the differential was also meant to convey an intuitive sense of change

in time, even though mathematically it is simply the differential of a function. In

fact, this historical interpretation can be quite confusing, because, paradoxically, the

existence of the function of state, and its differential, means the physical system is in

thermodynamic equilibrium, which can be described as a time-independent condition

of a physical system. If it were not in (timeless) thermodynamic equilibrium, there

would be no state function and no corresponding differentials. The resolution of the

paradox is to stick to the mathematics, remembering that the differential only depicts

a change in the values of variables and not any external process.

So, for example, the state equation has nothing to do with whether some process is

slow or not. Differentials in this case do not suggest a physical process any more than

the differential of any other function does. The differential only expresses the content

of the function, so it has nothing to do with the physical processes that cause changes,

or with whether any change is carried out slowly (reversible processes) or not.

The partial derivatives that appear in the differential form of the state equation

also have explicit physical interpretations:
@E

@S
is temperature T; �

@E

@V
is pressure P;

and the quantities
@E

@Ni

are known as chemical potentials, �i . These partial derivatives

represent slopes on the graph of the function of state, and as such they are not additive.

It makes no sense, for example, to add temperatures. Physically, these slopes define

a condition rather than an amount. These nonadditive quantities are called intensive

variables.

With these definitions substituted, the differential form of the equation of state

becomes

dE D T dS � P dV C �1 dN1 C � � � C �n dNn;

which is known as the Gibbs equation. However, despite the special treatment, this ex-

pression remains simply the differential of E.S; V; N1; : : : ; Nn/. The Gibbs equation

is a fundamental starting point in many thermodynamical problems.

Another related, and well-known, equation of differentials is the Gibbs-Duhem

equation,

0 D S dT � V dP CN1 d�1 C � � � C Nn d�n:

This remarkable equation indicates that the intensive variables of thermodynamics are

not independent of each other. It holds because the additivity of the extensive vari-

ables implies that the function of state, E D E.S; V; N1; : : : ; Nn/, is homogeneous of

degree 1. (See Exercise 24 at the end of this section.)
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E Differentials and Legendre Transformations
It is often useful to shift the dependence of a function on one or more of its indepen-

dent variables to dependence on, instead, the derivatives of the function with respect to

these variables. Consider, for example, the function y D f .x/, and denote its deriva-

tive by p; that is, p D f 0.x/. If we let u D px � f .x/ and calculate the differential

of u, treating x and p as independent variables, we obtain

du D p dx C x dp � f
0
.x/ dx D p dx C x dp � p dx D x dp:

Since there is no dx term remaining in this differential, u does not depend explicitly

on x, but only on p. Let us therefore define f �.p/ D u D px � f .x/. f �.p/ is

called the Legendre transformation of f .x/ with respect to x, and the two variables x

and p are said to be conjugate to one another. Observe that

f .x/C f
�
.p/ D px;

and the symmetry of this equation indicates that f must also be the Legendre trans-

formation of f �; f ��
D f: In fact, taking the partial derivatives of the equation with

respect to x and p we obtain the symmetric relationships

f
0
.x/ D p and .f

�
/
0
.p/ D x

from which it is apparent that f 0 and .f �/0 are inverse functions;

f
0�

.f
�
/
0
.p/

�
D p; .f

�
/
0�

f
0
.x/
�
D x:

Remark The above definition of f � clearly shows the symmetry in its relationship

with f: An alternative transformation, �f �.p/ (i.e., the function f .x/ � px) shifts

dependence between a variable and the derivative of the function just as effectively,

although it does not share this symmetry. In some fields, particularly thermodynamics,

this alternative is known as the Legendre transformation instead.

E X A M P L E 5 Calculate the Legendre transformation f �.p/ of the function

f .x/ D ex .

Solution Here p D f 0.x/ D ex , so x D ln p. Therefore,

f
�
.p/ D px � f .x/ D p ln p � p:

For functions of several variables, Legendre transformations can be taken with

respect to one or more of the independent variables. If u D f .x; y/, p D f1.x; y/,

and q D f2.x; y/, and if w D px C qy � u, then

dw D p dx C x dp C q dy C y dq � f1.x; y/ dx � f2.x; y/ dy D x dp C y dq

and w does not depend explicitly on x or y, but only on p and q. We can call w.p; q/

(or�w.p; q/ if we are doing thermodynamics) the Legendre transformation of f .x; y/

with respect to x and y, and treat both fx; pg and fy; qg as conjugate pairs of variables.

Observe that

f1.x; y/ D p

f2.x; y/ D q
and

w1.p; q/ D x

w2.p; q/ D y:

Returning to thermodynamics, the Gibbs equation tells us that E depends on S ,

V , and Ni . Since T D

@E

@S
, T and S are conjugate and we can express energy in terms

of temperature rather than entropy by using an (alternative) Legendre transformation.

Let F D E � TS . Then

dF D dE � S dT � T dS D �S dT � P dV C �1 dN1 C � � � C �n dNn:
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Thus, F D F.T; V; N1; : : : ; Nn/: F is known as the Helmholtz free energy, which is

called a thermodynamic potential. It can be more practical to use F; which depends

explicitly on T; rather than E when an experiment is run at constant temperature.

Legendre transformations can be done in terms of any or all of the conjugate pairs.

In the case of the Helmholtz free energy, only the conjugates T and S are used. Other

specific Legendre transformations lead to other thermodynamic potentials. For exam-

ple, the Gibbs free energy, G D E � TS C P V; is widely used in chemistry, where

processes normally take place at constant temperature and pressure. (See Exercise 30

below.)

Legendre transformations are very important in other areas of classical and mod-

ern physics. Historically, they appear in classical mechanics, where the functional

expression of the energy, known as the Hamiltonian, is expressed in terms of Legendre

transformations of a function known as the Lagrangian. (See Exercise 32 for a problem

developing this relationship.) These notions extend to modern physics, which is often

cast in terms of Lagrangians.

E X E R C I S E S 12.6
In Exercises 1–6, use suitable linearizations to find approximate

values for the given functions at the points indicated.

1. f .x; y/ D x
2
y

3 at .3:1; 0:9/

2. f .x; y/ D tan�1
�

y

x

	
at .3:01; 2:99/

3. f .x; y/ D sin.�xy C ln y/ at .0:01; 1:05/

4. f .x; y/ D
24

x2
C xy C y2

at .2:1; 1:8/

5. f .x; y; z/ D
p

x C 2y C 3z at .1:9; 1:8; 1:1/

6. f .x; y/ D x e
yCx2

at .2:05;�3:92/

In Exercises 7–10, write the differential of the given function and

use it to estimate the value of the function at the given point by

starting with a known value at a nearby point.

7. z D x
2

e
3y

; at x D 3:05; y D �0:02

8. g.s; t/ D s
2
=t; g.2:1; 1:9/

9. F.x; y; z/ D

p
x2
C y C 2C z2; F .0:7; 2:6; 1:7/

10. u D x sin.x C y/; at x D
�

2
C

1

20
; y D

�

2
�

1

30

11. The edges of a rectangular box are each measured to within an

accuracy of 1% of their values. What is the approximate

maximum percentage error in

(a) the calculated volume of the box,

(b) the calculated area of one of the faces of the box, and

(c) the calculated length of a diagonal of the box?

C 12. The radius and height of a right-circular conical tank are

measured to be 25 ft and 21 ft, respectively. Each measure-

ment is accurate to within 0.5 in. By about how much can the

calculated volume of the tank be in error?

C 13. By approximately how much can the calculated area of the

conical surface of the tank in Exercise 12 be in error?

C 14. Two sides and the contained angle of a triangular plot of land

are measured to be 224 m, 158 m, and 64ı, respectively. The

length measurements were accurate to within 0.4 m and the

angle measurement to within 2ı. What is the approximate

maximum percentage error if the area of the plot is calculated

from these measurements?

C 15. The angle of elevation of the top of a tower is measured at two

points A and B on the ground in the same direction from the

base of the tower. The angles are 50ı at A and 35ı at B , each

measured to within 1
ı. The distance AB is measured to be

100 m with error at most 0.1%. What is the calculated height

of the building, and by about how much can it be in error? To

which of the three measurements is the calculated height most

sensitive?

C 16. By approximately what percentage will the value of

w D

x2y3

z4
increase or decrease if x increases by 1%, y

increases by 2%, and z increases by 3%?

17. Find the Jacobian matrix for the transformation

f.r; �/ D .x; y/, where

x D r cos � and y D r sin �:

(Although .r; �/ can be regarded as polar coordinates in the

xy-plane, they are Cartesian coordinates in their own

r� -plane.)

18. Find the Jacobian matrix for the transformation

f.R; 	; �/ D .x; y; z/, where

x D R sin 	 cos �; y D R sin 	 sin �; z D R cos 	:

Here, .R; 	; �/ are spherical coordinates in xyz-space, as

introduced in Section 10.6.

19. Find the Jacobian matrix Df.x; y; z/ for the transformation of

R
3

to R
2

given by

f.x; y; z/ D .x
2
C yz; y

2
� x ln z/:

Use Df.2; 2; 1/ to help you find an approximate value for

f.1:98; 2:01; 1:03/.

20. Find the Jacobian matrix Dg.1; 3; 3/ for the transformation of

R
3

to R
3

given by

g.r; s; t/ D .r
2
s; r

2
t; s

2
� t

2
/
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and use the result to find an approximate value for

g.0:99; 3:02; 2:97/.

21. Prove that if f .x; y/ is differentiable at .a; b/, then f .x; y/ is

continuous at .a; b/.

22.A Prove the following version of the Mean-Value Theorem: If

f .x; y/ has first partial derivatives continuous near every

point of the straight line segment joining the points .a; b/ and

.aC h; b C k/, then there exists a number � satisfying

0 < � < 1 such that

f .aC h; b C k/ Df .a; b/C hf1.aC �h; b C �k/

C kf2.aC �h; b C �k/:

(Hint: Apply the single-variable Mean-Value Theorem to

g.t/ D f .aC th; b C tk/.) Why could we not have used this

result in place of Theorem 3 to prove Theorem 4 and hence

the version of the Chain Rule given in this section?

23.A Generalize Exercise 22 as follows: show that, if f .x; y/ has

continuous partial derivatives of second order near the point

.a; b/, then there exists a number � satisfying 0 < � < 1 such

that, for h and k sufficiently small in absolute value,

f .aC h; b C k/ Df .a; b/C hf1.a; b/C kf2.a; b/

C h
2
f11.aC �h; b C �k/

C 2hkf12.aC �h; b C �k/

C k
2
f22.aC �h; b C �k/:

Hence, show that there is a constant K such that for all

values of h and k that are sufficiently small in absolute

value,ˇ̌̌
f .a C h; b C k/ � f .a; b/ � hf1.a; b/ � kf2.a; b/

ˇ̌̌
� K.h2

C k2/.

Thermodynamics and Legendre Transformations

24.A Use the Gibbs equation

dE D T dS � P dV C �1 dN1 C � � � C �n dNn

and the fact that, being additive in its extensive variables,

E D E.S; V; N1; : : : ; Nn/ is necessarily homogeneous of

degree 1, to establish the Gibbs-Duhem equation

0 D S dT � V dP CN1 d�1 C � � � CNn d�n:

(Hint: Use Euler’s Theorem, Theorem 2 of Section 12.5.)

25.A The equation of state for an ideal gas in the form of

E D E.S; V; N /, using extensive variables only, is rarely

quoted. It is

E D

3h2N

4�m

�
N

V

�2=3

e

�
2S

3N k
� 5

3

	
:

However, it is common to see P V D N kT; or E D
3
2

N kT

instead. Here k is the Boltzmann constant, h is Planck’s

constant, and m is the mass of one atom. Deduce these

common forms from the explicit formula for E given as a

function of S , V; and N .

26.A If f 00.x/ > 0 for all x, show that the Legendre transformation

f �.p/ is the maximum value of the function g.x/ D px � f .x/

considered as a function of x alone with p fixed.

In Exercises 27–29 give an explicit formula for the Legendre

transformation f �.p/ of the given function f .x/.

27. f .x/ D x
2 28. f .x/ D x

4

29. f .x/ D ln.2C 3x/

30. Use differentials to show that the Gibbs free energy,

G D E � TS C P V , depends on T and P alone when the

numbers of molecules of each type are fixed. Determine the

partial derivatives of G with respect to the new variables T

and P:

31. Entropy can be written as a function, S D S.E; V; N1; � � � ; Nn/.

Legendre transformations can be performed on it too,

although they are not so well-known. The resulting functions

are called Massieu-Planck functions. Show that one of these,

the Massieu’s potential, ˆ D S �
1
T

E, depends on

temperature instead of energy.

32.I In classical mechanics, the energy of a system is expressed in

terms of a function called the Hamiltonian. When the energy

is independent of time, the Hamiltonian depends only on the

positions, qi , and the momenta, pi , of the particles in the

system, that is, H D H.q1; � � � ; qn; p1; � � � ; pn/. There is also

another function, called the Lagrangian, that depends on the

positions qi and the velocities Pqi , that is,

L D L.q1; � � � ; qn; Pq1; � � � ; Pqn/, such that the Hamiltonian is a

Legendre transformation of the Lagrangian with respect to the

velocity variables:

H.q1; � � � ; qn; p1; � � � ; pn/

D

X
i

pi Pqi � L.q1; � � � ; qn; Pq1; � � � ; Pqn/:

(a) What variables are conjugate in this Legendre

transformation? What partial derivatives of L are

implicitly determined by it?

(b) In the absence of external forces, the principle of least

action requires that
@L

@qi

D Ppi . By taking the differential

of H and using the result of part (a), show that
@H

@qi

D � Ppi and
@H

@pi

D Pqi . These are known as

Hamilton’s equations.

(c) Use Hamilton’s equations to show that the Hamiltonian,
1
2
.q2

C p2/, represents a harmonic oscillator because it is

equivalent to the differential equation Rq C q D 0.
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27.I If the equations x D f .u; v/, y D g.u; v/ can be solved for u

and v in terms of x and y, show that

@.u; v/

@.x; y/
D 1

,
@.x; y/

@.u; v/
:

Hint: Use the result of Exercise 26.

28.I If x D f .u; v/, y D g.u; v/, u D h.r; s/, and v D k.r; s/,

then x and y can be expressed as functions of r and s. Verify

by direct calculation that

@.x; y/

@.r; s/
D

@.x; y/

@.u; v/

@.u; v/

@.r; s/
:

This is a special case of the Chain Rule for Jacobians.

29.I Two functions, f .x; y/ and g.x; y/, are said to be

functionally dependent if one is a function of the other; that is,

if there exists a single-variable function k.t/ such that

f .x; y/ D k

�
g.x; y/

�
for all x and y. Show that in this case

@.f; g/=@.x; y/ vanishes identically. Assume that all

necessary derivatives exist.

30.I Prove the converse of Exercise 29 as follows: Let u D f .x; y/

and v D g.x; y/, and suppose that

@.u; v/=@.x; y/ D @.f; g/=@.x; y/ is identically zero for all x

and y. Show that .@u=@x/v is identically zero. Hence u,

considered as a function of x and v, is independent of x; that

is, u D k.v/ for some function k of one variable. Why does

this imply that f and g are functionally dependent?

Thermodynamics Problems

31. Use the different versions of the equation of state, presented in

this section, to determine explicit functions u and v such that

S D u.E; V; N / and S D v.T; V; N /.

In Exercises 32–34, verify the given Maxwell relation by using a

suitable Legendre transformation (see the Thermodynamics

subsection of Section 12.6) to involve the appropriate set of

independent variables.

32.I

�
@P

@T

�
V;N

D

�
@S

@V

�
T;N

33.I

�
@V

@S

�
P;N

D

�
@T

@P

�
S;N

34.I

�
@S

@P

�
T;N

D �

�
@V

@T

�
P;N

12.9 Taylor’s Formula, Taylor Series, and Approximations
As is the case for functions of one variable, power series representations and their

partial sums (Taylor polynomials) can provide an efficient method for determining the

behaviour of a smooth function of several variables near a point in its domain. In this

section we will look briefly at the extension of Taylor’s formula and Taylor series to

such functions. We will do this for functions of n variables as it is no more difficult to

do this than to treat the special case n D 2.

As a starting point, recall Taylor’s formula for a function F.t/ with continuous

derivatives of order up to m C 1 on the interval Œ0; 1
. (See Theorem 12 in Section

4.10, and put f D F; a D 0, x D h D 1, and s D � in the version of Taylor’s formula

given there.)

F.1/ D F.0/C F
0
.0/C

F
00
.0/

2Š
C � � � C

F
.m/

.0/

mŠ
C

F
.mC1/

.�/

.mC 1/Š
;

where � is some number between 0 and 1. (The last term in the formula is the Lagrange

form of the remainder.)

Now suppose that a D .a1; a2; : : : ; an/ and h D .h1; h2; : : : ; hn/ belong to R
n. If

To simplify the manipulation of

many variables, irrespective of

how many there are, it is con-

venient to introduce the idea of a

function of a vector, which is an

intuitively straightforward

extension from functions of

scalars. If x has components

.x1; x2; : : : ; xn/, then f .x/ just

means f .x1; x2; : : : ; xn/, a

function of n variables.

f is a function of x 2 R
n that has continuous partial derivatives of orders up to mC 1

in an open set containing the line segment joining a and aC h, we can apply the above

formula to

F.t/ D f .aC th/; .0 � t � 1/:

By the Chain Rule we will have

F
0
.t/ D h1fh1

.aC th/C h2fh2
.aC th/C � � � C hnfhn

.aC th/

D .h � r/f .aC th/;



SECTION 12.9: Taylor’s Formula, Taylor Series, and Approximations 745

where

.h � r/f .aC th/ D
�
.h1D1 C h2D2 C � � � C hnDn/f .x/

�ˇ̌̌
xDaCth

and Dj D @=@xj , (1 � p � n). Similarly,

F
00
.t/ D h1h1f11.aC th/C h1h2f12.aC th/C � � � C hnhnfnn.aC th/

D

�
h � r

�2
f .aC th/

:
:
:

F
.j /

.t/ D
�
h � r

�j
f .aC th/

Thus, F.1/ D f .a C h/; F.0/ D f .a/; and F
.j /

.0/ D .h � r/
j

f .a/. The

Taylor formula given above thus says that

f .aC h/ D f .a/C h � rf .a/C
.h � r/2f .a/

2Š
C � � � C

.h � r/mf .a/

mŠ

C

.h � r/mC1f .aC �h/

.mC 1/Š

D

mX
jD0

.h � r/j f .a/

j Š
C

.h � r/mC1f .aC �h/

.mC 1/Š

D Pm.h/CRm.h; �/:

This is Taylor’s formula for f about x D a. Pm.h/ is a polynomial of degree m in

the components of h. Pm.h/ is called the mth degree Taylor polynomial of f about

x D a. The term corresponding to j in the summation defining Pm is, if not zero,

a polynomial of degree exactly j in the components of h, whose coefficients are j th

order partial derivatives of f evaluated at x D a. The remainder term Rm.h; �/ is

also a polynomial in the components of h, each of whose terms if not zero has degree

exactly mC1, but its coefficients are .mC1/st order partial derivatives of f evaluated

at an indeterminate point aC �h along the line segment between a and aC h.

Sometimes it is useful to replace the explicit remainder in Taylor’s formula with a

Big-O term that is bounded by a multiple of jhjmC1 as jhj ! 0. (See Section 4.10.)

f .aCh/ D f .a/Ch�rf .a/C
.h � r/2f .a/

2Š
C� � �C

.h � r/mf .a/

mŠ
CO.jhjmC1

/:

If all partial derivatives of f are continuous, and if there exists a positive number

r such that whenever jhj < r we have for all � 2 Œ0; 1
,

lim
m!1

RmC1.h; �/ D 0;

then we can represent f .aC h/ as the sum of the Taylor series

f .aC h/ D

1X
jD0

.h � r/j f .a/

j Š
:

Remark An alternative approach is to develop Taylor’s formula with directional

derivatives. Following Section 12.7, a function g.s/ is introduced, where s � s0 is

distance, measured along a line L in direction u, from the point on L corresponding to

s D s0. As in Section 4.10, a Taylor formula for g.s/ is

g.s/ D g.s0/Cg
0
.s0/.s�s0/C

1

2
g
00
.s0/.s�s0/

2
C� � �C

1

2
g

.m/
.s0/.s�s0/

2
CO

�
js�s0j

mC1
/:

Since d=ds D u�r is the directional derivative operation in direction u, the directional

derivative extends to all orders in the Taylor expansion in s. We may choose g.s/ D

f .aC .s � s0/u/, where .s � s0/u D h. It follows that jhjn D js � s0j
n and

g.s/ D f .aCh/ D f .a/C.h�r/f .a/C
.h � r/2f .a/

2Š
� � �C

.h � r/mf .a/

mŠ
CO.jhjmC1

/

as above.
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E X A M P L E 1 Let us illustrate the above ideas with a simple special case. If f

is a function of two variables, x and y, having continuous partial

derivatives of order up to 4 in the disk .x � a/2
C .y � b/2

� r2, then for h D .h; k/

in R
2 satisfying h2

C k2 < r we have

We stress that the expression

.hD1 C kD2/j f .a; b/ means

first calculate

.hD1 C kD2/j f .x; y/ and then

evaluate the result at

.x; y/ D .a; b/.

f .aC h; b C k/ D P3.h; k/CR3.h; k; �/

D f .a; b/C .hD1 C kD2/f .a; b/C
1

2Š
.hD1 C kD2/

2
f .a; b/

C

1

3Š
.hD1 C kD2/

3
f .a; b/CR3.h; k; �/

D f .a; b/C hf1.a; b/C kf2.a; b/

C

1

2Š

�
h

2
f11.a; b/C 2hkf12.a; b/C k

2
f22.a; b/

�
C

1

3Š

�
h

3
f111.a; b/C 3h

2
kf112.a; b/C 3hk

2
f122.a; b/C k

3
f222.a; b/

�
CR3.h; k; �/;

where R3.h; k; �/ D
1

4Š
.hD1 C kD2/

4
f .aC �h; b C �k/ D O

�
.h

2
C k

2
/
2
�
:

Note that since 0 < � < 1, all the 4th-order partial derivatives of f are bounded on

the line segment from .a; b/ to .a C �h; b C �k/. This is why the remainder term is

O
�
.h2

C k2/2
�
.

As for functions of one variable, the Taylor polynomial of degree m provides the

“best” nth-degree polynomial approximation to f .x; y/ near .a; b/. For n D 1 this

approximation reduces to the tangent plane approximation

f .x; y/ � f .a; b/C f1.a; b/.x � a/C f2.a; b/.y � b/:

E X A M P L E 2 Find a second-degree polynomial approximation to the function

f .x; y/ D
p

x2
C y3 near the point .1; 2/, and use it to estimate

the value of
p

.1:02/2
C .1:97/3.

Solution For the second-degree approximation we need the values of the partial

derivatives of f up to second order at .1; 2/. We have

f .x; y/ D

p
x2
C y3

f1.x; y/ D
xp

x2
C y3

f2.x; y/ D
3y2

2
p

x2
C y3

f11.x; y/ D
y3

.x2
C y3/3=2

f12.x; y/ D
�3xy2

2.x2
C y3/3=2

f22.x; y/ D
12x2y C 3y4

4.x2
C y3/3=2

f .1; 2/ D 3

f1.1; 2/ D
1

3

f2.1; 2/ D 2

f11.1; 2/ D
8

27

f12.1; 2/ D �

2

9

f22.1; 2/ D
2

3
:

Thus,

f .1C h; 2C k/ � 3C
1

3
hC 2k C

1

2Š

�
8

27
h

2
C 2

�
�

2

9

	
hk C

2

3
k

2
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or, setting x D 1C h and y D 2C k,

f .x; y/ D 3C
1

3
.x�1/C2.y�2/C

4

27
.x�1/

2
�

2

9
.x�1/.y�2/C

1

3
.y�2/

2
:

This is the required second-degree Taylor polynomial for f near .1; 2/. Therefore,

p
.1:02/2

C .1:97/3
D f .1C 0:02; 2 � 0:03/

� 3C
1

3
.0:02/C 2.�0:03/C

4

27
.0:02/

2

�

2

9
.0:02/.�0:03/C

1

3
.�0:03/

2

� 2:947 159 3 :

(For comparison purposes the true value is 2:947 163 6 : : : The approximation is accu-

rate to 6 significant figures.)

As observed for functions of one variable, it is not usually necessary to calculate

derivatives in order to determine the coefficients in a Taylor series or Taylor poly-

nomial. It is often much easier to perform algebraic manipulations on known series.

For instance, the above example could have been done by writing f in the form

f .1C h; 2C k/ D

p
.1C h/2

C .2C k/3

D

p
9C 2hC h2

C 12k C 6k2
C k3

D 3

r
1C

2hC h2
C 12k C 6k2

C k3

9

and then applying the binomial expansion

p

1C t D 1C
1

2
t C

1

2Š

�
1

2

��
�

1

2

�
t
2
C � � �

with t D
2hC h2

C 12k C 6k2
C k3

9
to obtain the terms up to second degree in the

variables h and k.

E X A M P L E 3 Find the Taylor polynomial of degree 3 in powers of x and y for

the function f .x; y/ D ex�2y .

Solution The required Taylor polynomial will be the Taylor polynomial of degree 3

for et evaluated at t D x � 2y:

P3.x; y/ D 1C .x � 2y/C
1

2Š
.x � 2y/

2
C

1

3Š
.x � 2y/

3

D 1C x � 2y C
1

2
x

2
� 2xy C 2y

2
C

1

6
x

3
� x

2
y C 2xy

2
�

4

3
y

3
:

M Remark Maple can, of course, be used to compute multivariate Taylor polynomials

with its function mtaylor, which, depending on the Maple version, may have to be read

in from the Maple library before it can be used if it is not part of the Maple kernel.

> readlib(mtaylor):

Arguments fed to mtaylor are as follows:

(a) an expression involving the expansion variables
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(b) a list whose elements are either variable names or equations of the form

variable=value giving the coordinates of the point about which the expan-

sion is calculated. (Just naming a variable is equivalent to using the equation

variable=0.)

(c) (optionally) a positive integer m forcing the order of the computed Taylor poly-

nomial to be less than m. If m is not specified, the value of Maple’s global variable

“Order” is used. The default value is 6.

A few examples should suffice.

> mtaylor(cos(x+y^2),[x,y]);

1 �
1

2
x

2
� y

2
x C

1

24
x

4
�

1

2
y

4
C

1

6
y

2
x

3

> mtaylor(cos(x+y^2),[x=Pi,y],5);

�1C
1

2
.x � �/

2
C y

2
.x � �/ �

1

24
.x � �/

4
C

1

2
y

4

> mtaylor(g(x,y),[x=a,y=b],3);

g.a; b/CD1.g/.a; b/.x � a/CD2.g/.a; b/.y � b/C
1

2
D1;1.g/.a; b/.x � a/

2

C .x � a/D1;2.g/.a; b/.y � b/C
1

2
D2;2.g/.a; b/.y � b/

2

The function mtaylor can be a bit quirky. It has a tendency to expand linear terms;

for example, in an expansion about x D 1 and y D �2, it may rewrite terms 2C .x �

1/C 2.y C 2/ in the form 5C x C 2y.

Approximating Implicit Functions
In the previous section we saw how to determine whether an equation in several vari-

ables could be solved for one of those variables as a function of the others. Even when

such a solution is known to exist, it may not be possible to find an exact formula for it.

However, if the equation involves only smooth functions, then the solution will have a

Taylor series. We can determine at least the first several coefficients in that series and

thus obtain a useful approximation to the solution. The following example shows the

technique.

E X A M P L E 4 Show that the equation sin.x C y/ D xy C 2x has a solution of

the form y D f .x/ near x D 0 satisfying f .0/ D 0, and find the

terms up to fourth degree for the Taylor series for f .x/ in powers of x.

Solution The given equation can be written in the form F.x; y/ D 0, where

F.x; y/ D sin.x C y/ � xy � 2x:

Since F.0; 0/ D 0 and F2.0; 0/ D cos.0/ D 1 ¤ 0, the equation has a solution

y D f .x/ near x D 0 satisfying f .0/ D 0 by the Implicit Function Theorem. It is not

possible to calculate f .x/ exactly, but it will have a Maclaurin series of the form

y D f .x/ D a1x C a2x
2
C a3x

3
C a4x

4
C � � � :

(There is no constant term because f .0/ D 0.) We can substitute this series into

the given equation and keep track of terms up to degree 4 in order to calculate the

coefficients a1, a2, a3, and a4. For the left side we use the Maclaurin series for sin to
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obtain

sin.x C y/ D sin
�
.1C a1/x C a2x

2
C a3x

3
C a4x

4
C � � �

	
D .1C a1/x C a2x

2
C a3x

3
C a4x

4
C � � �

�

1

3Š

�
.1C a1/x C a2x

2
C � � �

	3

C � � �

D .1C a1/x C a2x
2
C

�
a3 �

1

6
.1C a1/

3
	
x

3

C

�
a4 �

3

6
.1C a1/

2
a2

	
x

4
C � � � :

The right side is xy C 2x D 2x C a1x
2
C a2x

3
C a3x

4
C � � �. Equating coefficients

of like powers of x, we obtain

1C a1 D 2

a2 D a1

a3 �
1

6
.1C a1/

3
D a2

a4 �
1

2
.1C a1/

2
a2 D a3

a1 D 1

a2 D 1

a3 D
7

3

a4 D
13

3
:

Thus,

y D f .x/ D x C x
2
C

7

3
x

3
C

13

3
x

4
C � � � :

(We could have obtained more terms in the series by keeping track of higher powers of

x in the substitution process.)

Remark From the series for f .x/ obtained above, we can determine the values of

the first four derivatives of f at x D 0. Remember that

ak D
f .k/.0/

kŠ
:

We have, therefore,

f
0
.0/ D a1 D 1

f
000

.0/ D 3Ša3 D 14

f
00
.0/ D 2Ša2 D 2

f
.4/

.0/ D 4Ša4 D 104:

We could have done the example by first calculating these derivatives by implicit dif-

ferentiation of the given equation and then determining the series coefficients from

them. This would have been a much more difficult way to do it. (Try it and see.)

E X E R C I S E S 12.9
In Exercises 1–6, find the Taylor series for the given function about

the indicated point.

1. f .x; y/ D
1

2C xy2
; .0; 0/

2. f .x; y/ D ln.1C x C y C xy/; .0; 0/

3. f .x; y/ D tan�1
.x C xy/; .0;�1/

4. f .x; y/ D x
2
C xy C y

3
; .1;�1/

5. f .x; y/ D e
x2Cy2

; .0; 0/

6. f .x; y/ D sin.2x C 3y/; .0; 0/

In Exercises 7–12, find Taylor polynomials of the indicated degree

for the given functions near the given point. After calculating them

by hand, try to get the same results using Maple’s mtaylor

function.
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7. f .x; y/ D
1

2C x � 2y
, degree 3, near .2; 1/

8. f .x; y/ D ln.x2
C y2/, degree 3, near .1; 0/

9. f .x; y/ D

Z xCy2

0

e
�t2

dt , degree 3, near .0; 0/

10. f .x; y/ D cos.x C sin y/, degree 4, near .0; 0/

11. f .x; y/ D
sin x

y
, degree 2, near .

�
2

; 1/

12. f .x; y/ D
1C x

1C x2
C y4

, degree 2, near .0; 0/

In Exercises 13–14, show that, for x near the indicated point

x D a, the given equation has a solution of the form y D f .x/

taking on the indicated value at that point. Find the first three

nonzero terms of the Taylor series for f .x/ in powers of x � a.

13.I x sin y D y C sin x, near x D 0, with f .0/ D 0

14.I
p

1C xy D 1C x C ln.1C y/, near x D 0, with f .0/ D 0

15.I Show that the equation x C 2y C z C e
2z
D 1 has a solution

of the form z D f .x; y/ near x D 0, y D 0, where

f .0; 0/ D 0. Find the Taylor polynomial of degree 2 for

f .x; y/ in powers of x and y.

16.I Use series methods to find the value of the partial derivative

f112.0; 0/ given that f .x; y/ D arctan .x C y/.

17.I Use series methods to evaluate

@4n

@x2n@y2n

1

1C x2
C y2

ˇ̌̌
ˇ̌
.0;0/

:

C H A P T E R R E V I E W
Key Ideas
� What do the following sentences and phrases mean?

˘ S is the graph of f .x; y/.

˘ C is a level curve of f .x; y/.

˘ lim.x;y/!.a;b/ f .x; y/ D L.

˘ f .x; y/ is continuous at .a; b/.

˘ the partial derivative .@=@x/f .x; y/

˘ the tangent plane to z D f .x; y/ at .a; b/

˘ pure second partials ˘ mixed second partials

˘ f .x; y/ is a harmonic function.

˘ L.x; y/ is the linearization of f .x; y/ at .a; b/.

˘ the differential of z D f .x; y/

˘ f .x; y/ is differentiable at .a; b/.

˘ the gradient of f .x; y/ at .a; b/

˘ the directional derivative of f .x; y/ at .a; b/ in direction v

˘ the Jacobian determinant @.x; y/=@.u; v/

� Under what conditions are two mixed partial derivatives

equal?

� State the Chain Rule for z D f .x; y/, where x D g.u; v/,

and y D h.u; v/.

� Describe the process of calculating partial derivatives of im-

plicitly defined functions.

� What is the Taylor series of f .x; y/ about .a; b/?

Review Exercises

1. Sketch some level curves of the function x C
4y2

x
.

2. Sketch some isotherms (curves of constant temperature) for the

temperature function

T D

140C 30x2
� 60x C 120y2

8C x2
� 2x C 4y2

ıC:

What is the coolest location?

G 3. Sketch some level curves of the polynomial function f .x; y/ D

x3
� 3xy2. Why do you think the graph of this function is

called a monkey saddle?

4. Let f .x; y/ D

8<
:

x3

x2
C y2

; if .x; y/ ¤ .0; 0/

0; if .x; y/ D .0; 0/.
Calculate each of the following partial derivatives or explain

why it does not exist: f1.0; 0/, f2.0; 0/, f21.0; 0/, f12.0; 0/.

5. Let f .x; y/ D
x3
� y3

x2
� y2

. Where is f .x; y/ continuous? To

what additional set of points does f .x; y/ have a continuous

extension? In particular, can f be extended to be continuous

at the origin? Can f be defined at the origin in such a way that

its first partial derivatives exist there?

6. The surface S is the graph of the function z D f .x; y/, where

f .x; y/ D ex2�2x�4y2C5.

(a) Find an equation of the tangent plane to S at the point

.1;�1; 1/.

(b) Sketch a representative sample of the level curves of the

function f .x; y/.

7. Consider the surface S with equation x2
C y2

C 4z2
D 16.

(a) Find an equation for the tangent plane to S at the point

.a; b; c/ on S.

(b) For which points .a; b; c/ on S does the tangent plane to S

at .a; b; c/ pass through the point .0; 0; 4/? Describe this

set of points geometrically.

(c) For which points .a; b; c/ on S is the tangent plane to S at

.a; b; c/ parallel to the plane x C y C 2
p

2z D 97?

8. Two variable resistors, R1 and R2, are connected in parallel so

that their combined resistance, R, is given by

1

R
D

1

R1

C

1

R2

:

If R1 D 100 ohms ˙5% and R2 D 25 ohms ˙2%, by ap-

proximately what percentage can the calculated value of their

combined resistance R D 20 ohms be in error?

9. You have measured two sides of a triangular field and the angle

between them. The side measurements are 150 m and 200 m,

each accurate to within ˙1 m. The angle measurement is 30ı,
accurate to within ˙2ı. What area do you calculate for the

field, and what is your estimate of the maximum percentage

error in this area?

10. Suppose that T .x; y; z/ D x3yCy3zCz3x gives the temper-

ature at the point .x; y; z/ in 3-space.
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(a) Calculate the directional derivative of T at .2;�1; 0/ in

the direction toward the point .1; 1; 2/.

(b) A fly is moving through space with constant speed 5. At

time t D 0 the fly crosses the surface 2x2
C 3y2

C z2
D

11 at right angles at the point .2;�1; 0/, moving in the

direction of increasing temperature. Find dT=dt at t D 0

as experienced by the fly.

11. Consider the function f .x; y; z/ D x2y C yz C z2.

(a) Find the directional derivative of f at .1;�1; 1/ in the di-

rection of the vector iC k.

(b) An ant is crawling on the plane x C y C z D 1 through

.1;�1; 1/. Suppose it crawls so as to keep f constant. In

what direction is it going as it passes through .1;�1; 1/?

(c) Another ant crawls on the plane x C y C z D 1, moving

in the direction of the greatest rate of increase of f: Find

its direction as it goes through .1;�1; 1/.

12. Let f .x; y; z/ D .x2
C z2/ sin

�xy

2
C yz

2. Let P0 be the

point .1; 1;�1/.

(a) Find the gradient of f at P0.

(b) Find the linearization L.x; y; z/ of f at P0.

(c) Find an equation for the tangent plane at P0 to the level

surface of f through P0.

(d) If a bird flies through P0 with speed 5, heading directly

toward the point .2;�1; 1/, what is the rate of change of f

as seen by the bird as it passes through P0?

(e) In what direction from P0 should the bird fly at speed 5 to

experience the greatest rate of increase of f ?

13. Verify that for any constant, k, the function

u.x; y/ D k

�
ln cos.x=k/� ln cos.y=k/

	
satisfies the minimal

surface equation

.1C u
2
x/uyy � uuxuyuxy C .1C u

2
y/uxx D 0:

14. The equations F.x; y; z/ D 0 and G.x; y; z/ D 0 can define

any two of the variables x, y, and z as functions of the remain-

ing variable. Show that

dx

dy

dy

dz

dz

dx
D 1:

15. The equations



x D u3

� uv

y D 3uv C 2v2 define u and v as functions of

x and y near the point P where .u; v; x; y/ D .�1; 2; 1; 2/.

(a) Find
@u

@x
and

@u

@y
at P:

(b) Find the approximate value of u when x D 1:02 and y D

1:97.

16. The equations



u D x

2
C y

2

v D x2
� 2xy2 define x and y implicitly as

functions of u and v for values of .x; y/ near .1; 2/ and values

of .u; v/ near .5;�7/.

(a) Find
@x

@u
and

@y

@u
at .u; v/ D .5;�7/.

(b) If z D ln.y
2
� x

2
/, find

@z

@u
at .u; v/ D .5;�7/.

Challenging Problems
1. (a) If the graph of a function f .x; y/ that is differentiable at

.a; b/ contains part of a straight line through .a; b/, show

that the line lies in the tangent plane to z D f .x; y/ at

.a; b/.

(b) If g.t/ is a differentiable function of t , describe the surface

z D yg.x=y/ and show that all its tangent planes pass

through the origin.

2. A particle moves in 3-space in such a way that its direction of

motion at any point is perpendicular to the level surface of

f .x; y; z/ D 4 � x
2
� 2y

2
C 3z

2

through that point. If the path of the particle passes through the

point .1; 1; 8/, show that it also passes through .2; 4; 1/. Does

it pass through .3; 7; 0/?

M 3. (The Laplace operator in spherical coordinates) If u.x; y; z/

has continuous second partial derivatives and

v.R; 	; �/ D u.R sin 	 cos �; R sin 	 sin �; R cos 	/;

show that

@
2
v

@R2
C

2

R

@v

@R
C

cot 	

R2

@v

@	
C

1

R2

@
2
v

@	2
C

1

R2 sin2
	

@
2
v

@�2

D

@2u

@x2
C

@2u

@y2
C

@2u

@z2
:

You can do this by hand, but it is a lot easier using computer

algebra.

4. (Spherically expanding waves) If f is a twice differentiable

function of one variable and R D

p
x2
C y2

C z2, show

that u.x; y; z; t/ D
f .R � ct/

R
satisfies the three-dimensional

wave equation

@2u

@t2
D c

2

�
@2u

@x2
C

@2u

@y2
C

@2u

@z2

�
:

What is the geometric significance of this solution as a func-

tion of increasing time t? Hint: You may want to use the re-

sult of Exercise 3. In this case v.R; 	; �/ is independent of 	

and � .
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In Exercises 25–27, find the terms up to second power in � in the

solution y of the given equation.

25. y C � sin �y D x 26. y
2
C �e

�y2

D 1C x
2

27. 2y C
�x

1C y2
D 1

28. Use perturbation methods to evaluate y with error less than

10�8 given that y C .y5=100/ D 1=2.

29.I Use perturbation methods to find approximate values for x

and y from the system x C 2y C
1

100
e
�x
D 3,

x � y C
1

100
e
�y
D 0. Calculate all terms up to second order

in � D 1=100.

13.7 Newton’s Method
A frequently encountered problem in applied mathematics is to determine, to some

desired degree of accuracy, a root (i.e., a solution r) of an equation of the form

f .r/ D 0:

Such a root is called a zero of the function f: In Section 4.2 we introduced Newton’s

Method, a simple but powerful method for determining roots of functions that are

sufficiently smooth. The method involves guessing an approximate value x0 for a root

r of the function f; and then calculating successive approximations x1, x2, : : : , using

the formula

xnC1 D xn �
f .xn/

f 0.xn/
; n D 0; 1; 2; � � � :

If the initial guess x0 is not too far from r , and if jf 0
.x/j is not too small and jf 00

.x/j is

not too large near r , then the successive approximations x1, x2, : : : will converge very

rapidly to r . Recall that each new approximation xnC1 is obtained as the x-intercept

of the tangent line drawn to the graph of f at the previous approximation, xn. The

tangent line to the graph y D f .x/ at x D xn has equation

y � f .xn/ D f
0
.xn/.x � xn/:

(See Figure 13.24.) The x-intercept, xnC1, of this line is determined by setting y D 0,

x D xnC1 in this equation, so is given by the formula in the shaded box above.

y

xxn

xnC1

r

y D f .x/

Figure 13.24 xnC1 is the x-intercept of

the tangent at xn

Newton’s Method can be extended to finding solutions of systems of m equations

in m variables. We will show here how to adapt the method to find approximations to

a solution .x; y/ of the pair of equations

f .x; y/ D 0

g.x; y/ D 0;

starting from an initial guess .x0; y0/. Under auspicious circumstances, we will ob-

serve the same rapid convergence of approximations to the root that typifies the single-

variable case.

The idea is as follows. The two surfaces z D f .x; y/ and z D g.x; y/ intersect

in a curve which itself intersects the xy-plane at the point whose coordinates are the

desired solution. If .x0; y0/ is near that point, then the tangent planes to the two

surfaces at .x0; y0/ will intersect in a straight line. This line meets the xy-plane at a

point .x1; y1/ that should be even closer to the solution point than was .x0; y0/. We

can easily determine .x1; y1/. The tangent planes to z D f .x; y/ and z D g.x; y/ at

.x0; y0/ have equations

z D f .x0; y0/C f1.x0; y0/.x � x0/C f2.x0; y0/.y � y0/;

z D g.x0; y0/C g1.x0; y0/.x � x0/C g2.x0; y0/.y � y0/:
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The line of intersection of these two planes meets the xy-plane at the point .x1; y1/

satisfying

f1.x0; y0/.x1 � x0/C f2.x0; y0/.y1 � y0/C f .x0; y0/ D 0;

g1.x0; y0/.x1 � x0/C g2.x0; y0/.y1 � y0/C g.x0; y0/ D 0:

Solving these two equations for x1 and y1, we obtain

x1 D x0 �
fg2 � f2g

f1g2 � f2g1

ˇ̌̌
ˇ
.x0;y0/

D x0 �

ˇ̌̌
ˇf f2

g g2

ˇ̌̌
ˇˇ̌̌

ˇf1 f2

g1 g2

ˇ̌̌
ˇ
ˇ̌̌
ˇ
.x0;y0/

;

y1 D y0 �
f1g � fg1

f1g2 � f2g1

ˇ̌̌
ˇ
.x0;y0/

D y0 �

ˇ̌̌
ˇ f1 f

g1 g

ˇ̌̌
ˇˇ̌̌

ˇf1 f2

g1 g2

ˇ̌̌
ˇ
ˇ̌̌
ˇ
.x0;y0/

:

Observe that the denominator in each of these expressions is the Jacobian determinant

@.f; g/=@.x; y/
ˇ̌
.x0;y0/

. This is another instance where the Jacobian is the appropriate

multivariable analogue of the derivative of a function of one variable.

Continuing in this way, we generate successive approximations .xn; yn/ according

to the formulas

xnC1 D xn �

ˇ̌̌
ˇf f2

g g2

ˇ̌̌
ˇˇ̌̌

ˇ f1 f2

g1 g2

ˇ̌̌
ˇ
ˇ̌̌
ˇ
.xn;yn/

;

ynC1 D yn �

ˇ̌̌
ˇf1 f

g1 g

ˇ̌̌
ˇˇ̌̌

ˇ f1 f2

g1 g2

ˇ̌̌
ˇ
ˇ̌̌
ˇ
.xn;yn/

:

We stop when the desired accuracy has been achieved.

E X A M P L E 1 Find the root of the system of equations x.1 C y2/ � 1 D 0,

y.1C x2/ � 2 D 0 with sufficient accuracy to ensure that the left

sides of the equations vanish to the sixth decimal place.

Solution A sketch of the graphs of the two equations (see Figure 13.25) in the

xy-plane indicates that the system has only one root near the point .0:2; 1:8/. Ap-

plication of Newton’s Method requires successive computations of the quantities

f .x; y/ D x.1C y
2
/ � 1;

g.x; y/ D y.1C x
2
/ � 2;

f1.x; y/ D 1C y
2
;

g1.x; y/ D 2xy;

f2.x; y/ D 2xy;

g2.x; y/ D 1C x
2
:

Using a calculator or computer, we can calculate successive values of .xn; yn/ starting

from x0 D 0:2, y0 D 1:8:

y

x

x.1Cy2/D1

y.1Cx2/D2

1

2

Figure 13.25 The two graphs intersect

near .0:2; 1:8/

Table 1. Root near .0:2; 1:8/

n xn yn f .xn; yn/ g.xn; yn/

0 0:200 000 1:800 000 �0:152 000 �0:128 000

1 0:216 941 1:911 349 0:009 481 0:001 303

2 0:214 827 1:911 779 �0:000 003 0:000 008

3 0:214 829 1:911 769 0:000 000 0:000 000



SECTION 13.7: Newton’s Method 801

The values in Table 1 were calculated sequentially in a spreadsheet by the method

suggested below. They were rounded for inclusion in the table, but the unrounded

values were used in subsequent calculations. If you actually use the (rounded) values

of xn and yn given in the table to calculate f .xn; yn/ and g.xn; yn/, your results may

vary slightly.

The desired approximations to the root are the xn and yn values in the last line of

the above table. Note the rapidity of convergence. However, many function evaluations

are needed for each iteration of the method. For large systems, Newton’s Method is

computationally too inefficient to be practical. Other methods requiring more iterations

but many fewer calculations per iteration are used in practice.

Implementing Newton’s Method Using a Spreadsheet
A computer spreadsheet is an ideal environment in which to calculate Newton’s Method

approximations. For a pair of equations in two unknowns such as the system in

Example 1, you can proceed as follows:

(i) In the first nine cells of the first row (A1–I1) put the labels n, x, y, f, g, f1,

f2, g1, and g2.

(ii) In cells A2–A9 put the numbers 0, 1, 2, : : : , 7.

(iii) In cells B2 and C2 put the starting values x0 and y0.

(iv) In cells D2–I2 put formulas for calculating f .x; y/, g.x; y/, : : : , g2.x; y/ in

terms of values of x and y assumed to be in B2 and C2.

(v) In cells B3 and C3 store the Newton’s Method formulas for calculating x1

and y1 in terms of the values x0 and y0, using values calculated in the second

row. For instance, cell B3 should contain the formula

+B2-(D2�I2-G2�E2)/(F2�I2-G2�H2):

(vi) Replicate the formulas in cells D2–I2 to cells D3–I3.

(vii) Replicate the formulas in cells B3–I3 to the cells B4–I9.

You can now inspect the successive approximations xn and yn in columns B and C. To

use different starting values, just replace the numbers in cells B2 and C2. To solve a

different system of (two) equations, replace the contents of cells D2–I2. You may wish

to save this spreadsheet for reuse with the exercises below or other systems you may

want to solve later.

Remark While a detailed analysis of the convergence of Newton’s Method approx-

imations is beyond the scope of this book, a few observations can be made. At each

step in the approximation process we must divide by J , the Jacobian determinant of

f and g with respect to x and y evaluated at the most recently obtained approxima-

tion. Assuming that the functions and partial derivatives involved in the formulas are

continuous, the larger the value of J at the actual solution, the more likely are the

approximations to converge to the solution, and to do so rapidly. If J vanishes (or is

very small) at the solution, the successive approximations may not converge, even if

the initial guess is quite close to the solution. Even if the first partials of f and g are

large at the solution, their Jacobian may be small if their gradients are nearly parallel

there. Thus, we cannot expect convergence to be rapid when the curves f .x; y/ D 0

and g.x; y/ D 0 intersect at a very small angle.

Newton’s Method can be applied to systems of m equations in m variables; the

formulas are the obvious generalizations of those for two functions given above.
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Find the solutions of the systems in Exercises 1–6, so that the

left-hand sides of the equations vanish up to 6 decimal places.

These can be done with the aid of a scientific calculator, but that

approach will be very time consuming. It is much easier to

program the Newton’s Method formulas on a computer to generate

the required approximations. In each case try to determine

reasonable initial guesses by sketching graphs of the equations.

M 1. y � e
x
D 0; x � sin y D 0

M 2. x
2
C y

2
� 1 D 0; y � e

x
D 0 (two solutions)

M 3. x
4
C y

2
� 16 D 0; xy � 1 D 0 (four solutions)

M 4. x
2
� xy C 2y

2
D 10; x

3
y

2
D 2 (four solutions)

M 5. y � sin x D 0; x
2
C .y C 1/

2
� 2 D 0 (two solutions)

M 6. sin x C sin y � 1 D 0; y
2
� x

3
D 0 (two solutions)

7.A Write formulas for obtaining successive Newton’s Method

f .x; y; z/ D 0; g.x; y; z/ D 0; h.x; y; z/ D 0;

starting from an initial guess .x0; y0; z0/.

M 8. Use the formulas from Exercise 7 to find the first octant

intersection point of the surfaces y2
C z2

D 3, x2
C z2

D 2,

and x2
� z D 0.

M 9. The equations y � x2
D 0 and y � x3

D 0 evidently have the

solutions x D y D 0 and x D y D 1. Try to obtain these

solutions using the two-variable form of Newton’s Method

with starting values

(a) x0 D y0 D 0:1, and (b) x0 D y0 D 0:9.

How many iterations are required to obtain 6-decimal-place

accuracy for the appropriate solution in each case?

How do you account for the difference in the behaviour of

Newton’s Method for these equations near .0; 0/ and .1; 1/?

13.8 Calculations with Maple
The calculations involved in solving systems of equations involving several variables

can be very lengthy, even if the number of variables is small. In particular, locating

critical points of a function of n variables involves solving a system of n (usually non-

linear) equations in n unknowns. In such situations the effective use of a computer

algebra system like Maple can be very helpful. In this optional (and brief) section we

present examples of how to use Maple’s “fsolve” routine to solve systems of nonlin-

ear equations and to find and classify critical points and thereby solve extreme-value

problems.

Solving Systems of Equations
Maple has a procedure called fsolve built into its kernel (no package needs to be loaded

to access it) that attempts to find floating-point real solutions to systems n equations

in n variables. (For a single polynomial equation in one variable it will try to find

all the real roots, but it may miss some.) For our purposes, an equation consists of

either a single expression f in the variables (in which case the equation is taken to be

f D 0) or else two expressions joined by an equal sign, as in f D g. The procedure

takes two or three arguments. The first is a set of n equations, enclosed in braces and

separated by commas. The second argument is a set (also enclosed in braces) listing

the n variables for which the equations are to be solved. (The number of variables in

the equations must equal the number of equations.) The elements of the second set

may consist of equations of the form “variable = initial guess,” where the initial guess

is a number we have reason to believe is close to the actual solution. It may not always

be possible to make a good initial guess at the values of the variables, so, if we like,

we can include a third argument specifing intervals of values of the variables in which

to search for a solution. For example, to find a solution to the system x2
C y3

D 3,

x sin.y/ � y cos.x/ D 0 near .1; 2/, we could try

> Digits := 6:

> fsolve({x^2+y^2=3, x*sin(y)-y*cos(x)}, {x=1, y=2});

fx D 0:909510; y D 1:47404g


