$[>$ restart;
$[>$ with (plots) :
$>f:=\ln \left(x^{2}+y^{3}\right) ;$

$$
\begin{equation*}
f:=\ln \left(y^{3}+x^{2}\right) \tag{1}
\end{equation*}
$$

$>r:=2$;

$$
\begin{equation*}
r:=2 \tag{2}
\end{equation*}
$$

$>$ \#Here is the Taylor polynomial centered at $(x, y)=(1,2)$. Computed by hand or with the maple command
$>T 2 f:=\operatorname{mtaylor}(f,[x=1, y=0], 3)$;

$$
\begin{equation*}
T 2 f:=-(x-1)^{2}+2 x-2 \tag{3}
\end{equation*}
$$

$\left[>\operatorname{plot} 3 d(f, x=-r . . r, y=-r . . r\right.$, color $=b l u e) ; \# a s$ this has an asyptotle along the line $-x^{2}$ $=y^{3}$ the plot has trouble

$>$ fplot: $=\operatorname{plot} 3 \mathrm{~d}\left(\mathrm{f}, \mathrm{x}=-\mathrm{r} . . \mathrm{r}, \mathrm{y}=-\left(\mathrm{x}^{\wedge}(2)\right)^{\wedge}(1 / 3)+0.1 . . \mathrm{r}\right.$, color $=$ blue $)$; \#plotting over a domain starting just away from the curce $y^{\wedge} 3=-x^{\wedge} 2$

>> Tplot $:=\operatorname{plot} 3 d(T 2 f, x=-r . . r, y=-r . . r$, color $=r e d)$;

$>P:=$ pointplot3d $([1,0,0]$, symbol $=$ solidcircle, symbolsize $=40$, color $=$ yellow $)$:
$>$ display ([fplot, Tplot, P]);

"> \#Zooming in at point of approximation.
$\stackrel{>}{ }$ fplot $2:=\operatorname{plot} 3 d(f, x=0.5 . .1 .5, y=-0.4 . .1$, color $=$ blue $)$:
\gg Tplot $2:=\operatorname{plot} 3 d(T 2 f, x=0.5 . .1 .5, y=-0.4 . .1$, color $=$ red $)$:
$>\operatorname{display}([f p l o t 2$, Tplot2, P]);

