$[>$ restart $:$ with(LinearAlgebra) : with(VectorCalculus) : with(plots) :
$>f:=x^{2}-\exp (x)+\sin (x)$;

$$
\begin{equation*}
f:=x^{2}-\mathrm{e}^{x}+\sin (x) \tag{1}
\end{equation*}
$$

[We want to find the solution(s) of $\mathrm{f}(\mathrm{x})=0$. Maple can do this for us.
$>$ xint $:=f$ solve $(f=0, x)$;

$$
\begin{equation*}
\text { xint }:=-1.106742853 \tag{2}
\end{equation*}
$$

[> ptp $:=$ pointplot $([x i n t, 0]$, color $=$ gold, symbolsize $=40$, symbol $=$ solidcircle $)$:
$>P l:=\operatorname{plot}(f, x=-2 . .2$, size $=[600,600]$, scaling $=$ constrained $)$:
$>\operatorname{display}(p t p, P l)$;

ENow let's find this intercept using Newton's method.
[$>x[0]:=1$;

$$
\begin{equation*}
x_{0}:=1 \tag{3}
\end{equation*}
$$

$\left\lceil>\right.$ for i from 0 to 7 do $x[i+1]:=\operatorname{evalf}\left(x[i]-\frac{\operatorname{subs}(x=x[i], f)}{\operatorname{subs}(x=x[i], \operatorname{diff}(f, x))}\right)$ end;

$$
\begin{align*}
& x_{1}:=-3.926470376 \\
& x_{2}:=-2.049552680 \\
& x_{3}:=-1.370389794 \\
& x_{4}:=-1.140046777 \\
& x_{5}:=-1.107398620 \\
& x_{6}:=-1.106743115 \\
& x_{7}:=-1.106742853 \\
& x_{8}:=-1.106742853 \tag{4}
\end{align*}
$$

[We see that $\mathrm{x} _8=$ xint
ENow for a 2 variable exmaple.
$>g:=\mathrm{x} \cdot\left(1+y^{2}\right)-1 ; \mathrm{h}:=\mathrm{y} \cdot\left(1+x^{2}\right)-2$;

$$
\begin{align*}
& g:=x\left(y^{2}+1\right)-1 \\
& h:=y\left(x^{2}+1\right)-2 \tag{5}
\end{align*}
$$

[We want to find the solution(s) of $[f(x, y), g(x, y)]=[0,0]$. Geometrically this is the intersection of the three surfaces $\mathrm{z}=0, \mathrm{z}=\mathrm{f}(\mathrm{x}, \mathrm{y})$ and $\mathrm{z}=\mathrm{g}(\mathrm{x}, \mathrm{y})$.
$>a:=\operatorname{plot} 3 d(g, x=-2 . .2, y=-1 . .3$, color $=$ green, style $=\operatorname{surface}): b:=\operatorname{plot} 3 d(h, x=-2 . .2, y=$ $-1 . .3$, color $=$ navy, style $=\operatorname{surface}$, transparency $=0): \operatorname{display}([a, b]) ;$

[> $z p:=\operatorname{plot} 3 d(0, x=-2 . .2, y=-1 . .3$, color $=$ red, style $=$ wireframe $):$

$$
\mid>\operatorname{display}(a, z p) ; \operatorname{display}(b, z p) ; \operatorname{display}([a, b], z p)
$$

[Apply Newton's Method.
$>F:=\operatorname{Matrix}(2,1,[g, h])$;

$$
F:=\left[\begin{array}{l}
x\left(y^{2}+1\right)-1 \tag{6}\\
y\left(x^{2}+1\right)-2
\end{array}\right]
$$

$\overline{=}>J:=\operatorname{Jacobian}([g, h],[x, y]) ;$

$$
J:=\left[\begin{array}{cc}
y^{2}+1 & 2 x y \tag{7}\\
2 x y & x^{2}+1
\end{array}\right]
$$

$>$ Jinv $:=$ MatrixInverse (J);

$$
\operatorname{Jinv}:=\left[\begin{array}{cc}
-\frac{x^{2}+1}{3 x^{2} y^{2}-x^{2}-y^{2}-1} & \frac{2 x y}{3 x^{2} y^{2}-x^{2}-y^{2}-1} \tag{8}\\
\frac{2 x y}{3 x^{2} y^{2}-x^{2}-y^{2}-1} & -\frac{y^{2}+1}{3 x^{2} y^{2}-x^{2}-y^{2}-1}
\end{array}\right]
$$

$$
\begin{align*}
& x_{0}:=3 \\
& y_{0}:=2 \tag{9}
\end{align*}
$$

$>$ for i from 0 to 5 do $A:=\operatorname{Matrix}(2,1,[x[i], y[i]])-\operatorname{subs}(x=x[i], y=y[i], \operatorname{Jinv}) . \operatorname{subs}(x$ $=x[i], y=y[i], F) ; x[i+1]:=\operatorname{evalf}(A[1,1]) ; y[i+1]:=\operatorname{evalf}(A[2,1]) ;$ end;

$$
\begin{gathered}
A:=\left[\begin{array}{c}
\frac{103}{47} \\
\frac{55}{47}
\end{array}\right] \\
x_{1}:=2.191489362 \\
y_{1}:=1.170212766 \\
A:=\left[\begin{array}{c}
2.17221898774593 \\
0.361704894993136
\end{array}\right] \\
x_{2}:=2.17221898774593 \\
y_{2}:=0.361704894993136 \\
A:=\left[\begin{array}{c}
0.115617630778300 \\
0.914876325299808
\end{array}\right] \\
x_{3}:=0.115617630778300 \\
y_{3}:=0.914876325299808 \\
A:=\left[\begin{array}{c}
0.429997962360412 \\
1.90798741626009
\end{array}\right]
\end{gathered}
$$

$$
\begin{gather*}
x_{4}:=0.429997962360412 \\
y_{4}:=1.90798741626009 \\
A:=\left[\begin{array}{c}
0.162170472277894 \\
2.05879939129760
\end{array}\right] \\
x_{5}:=0.162170472277894 \\
y_{5}:=2.05879939129760 \\
A:=\left[\begin{array}{c}
0.208782125988151 \\
1.91842185216502
\end{array}\right] \\
x_{6}:=0.208782125988151 \\
y_{6}:=1.91842185216502 \tag{10}
\end{gather*}
$$

$\overline{L>} p:=\operatorname{pointplot} 3 d([x[6], y[6]$, subs $(x=x[6], y=y[6], h)]$, color $=$ coral, symbol $=$ solidcircle $):$ $>\operatorname{display}([a, b, z p, p]$, symbolsize $=40)$;

LHere are plots of the intersection of the surfaces with the xy-plane.

$[>$ xyp $:=\operatorname{implicitplot}([g=0, h=0], x=-2 . .2, y=-1 . .3$, grid $=[100,100]$, color $=[$ green, navy $]$,
thickness $=3):$
$>$ pp $:=\operatorname{pointplot}([x[6], y[6]]$, color $=$ gold, symbolsize $=30$, symbol $=$ solidcircle $):$
$>$ display $([x y p, p p]$, size $=[600,600]$, scaling $=$ constrained $) ;$

$\stackrel{L>}{\square>}$

