$g:=\cos (x)$
$T g:=1-\frac{x^{2}}{2}$
${ }^{>}>\operatorname{plot}([g, T g], x=-9 . .9, y=-3 . .2$, color $=[$ blue, purple $]$, thickness $=4)$;

\leftrightarrows Now a 2 - variable example: Example 2, Adams and Essex Section 12.9
$>f:=\operatorname{sqrt}\left(x^{2}+y^{3}\right)$;

$$
\begin{equation*}
f:=\sqrt{y^{3}+x^{2}} \tag{2}
\end{equation*}
$$

[> Here is the Taylor polynomial centered at $(x, y)=(1,2)$. Computed by hand or with the maple command
[> T2f $:=\operatorname{mtaylor}(f,[x=1, y=2], 3)$;

$$
\begin{equation*}
T 2 f:=-\frac{4}{3}+2 y+\frac{x}{3}+\frac{4(x-1)^{2}}{27}-\frac{2(y-2)(x-1)}{9}+\frac{(y-2)^{2}}{3} \tag{3}
\end{equation*}
$$

$\lceil\operatorname{plot} 3 d(f, x=-4 . .4, y=-4 . .4$, color $=$ blue $)$;

[> Looks better if plotted over its domain with a 0.01 fudge facter to stop the jagged edges.
$>$ fplot $:=\operatorname{plot} 3 d\left(f, x=-4 . .4, y=-\left(\left(x^{2}\right)^{\frac{1}{3}}\right)+0.01 . .4\right.$, color $=$ blue $)$;

$\overline{>}$ Tplot $:=\operatorname{plot} 3 d($ Tf, $x=-10 . .4, y=-10 . .4$, color $=$ red $)$;

¢ $>P:=$ pointplot $3 d([1,2,3]$, symbol $=$ solidcircle, symbolsize $=40$, color $=$ yellow $)$:
$>\operatorname{display}([$ fplot, Tplot, P]);

$\stackrel{5}{5}$ zooming in at point of approximation.
$>$
$>$ fplot $2:=\operatorname{plot} 3 d(f, x=0 . .2, y=1 . .3$, color $=$ blue $)$:
\rightarrow Tplot $2:=\operatorname{plot} 3 d(T f, x=0 . .2, y=1 . .3$, color $=$ red $)$:
$>\operatorname{display}([$ fplot2, Tplot2, P]);

