ECON-C4100 - Capstone: Econometrics I Lecture 3: Univariate regression

Otto Toivanen

- At the end of lectures 3 5, you
- 1 understand what one learns from a (univariate) regression analysis.
- 2 understand how to carry out a regression analysis.
- 3 appreciate the assumptions made in standard regression analysis.
- 4 are aware of the most common pitfalls in regression analysis.

- At the end of lectures 3 5, you have an idea how to approach answering question such as the following:
- Does having a PhD (in science) help to innovate?
- Is website design A better than design B in terms of sales? By how much?
- Are branded pharmaceuticals more expensive than generic products?
- Are promotions of substitute products of the same firm at the same time effective?

- Q1: what is the object you want to model ("explain")?
- Let's call this Y.
- Q2: what is the object whose effect on Y you want to understand?
- Let's call this X.

- Where do these (decisions) come from?
- Theory.
- What is theory?
 - Mathematical model.
 - Conseptualization of existing **qualitative** knowledge.
 - Conseptualization of existing **quantitative** knowledge.

Variables

- **1** *income* = income in euros
- **2** age = age in years
- We use the same FLEED data as in lecture 2, i.e., it comes from one year.
- These data are an example of **cross-section** data where each observation unit is observed only once and there is no (meaningful) time (second) dimension to the data besides the individuals.

Descriptive statistics					
variable	mean	sd	median		
income	23 297	17 163	21 000		
age	41.87	16.29	43		

• For brevity, I do not show conditional descriptive statistics as we have already seen them in lecture 2.

$$Y = f(X) \tag{1}$$

- What do we know about f(X)?
- How can we learn about it?

$$corr(Y, X) = \frac{cov(Y, X)}{\sqrt{var(X)}\sqrt{var(Y)}}$$

(2)

$$Y = \beta_0 + \beta_1 X \tag{3}$$

- This is the so called population regression line. (**populaatio** regressio).
- Y is called the **dependent variable** or **endogenous variable** (vastemuuttuja).
- X is called the **independent** or the **exogenous variable** or **regressor** (selittävä muuttuja).
- β_0 , β_1 are the **parameters** of the model ((malli)parametrit).

$$Y = \beta_0 + \beta_1 X \tag{4}$$

- β_0 , β_1 interpretation?
- Intercept, slope.
- What is now assumed about what can influence Y?

$$Y = f(X, u) = \beta_0 + \beta_1 X + u \tag{5}$$

• *u* is called the **error term** or **residual** (**virhetermi**). Why such a name?

$$Y = f(X, u) = \beta_0 + \beta_1 X + u \tag{5}$$

- *u* is called the **error term** or **residual** (**virhetermi**). Why such a name?
- 1 It shows how much our model misses in terms of determining Y.

$$Y = f(X, u) = \beta_0 + \beta_1 X + u \tag{5}$$

- *u* is called the **error term** or **residual** (**virhetermi**). Why such a name?
- 1 It shows how much our model misses in terms of determining Y.
- **2** It measures those things that 1) affect Y and 2) we don't observe.

- How large should the error be on average?
- Zero. Why?
 - $\rightarrow E[u|X] = 0$

Stata code

```
1 scatter income age if year == 15 & income != . , ///
2 xtitle("age") ///
3 ytitle("income") ///
4 graphregion(fcolor(white))
```

How to get β_0 , β_1 ?

How to get β_0 , β_1 ?

How to get β_0 , β_1 ?

How to get β_0 , β_1 : OLS

• Ordinary Least Squares.

$$\boldsymbol{Y} = \begin{pmatrix} Y_1 \\ Y_2 \\ \cdot \\ \cdot \\ \cdot \\ Y_n \end{pmatrix}, \quad \boldsymbol{U} = \begin{pmatrix} u_1 \\ u_2 \\ \cdot \\ \cdot \\ \cdot \\ u_n \end{pmatrix}, \quad \boldsymbol{X} = \begin{pmatrix} 1 & X_1 \\ 1 & X_2 \\ \cdot \\ \cdot \\ \cdot \\ 1 & X_n \end{pmatrix} = \begin{pmatrix} \boldsymbol{X}'_1 \\ \boldsymbol{X}'_2 \\ \cdot \\ \cdot \\ \cdot \\ \boldsymbol{X}'_n \end{pmatrix},$$
and $\boldsymbol{\beta} = \begin{pmatrix} \beta_0 \\ \beta_1 \end{pmatrix}.$

(6)

How to get β_0 , β_1 : OLS

• Ordinary Least Squares.

$$Y_{i} = \beta_{0} + \beta_{1}X_{i} + u = X_{i}^{\prime}\beta + u_{i}$$

$$Y = X\beta + U$$
(8)
(9)

$$\mathbb{E}[Y - (\beta_0 + \beta_1 X)] = \mathbb{E}[u|X] = \mathbb{E}[Y - X_i'\beta] = 0$$

$$\mathbb{E}[Y - X\beta] = \mathbb{E}[U|X] = 0$$
(10)

(7)

$$min_{\beta_0,\beta_1} \sum_{i=1}^{n} [Y_i - (\beta_0 + \beta_1 X_i)]^2$$

$$min_{\beta} (\boldsymbol{Y} - \boldsymbol{X}\beta)' (\boldsymbol{Y} - \boldsymbol{X}\beta)$$
(12)

• Suggestion: Do the derivation w/out using matrix algebra. It helps you understand the formula for β_1 .

• Notice link to estimation of mean and set $\beta_1 = 0$.

$$\sum_{i=1}^{n} [Y - (\beta_0)]^2$$
(13)

• Now $\beta_0 = m = \mathbb{E}[\mu_Y]$.

$$\hat{\beta}_1 = \frac{\frac{1}{n} \sum_{i=1}^n XY - \bar{X}\bar{Y}}{\frac{1}{n} \sum_{i=1}^n XX - \bar{X}\bar{X}} = \frac{\operatorname{cov}(Y, X)}{\operatorname{var}(X)} = \frac{\operatorname{cov}(Y, X)}{\sqrt{\operatorname{var}(X)}\sqrt{\operatorname{var}(X)}}$$
(14)

Note: compare to the formula for correlation.

$$\hat{\beta}_{0} = \bar{Y} - \frac{\frac{1}{n} \sum_{i=1}^{n} XY - \bar{X}\bar{Y}}{\frac{1}{n} \sum_{i=1}^{n} XX - \bar{X}\bar{X}} \bar{X} = \bar{Y} - \hat{\beta}_{1}\bar{X}$$
(15)

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}'\boldsymbol{X})^{-1}(\boldsymbol{X}'\boldsymbol{Y})$$
(16)

Predicted value (ennuste): $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$ or $\hat{Y} = \hat{\beta} X$. Prediction error (ennustevirhe): $\hat{u}_i = Y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i)$ or $\hat{U} = Y - \hat{\beta} X$. • So let's run the regression:

Stata code

```
label var age "Age"
   reg income age if year == 15 & income != .
2
   estimates store lin est
   estimates table lin_est, b(\%7.3f) se(\%7.3f) p(\%7.3f) stat(r2)
4
5
   esttab, scalar(F) r2 label ///
6
     title(Regression of income on age) ///
7
     nonumbers mtitles ("Model A") ///
8
     addnote("Data: teaching FLEED, Statistics Finland")
9
   esttab using income_age.tex, scalar(F) r2 label replace booktabs ///
10
      alignment (D\{.\}\{.\}\{-1\}) width (0.8 \setminus hsize)
      title (Income and age \label {tab1})
11
```

. reg income age if year == 15 & income != .

Source	SS	df	MS	Number	of obs	=	5,973
Model Residual	1.3441e+11 1.6249e+12	1 5,971	1.3441e+11 272128687	- F(1, 5 Prob > R-squa - Adj R-	971) F red squared	= = =	493.91 0.0000 0.0764 0.0762
Total	1.7593e+12	5,972	294589468	Root M	SE	=	16496
income	Coef.	Std. Err.	t	P> t	[95% Co	onf.	Interval]
age _ ^{cons}	296.7539 10654.7	13.35276 607.5672	22.22 17.54	0.000 0.000	270.57 9463.64	76 14	322.9301 11845.75

. reg income age if year == 15 & income != .

Source	SS	df	MS	Number of obs	=	5,973
				F(1, 5971)	=	493.91
Model	1.3441e+11	1	1.3441e+11	Prob > F	=	0.0000
Residual	1.6249e+12	5,971	272128687	R-squared	=	0.0764
	· · · · · · · · · · · · · · · · · · ·			Adj R-squared	=	0.0762
Total	1.7593e+12	5,972	294589468	Root MSE	=	16496

income	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
age	296.7539	13.35276	22.22	0.000	270.5776	322.9301
_cons	10654.7	607.5672	17.54		9463.644	11845.75

Standard errors etc., statistical significance of individual parameters

. reg income age if year == 15 & income != .

	5,973	=	er of obs	Numb	MS	df	SS	Source
	493.91 0.0000 0.0764	=	5971) > F uared	— F(1, L1 Prob 37 R - sc	1.3441e+11 27212868	1 5,971	1.3441e+11 1.6249e+12	Model Residual
	0.0762 16496	=	R-squared MSE	— Adj 58 Root	294589468	5,972	1.7593e+12	Total
-	Interval]	nf.	[95% Coi	P> t	t	Std. Err.	Coef.	income
		c	270 577	0.000	22.22	13.35276	296.7539	age

ECON-C4100

. reg income age if year == 15 & income != .

Source Model Residual	SS 1.3441e+11 1.6249e+12	df 1 5,971	MS 1.3441e+11 272128687	Number of ob F(1, 5971) Prob > F R-squared Adj R-square	s = = = d =	5,973 493.91 0.0000 0.0764 0.0762 16496	
income	Coef. 296.7539 10654.7	Std. Err. 13.35276 607.5672	294389488 t F 22.22 (17.54 (<pre>>>It [95% 0.000 270.5 0.000 9463.</pre>	- Conf. 776 644	Interval] 322.9301 11845.75	

. estimates store lin_est

. estimates table lin_est, b(%7.3f) se(%7.3f) p(%7.3f) stat(r2

Variable	lin_est
age _cons	296.754 13.353 0.000 1.1e+04 607.567 0.000
r2	0.076

legend: b/se/p

A LATEXversion of the same table

Table: Income and age

	(1) income
Age	296.8*** (22.22)
Constant	10654.7*** (17.54)
Observations R ² F	5973 0.076 493.9

t statistics in parentheses

*
$$p < 0.05$$
, ** $p < 0.01$, *** $p < 0.001$

What are these numbers?

• What do β_0 and β_1 mean?

- $\beta_0 =$ the intercept.
- $\beta_1 =$ the slope of the regression line.

$$\mathbb{E}[Y|X=x] = \beta_0 + \beta_1 x \tag{17}$$

- Regression allows you to study the (changes in) the conditional mean.
- Thus, β_1 is the derivative of Y wrt. X.

What are these numbers?

• Why are the two conditional mean presentations in the figure different?

What are these numbers?

- Why are the two conditional mean presentations in the figure different?
- The regression "forces" the relationship to be linear, i.e., we chose the relationship to be linear.

Toivanen

- How good is the model's fit? How much does it explain?
- Of what..? Answer: of the variation in Y.

Explained sum of squares (ESS): $\sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2$. Total sum of squares (TSS): $\sum_{i=1}^{n} (Y_i - \bar{Y})^2$. Residual sum of squares (RSS): $\sum_{i=1}^{n} (u_i)^2$.

$$R^2 = \frac{ESS}{TSS} = 1 - \frac{RSS}{TSS} \in [0, 1]$$

$$\tag{18}$$

- R² "close to one" = "almost all" variation in Y captured by the model (= variation in X).
- R² "close to zero" = "almost no" variation in Y captured by the model (= variation in X).
- Note #1: R^2 has not effect on the interpretation of β .
- Note #2: R^2 will have an effect on whether we reject the model or not, on statistical grounds.