ECON-C4100 - Capstone: Econometrics I
 Lecture 3: Univariate regression

Otto Toivanen

Learning outcomes

- At the end of lectures 3-5, you

1 understand what one learns from a (univariate) regression analysis.
2 understand how to carry out a regression analysis.
3 appreciate the assumptions made in standard regression analysis.
4 are aware of the most common pitfalls in regression analysis.

The effect of X on Y

- At the end of lectures 3-5, you have an idea how to approach answering question such as the following:
- Does having a PhD (in science) help to innovate?
- Is website design A better than design B in terms of sales? By how much?
- Are branded pharmaceuticals more expensive than generic products?
- Are promotions of substitute products of the same firm at the same time effective?

Modeling

- Q1: what is the object you want to model ("explain")?
- Let's call this Y.
- Q2: what is the object whose effect on Y you want to understand?
- Let's call this X.

Modeling

- Where do these (decisions) come from?
- Theory.
- What is theory?
- Mathematical model.
- Conseptualization of existing qualitative knowledge.
- Conseptualization of existing quantitative knowledge.

Let's look at the relationship between income and age

- Variables
(1) income $=$ income in euros
(2) age $=$ age in years
- We use the same FLEED data as in lecture 2, i.e., it comes from one year.
- These data are an example of cross-section data where each observation unit is observed only once and there is no (meaningful) time (second) dimension to the data besides the individuals.

Descriptive statistics

Descriptive statistics			
variable	mean	sd	median
income	23297	17163	21000
age	41.87	16.29	43

- For brevity, I do not show conditional descriptive statistics as we have already seen them in lecture 2.

Modeling the relationship between income and age

$$
\begin{equation*}
Y=f(X) \tag{1}
\end{equation*}
$$

- What do we know about $f(X)$?
- How can we learn about it?

Quick aside - correlation

$$
\begin{equation*}
\operatorname{corr}(Y, X)=\frac{\operatorname{cov}(Y, X)}{\sqrt{\operatorname{var}(X)} \sqrt{\operatorname{var}(Y)}} \tag{2}
\end{equation*}
$$

More structure - linear

$$
\begin{equation*}
Y=\beta_{0}+\beta_{1} X \tag{3}
\end{equation*}
$$

- This is the so called population regression line. (populaatio regressio).
- Y is called the dependent variable or endogenous variable (vastemuuttuja).
- X is called the independent or the exogenous variable or regressor (selittävä muuttuja).
- β_{0}, β_{1} are the parameters of the model ((malli) parametrit).

More structure - linear

$$
\begin{equation*}
Y=\beta_{0}+\beta_{1} X \tag{4}
\end{equation*}
$$

- β_{0}, β_{1} interpretation?
- Intercept, slope.
- What is now assumed about what can influence Y ?

How to allow for other factors?

$$
\begin{equation*}
Y=f(X, u)=\beta_{0}+\beta_{1} X+u \tag{5}
\end{equation*}
$$

- u is called the error term or residual (virhetermi). Why such a name?

How to allow for other factors?

$$
\begin{equation*}
Y=f(X, u)=\beta_{0}+\beta_{1} X+u \tag{5}
\end{equation*}
$$

- u is called the error term or residual (virhetermi). Why such a name?
(1) It shows how much our model misses in terms of determining Y.

How to allow for other factors?

$$
\begin{equation*}
Y=f(X, u)=\beta_{0}+\beta_{1} X+u \tag{5}
\end{equation*}
$$

- u is called the error term or residual (virhetermi). Why such a name?
(1) It shows how much our model misses in terms of determining Y.
(2) It measures those things that 1) affect Y and 2) we don't observe.

What is known about u ?

- How large should the error be on average?
- Zero. Why?
$\rightarrow E[u \mid X]=0$

How to get β_{0}, β_{1} ?

Stata code

```
scatter income age if year = 15 & income != . , ///
    xtitle("age") ///
    ytitle("income") ///
    graphregion(fcolor(white))
```


How to get β_{0}, β_{1} ?

How to get β_{0}, β_{1} ?

How to get β_{0}, β_{1} ?

How to get β_{0}, β_{1} : OLS

- Ordinary Least Squares.

$$
\boldsymbol{Y}=\left(\begin{array}{c}
Y_{1} \\
Y_{2} \\
\cdot \\
\cdot \\
\cdot \\
Y_{n}
\end{array}\right), \quad \boldsymbol{U}=\left(\begin{array}{c}
u_{1} \\
u_{2} \\
\cdot \\
\cdot \\
\cdot \\
u_{n}
\end{array}\right), \quad \boldsymbol{X}=\left(\begin{array}{cc}
1 & X_{1} \\
1 & X_{2} \\
\cdot & \\
\cdot & \\
\cdot & \\
1 & X_{n}
\end{array}\right)=\left(\begin{array}{c}
\boldsymbol{X}_{1}^{\prime} \\
\boldsymbol{X}_{2}^{\prime} \\
\cdot \\
\cdot \\
\cdot \\
\boldsymbol{X}_{\boldsymbol{n}}^{\prime}
\end{array}\right)
$$

$$
\text { and } \boldsymbol{\beta}=\binom{\beta_{0}}{\beta_{1}}
$$

How to get β_{0}, β_{1} : OLS

- Ordinary Least Squares.

$$
\begin{gather*}
Y_{i}=\beta_{0}+\beta_{1} X_{i}+u=\boldsymbol{X}_{\boldsymbol{i}}^{\prime} \boldsymbol{\beta}+u_{i} \tag{7}\\
\boldsymbol{Y}=\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{U} \tag{8}
\end{gather*}
$$

$$
\begin{equation*}
\mathbb{E}\left[Y-\left(\beta_{0}+\beta_{1} X\right)\right]=\mathbb{E}[u \mid X]=\mathbb{E}\left[Y-\boldsymbol{X}_{\boldsymbol{i}}^{\prime} \boldsymbol{\beta}\right]=0 \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
\mathbb{E}[\boldsymbol{Y}-\boldsymbol{X} \boldsymbol{\beta}]=\mathbb{E}[\boldsymbol{U} \mid \boldsymbol{X}]=0 \tag{10}
\end{equation*}
$$

How to get β_{0}, β_{1} : OLS

$$
\begin{gather*}
\min _{\beta_{0}, \beta_{1}} \sum_{i=1}^{n}\left[Y_{i}-\left(\beta_{0}+\beta_{1} X_{i}\right)\right]^{2} \tag{11}\\
\min _{\boldsymbol{\beta}}(\boldsymbol{Y}-\boldsymbol{X} \boldsymbol{\beta})^{\prime}(\boldsymbol{Y}-\boldsymbol{X} \boldsymbol{\beta}) \tag{12}
\end{gather*}
$$

- Suggestion: Do the derivation w/out using matrix algebra. It helps you understand the formula for β_{1}.

How to get β_{0}, β_{1} : OLS

- Notice link to estimation of mean and set $\beta_{1}=0$.

$$
\begin{equation*}
\sum_{i=1}^{n}\left[Y-\left(\beta_{0}\right)\right]^{2} \tag{13}
\end{equation*}
$$

- Now $\beta_{0}=m=\mathbb{E}\left[\mu_{Y}\right]$.

How to get β_{0}, β_{1} : OLS

$$
\begin{equation*}
\hat{\beta}_{1}=\frac{\frac{1}{n} \sum_{i=1}^{n} X Y-\bar{X} \bar{Y}}{\frac{1}{n} \sum_{i=1}^{n} X X-\bar{X} \bar{X}}=\frac{\operatorname{cov}(Y, X)}{\operatorname{var}(X)}=\frac{\operatorname{cov}(Y, X)}{\sqrt{\operatorname{var}(X)} \sqrt{\operatorname{var}(X)}} \tag{14}
\end{equation*}
$$

Note: compare to the formula for correlation.

$$
\begin{gather*}
\hat{\beta_{0}}=\bar{Y}-\frac{\frac{1}{n} \sum_{i=1}^{n} X Y-\bar{X} \bar{Y}}{\frac{1}{n} \sum_{i=1}^{n} X X-\bar{X} \bar{X}}=\bar{Y}-\hat{\beta}_{1} \bar{X} \tag{15}\\
\hat{\boldsymbol{\beta}}=\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1}\left(\boldsymbol{X}^{\prime} \boldsymbol{Y}\right) \tag{16}
\end{gather*}
$$

How to get β_{0}, β_{1} : OLS

Predicted value (ennuste): $\hat{Y}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{i}$ or $\hat{\boldsymbol{Y}}=\hat{\boldsymbol{\beta}} \boldsymbol{X}$.
Prediction error (ennustevirhe): $\hat{u}_{i}=Y_{i}-\left(\hat{\beta_{0}}+\hat{\beta}_{1} x_{i}\right)$ or $\hat{\boldsymbol{U}}=\boldsymbol{Y}-\hat{\boldsymbol{\beta}} \boldsymbol{X}$.

Back to income and age...

- So let's run the regression:

Stata code

```
label var age "Age"
reg income age if year = 15 & income !=
estimates store lin_est
estimates table lin_est, b(%7.3f) se(%7.3f) p(%7.3f) stat(r2)
esttab, scalar(F) r2 label ///
    title(Regression of income on age) ///
    nonumbers mtitles("Model A") ///
    addnote("Data: teaching FLEED, Statistics Finland")
esttab using income_age.tex, scalar(F) r2 label replace booktabs ///
    alignment(D{.}{.}{-1}) width(0.8\hsize) ///
    title(Income and age\label{tab1})
```


Regular Stata output table

Source	SS	df	MS	Number of obs F(1, 5971) Prob > F R-squared Adj R-squared Root MSE		$=$	$\begin{array}{r} 5,973 \\ 493.91 \\ 0.0000 \\ 0.0764 \\ 0.0762 \\ 16496 \end{array}$	
Model	$1.3441 e+11$	1	$1.3441 \mathrm{e}+11$					
Residual	$1.6249 \mathrm{e}+12$	5,971	272128687					
Total	$1.7593 \mathrm{e}+12$	5,972	294589468					
income	Coef.	Std. Err.	t	$P>\|t\|$	[95\% Conf.		Interval]	
age	296.7539	13.35276	22.22	$\begin{aligned} & 0.000 \\ & 0.000 \end{aligned}$	$\begin{aligned} & 270.5776 \\ & 9463.644 \end{aligned}$		$\begin{aligned} & 322.9301 \\ & 11845.75 \end{aligned}$	
_cons	10654.7	607.5672	17.54					

Coefficients / economic significance

. reg income age if year $==15$ \& income $!=$.

Source	SS	df	MS	Number of obs	$=$	5,973
				F (1, 5971)	$=$	493.91
Model	$1.3441 \mathrm{e}+11$	1	$1.3441 e+11$	Prob > F	=	0.0000
Residual	$1.6249 \mathrm{e}+12$	5,971	272128687	R -squared	=	0.0764
				Adj R-squared	=	0.0762
Total	$1.7593 \mathrm{e}+12$	5,972	294589468	Root MSE	$=$	16496

income		Std. Err	t	$P>\|t\|$	[95\% Con	Interval]
age	296.7539	13.35276	22.22	0.000	270.5776	322.9301
_cons	10654.7	607.5672	17.54	0.000	9463.644	11845.75

Standard errors etc., statistical significance of individual parameters

. reg income age if year $==15$ \& income $!=$.

Source	SS	df	MS	Number of obs		$=$	5,973
					971)	=	493.91
Model	$1.3441 \mathrm{e}+11$	1	$1.3441 e+11$	Pr	F	$=$	0.0000
Residual	$1.6249 \mathrm{e}+12$	5,971	272128687	R-		=	0.0764
				Ad	squared	$=$	0.0762
Total	$1.7593 \mathrm{e}+12$	5,972	294589468	Roo		$=$	16496
income	Coef.	Err	t	$P>\|t\|$	[95\% Co		Interval]
age	296.7539	35276	22.22	0.000	270.577		322.9301
_cons	10654.7	7. 5672	17.54	0.000	9463.6		11845.75

Regression level statistical measures

. reg income age if year $==15$ \& income $!=$.

Source	SS	df	MS	mber of obs	=	5,973
Model	$1.3441 \mathrm{e}+11$	1	$1.3441 \mathrm{e}+11$	Prob > F	=	0.0000
Residual	$1.6249 \mathrm{e}+12$	5,971	272128687	R -squared	=	0.0764
Total	$1.7593 \mathrm{e}+12$	5,972	294589468	Adj R-squared Root MSE	=	0.0762 16496

| income | Coef. | Std. Err. | t | P>\|t| | [95\% Conf. Interval] | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| age | 296.7539 | 13.35276 | 22.22 | 0.000 | 270.5776 | 322.9301 |
| _cons | 10654.7 | 607.5672 | 17.54 | 0.000 | 9463.644 | 11845.75 |

A formatted version with the requested information only

```
. estimates store lin_est
. estimates table lin_est, b(%7.3f) se(%7.3f) p(%7.3f) stat(r2)
\begin{tabular}{r|r}
\hline Variable & lin_est \\
\hline age & \(\begin{array}{r}296.754 \\
13.353 \\
0.000 \\
\text { _cons }\end{array}\) \\
\hline \multicolumn{2}{|c}{\(1 \mathrm{e}+04\)} \\
607.567 \\
0.000
\end{tabular}\(]\)\begin{tabular}{r} 
legend: b/se/p
\end{tabular}
```


A $4 T$ EXversion of the same table

Table: Income and age

	(1) income
Age	$296.8^{* * *}$
	(22.22)
Constant	$10654.7^{* * *}$
	(17.54)
Observations	5973
R^{2}	0.076
F	493.9
t statistics in parentheses	
${ }^{*} p<0.05,{ }^{* *} p<0.01,{ }^{* * *} p<0.001$	

What are these numbers?

- What do β_{0} and β_{1} mean?

What are these numbers?

- $\beta_{0}=$ the intercept.
- $\beta_{1}=$ the slope of the regression line.

$$
\begin{equation*}
\mathbb{E}[Y \mid X=x]=\beta_{0}+\beta_{1} x \tag{17}
\end{equation*}
$$

- Regression allows you to study the (changes in) the conditional mean.
- Thus, β_{1} is the derivative of Y wrt. X.

What are these numbers?

- Why are the two conditional mean presentations in the figure different?

What are these numbers?

- Why are the two conditional mean presentations in the figure different?
- The regression "forces" the relationship to be linear, i.e., we chose the relationship to be linear.

What are these numbers?

- How good is the model's fit? How much does it explain?
- Of what..? Answer: of the variation in Y.

Explained sum of squares (ESS): $\sum_{i=1}^{n}\left(\hat{Y}_{i}-\bar{Y}\right)^{2}$.
Total sum of squares (TSS): $\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}$.
Residual sum of squares (RSS): $\sum_{i=1}^{n}\left(u_{i}\right)^{2}$.

What are these numbers?

$$
\begin{equation*}
R^{2}=\frac{E S S}{T S S}=1-\frac{R S S}{T S S} \in[0,1] \tag{18}
\end{equation*}
$$

- R^{2} "close to one" $=$ "almost all" variation in Y captured by the model ($=$ variation in X).
- R^{2} "close to zero" $=$ "almost no" variation in Y captured by the model ($=$ variation in X).
- Note \#1: R^{2} has not effect on the interpretation of $\boldsymbol{\beta}$.
- Note \#2: R^{2} will have an effect on whether we reject the model or not, on statistical grounds.

