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OLS assumptions

• Recap from previous lecture:

1 Strict exogeneity: E(ui |Xi ) = 0.

2 (Xi ,Yi ), i = 1, ..., n are independent and identically distributed across
observations.

3 Xi and Yi have finite fourth moments.

4 Auxiliary: ui is homoscedastic.
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Learning objectives of this lecture

• At the end of lectures 3 - 5, you understand what one learns from a
(univariate) regression analysis. In this lecture you will learn about
the following:

1 how OLS results are affected if the data/model violate Assumption
#2, i.i.d sampling.

2 how OLS results are affected if the data/model violate Assumption
#1, strict exogeneity.

3 point estimates

4 standard errors

5 t-statistics

6 p-values

7 critical values

8 statistical significance

9 confidence intervals
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OLS Assumption #1

E(ui |Xi ) = 0

• Implies that u and X are uncorrelated.

• E(ui |Xi ) = 0 =⇒ cov(u,X ) = 0.

• Not the other way round because correlation is about a linear
relationship only.
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OLS Assumption #2

• (Xi ,Yi ), i = 1, ..., n are i.i.d.

• The same concept as before, but now over a joint distribution of two
variables.

• Experiments where X chosen.

• Time series.
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Assumption 2: What if the data are not i.i.d?

• Let’s discuss the assumption that the observations are i.i.d. in the
context of our FLEED income - age data.

• In other words, let’s pretend that the 5 973 observations are the
population rather than a random sample.

• In those data, i.i.d. means that

1 All observations are equally likely to end up in our random sample.

2 Observing one observation is not informative about the other
observations.

• Random sampling means that in expectation, the sample has the
same distribution as the population.
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What if the data are not i.i.d?

• How could the assumption be violated?

• Well, by doing non-random sampling.

• Example: let’s systematically choose young / old with a higher
probability than their population share.

• Let’s start with the whole data, then drop individuals in the lowest z
age deciles, z = 1, ..., 5.
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What if the data are not i.i.d?

Table: Regression table with non-iid sample

(1) (2) (3) (4) (5) (6)
all data drop 1d 2d 3d 4d 5d

age 296.8∗∗∗ 30.16 -157.9∗∗∗ -325.2∗∗∗ -458.1∗∗∗ -569.3∗∗∗

(22.22) (1.78) (-7.38) (-11.76) (-13.32) (-12.87)

Constant 10654.7∗∗∗ 24836.6∗∗∗ 35227.4∗∗∗ 44790.8∗∗∗ 52623.2∗∗∗ 59377.6∗∗∗

(17.54) (30.15) (32.25) (30.16) (27.43) (23.16)

Observations 5973 5113 4453 3807 3299 2758

t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

• Notice how the parameters change.

• Note however that for each subsample, the parameters are unbiased.
It is just that they are not so for the whole population.
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What to do about non-i.i.d samples?

• The example is a rather innocent one, and a case of selection on
observables.

• In other words, the selection of individuals into the sample took place
based on a variable we econometricians observe.

• Such sampling is sometimes done on purpose, e.g., excluding too old
individuals as they are close to retirement / some of them have
already retired.

• A more often encountered and a more difficult problem is selection
on unobservables. This is a topic for a more advanced course.

• As an example, think of the current discussion in Finland on the home
care allowance (kotihoidontuki): are those parents that use / do not
use it a randomly selected group of parents of young children?
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Assumption 1: Strict exogeneity: E(ui |Xi) = 0

• Recall that this rules out that X and U are correlated.

• If this is the case, we say that X is endogenous.

• What would go wrong if this was the case?

• Let’s think of the case of corr(X ,U) > 0.

• Let’s denote ỹi0 = β0 + β1xi .
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Strict exogeneity

• Given positive correlation between X and U, what do we know of

E(ui |Xi )

as a function of X?

• Yes, it is increasing in X .
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Strict exogeneity

• This implies that as X increases, we go from a situation where

E(yi |xi ) < ỹi0 = β0 + β1xi

for low values of X to a situation where

E(yi |xi ) > ỹi0 = β0 + β1xi

for large values of X .
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Strict exogeneity

• What does this imply about our regression? It is systematically
biased.

• When you do your Least Squares calculation, you end up choosing the
parameters so that you get zero errors on average (that is what OLS
does).

• You will end up with a regression line that has a slope β1 that is too
large.
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Strict exogeneity

• Let’s illustrate how the ”data”, i.e., the Us look different when

1 X is exogenous
2 X is endogenous.
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X and U uncorrelated, ρXU = 0
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X and U correlated, ρXU = 0.5
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Strict exogeneity

• Let’s have a look at what happens to β0 and β1 when we increase the
correlation between X and U.
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ρXU = 0.1, 0.2, ..., 0.9

Table: Effect of endogeneity

ρXU β1 seβ1

0 298.32 32.11
0.1 397.14 31.89
0.2 506.35 31.30
0.3 601.94 30.56
0.4 702.25 29.44
0.5 797.81 27.72
0.6 906.04 25.50
0.7 1003.15 22.94
0.8 1107.05 19.27
0.9 1209.41 14.03
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Can we say something about this analytically?

• Recall the formula for β̂1:

β̂1 =
cov(Y ,X )

var(X )

• Recall also that we have an equation for Y :

Y = β0 + β1X + U

• Let’s plug the latter into the former and see what we get, maintaining
Assumptions 2 and 3 (i.i.d and finite variances).

Toivanen ECON-C4100 Lecture 5 19 / 33



Omitted variable bias

• By splitting the covariance between Y and X into its constituent
parts and simplifying, we arrive at:

β̂1 = β1 + ρxu
σu
σx
. (1)

Note: σi = standard deviation of variable i , ρij = correlation coefficient of variables i and j .

• This equation is the formula for omitted variable bias.

• This problem is arguably the most severe of the ones we’ve discussed
thus far.
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Omitted variable bias

β̂1 = β1 + ρxu
σU
σX

• Our estimate β̂1 is equal (in expectation) to β1 if the second term on
the right is zero.

• It consists of three terms, two of which cannot be zero for our
regression to work, i.e., σu and σX .

• Therefore, it being zero boils down to the value of ρXU .
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Omitted variable bias

• ρXU = 0 is an untestable assumption.

• This is so because ui are unobserved and different from ûi .

• To evaluate whether the assumption that E[U|X ] = 0 holds, you need
to think of whether you are interested in

1 getting unbiased estimates of the parameters and
2 being able to predict Y well.

• In the first case, strict exogeneity needs to hold. In the second case, it
may or may not matter.
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Hypothesis testing and statistical significance using
regression

• Today’s question: How likely it is that age has an effect on income /
that income varies with age?

i.e. test the null hypothesis that age has no effect.
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Our estimation results

                                                                              

       _cons      10654.7   607.5672    17.54   0.000     9463.644    11845.75

         age     296.7539   13.35276    22.22   0.000     270.5776    322.9301

                                                                              

      income        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

       Total    1.7593e+12     5,972   294589468   Root MSE        =     16496

                                                   Adj R-squared   =    0.0762

    Residual    1.6249e+12     5,971   272128687   R-squared       =    0.0764

       Model    1.3441e+11         1  1.3441e+11   Prob > F        =    0.0000

                                                   F(1, 5971)      =    493.91

      Source         SS           df       MS      Number of obs   =     5,973

. reg income age if year == 15 & income != .
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Point estimates

• Our point estimate of β1 = 296.8.

• β1 is a random variable, i.e., it has a distribution.

• How likely is it that we by chance get a value this high or that we
would get a number as small or smaller than zero?

• We can approach this question by going back to our Monte Carlo
exercise.

• Alternatively, we can approach the question analytically and derive
the (parameters of) its distribution. This is what is done when
asymptotic test-statistics are used.
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Distribution of β1

• Let’s first have a look at the distribution of β1.
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Standard error

• Our estimate of the standard error of β1 = 13.4.

• Standard error is the standard deviation of a statistic.

• How can we calculate the standard error?

• By the CLT, we know that the distribution of β1 becomes
(approximately) normal as the sample size increases.

• As a normal distribution is completely characterized by its mean and
variance (standard deviation), it is sufficient that we calculate the
standard error of β1.

• In practice, we estimate the standard error from the data. It is a
function X and the estimated Û.
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Standard error

• The standard error reflects the fact that β1 is a random variable.

• How does this affect the value our estimate β̂1 takes?

• Starting from the formula for β̂1 that we derived one can derive the
following:

β̂1 = β1 +
1
n

∑
(xi − X̄ )ui

1
n

∑
(xi − X̄ )

2
(2)

• See Appendix 4.3 in SW for the derivation.

• It can be shown that the second term on the right is zero in
expectation (hence β̂1 is unbiased).

• The second term on the right is a random variable and gives β̂1 its
distribution and hence the basis for the standard error of β̂1.
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t-statistics, p-value, critical value, and statistical
significance

t =
β̂1

σ̂β1

• The t-statistic is the ratio of the point estimate and its standard
error, in the case of β1 it is 22.22.

• We can then calculate the p-value for the t-statistic.

• It tells us how likely it is that a standard normal variable would be
larger than the t-statistic.

• If this probability is low, below our chosen critical value such as 5%
or 0.05, we reject the Null hypothesis and say that β1 is statistically
significant.

• Critical values are norms or rules of thumb.
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Visualizing the p-value

• Let’s then ask how likely it is that we could get a value as low as or
lower than zero.
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• The p-value answers this question. In the case of β1, it is 0.000.
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Confidence interval

• Instead of asking how likely it is that our estimate is larger or smaller
than some comparison value (our Null hypothesis value), we could ask
how likely it is that the true parameter value is within some interval.

• This is the idea behind confidence intervals.

• Based on our estimates (point estimate and its standard error), we
can calculate such intervals.

• Let’s use as an example the most common, i.e., 95% confidence
interval.

• For β̂1, this is [270.6, 322.9].
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Visualizing the confidence interval
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Some final observations

• Here, we concentrated on how to measure and test the statistical
significance of a parameter (coefficient).

• We will discuss how to measure and test the statistical significance of
the estimation model when we deal with multivariate regression.

• Researchers often use phrases like β1 is statistically significant
somewhat loosely. P-values and confidence intervals are ”hard facts”
that help interpretation of such statements.

• It is important to understand these concepts. We will return to the
meaning of statistical significance when we talk about causality.
There, important concepts are

1 false positives and negatives.
2 statistical power.
3 minimum detectable effect size.
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