ECON-C4100 - Capstone: Econometrics I

Lecture 6: Multiple regression #1: estimation

Otto Toivanen

Learning outcomes

- At the end of this lectures, you
- 1 understand what how multivariate regression differs from univariate regression.
- 2 understand how and why to carry out a multivariate regression analysis.
- 3 appreciate the assumptions made in multivariate regression analysis.
- 4 are aware of the most common pitfalls in regression analysis.

Starting point:

$$Y = f(X_1, X_2, ..., X_k, u)$$

Outcome variable of interest a function of several variables.Observables and unobservables.One or more hypotheses

(needed)?

Income, age and gender

- 1 Is income affected by age?
- 2 Do women and men of same age earn differently?
- Let's study these using the open access FLEED data of Statistics Finland.
- These data can be downloaded from the Statistics Finland web page.
- We will use the year 15 (= 2010) cross section data.

Univariate regression

$$Y = f(X, u) = \beta_0 + \beta_1 X + U$$
$$\mathbb{E}[Y|X = x] = \beta_0 + \beta_1 x$$

Multivariate/multiple regression

$$Y = f(X_1, X_2, u) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + u$$

 $E[Y|X = x] = \beta_0 + \beta_1 x_1 + \beta_2 x_2$

More structure - linear

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2$$

- This is the so called population regression line (populaatio regressio).
- Y = dependent variable (vastemuuttuja) or endogenous variable.
- $X_k =$ independent variable k (selittävä muuttuja) or exogenous variable k or regressor k.
- $\beta_0, \beta_1, \beta_2$: parameters of the model.

Are all Xs born equal?

- Depends...
- Treatment variable = the one of primary interest.
- Control variable(s) = affect(s) Y but we are not (so much) interested in this/these.
- Why include variables that we are not interested in?

- **1** $cov(X_1, X_2) = 0$
- 2 $cov(X_1, X_2) \neq 0$
- Key is whether the treatment variable and control variable are correlated or not.

Toivanen ECON-C4100 Lecture 6

• Why is this key? Recall

$$\hat{\beta}_1 = \beta_1 + \rho_{xu} \frac{\sigma_u}{\sigma_x}.\tag{1}$$

Rewrite

$$u = \beta_2 X_2 + v \tag{2}$$

Toivanen ECON-C4100 Lecture 6 10 / 49

Assume

$$cov(\boldsymbol{X}, v) = 0$$

Then

$$\hat{\beta}_1 = \beta_1 + \beta_2 \rho_{X_1 X_2} \times \frac{\sigma_{X_2}}{\sigma_{X_1}} \tag{3}$$

Make sure you know how to derive equation (3).

If the Xs are correlated, then the bias in β_1 depends on

- 1 the impact of X_2 on Y.
- \bigcirc the correlation between the Xs.
- 3 how much variance X_2 has relative to X_1 .

- So are we home if $cov(X_1, X_2) = 0$?
- Yes and no.
- If $cov(X_1, X_2) = 0$ then $\hat{\beta}_1 = \beta_1$
- However, adding X_2 decreases the standard error / increases the precision of $\hat{\beta}_1$.

Toivanen ECON-C4100 Lecture 6 13 / 49

- A two-variable model (App 6.2. in S&W).
- 2 explanatory variables and homosc. errors, $\rho_{X_1,X_2} = 0$. Then

$$\sigma_{\beta_1}^2 = \frac{1}{n} \frac{\sigma_u^2}{\sigma_{X_1}^2}$$

which is the variance of $\hat{\beta}_1$.

• Adding X_2 necessarily decreases σ_u^2 .

Income modeled as function of age and gender?

• Let's look at the following model:

$$Income_i = \beta_0 + \beta_{AgeMV}Age_i + \beta_{GMV}G_i + u_{MVi}$$

Where

 $Age_i = age in years.$

 $G_i = \text{dummy for gender}.$

MV stands for Multivariate.

Should we suspect that age affects income?

- Experience increases with age.
- In a cross-section such as ours, younger people typically better educated than older (conditional on not being too young).
- Physical condition and mental agility start to decrease relatively early.

Should we suspect that gender affects income?

- Segregation of job market a well known phenomenon.
- Women bear a larger share of household work and stay longer at home after getting a child.
- Educational levels and fields differ by gender.

Some conditional descriptive statistics

```
. tabstat income age if year == 15, stat(mean sd p50) by(gender)
```

Summary statistics: mean, sd, p50 by categories of: gender

gender	income	age		
0	25478.2 18894.06 24000	41.5928 16.10072 42		
1	21053.65 14852.83 20000			
Total	23296.67 17163.61 21000			

Are age and gender correlated in our data?

. pwcorr age gender if year == 15, sig

	age	gender
age	1.0000	
gender	0.0171 0.1755	1.0000

Mean income conditional on age and gender

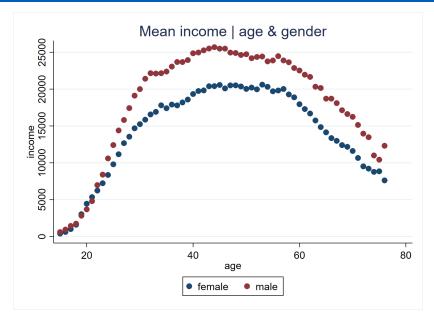
Stata code

```
bysort age gender: egen income_m_age_g = mean(income)
bysort age gender: gen win_age_g_ind = _n

twoway scatter income_m_age_g age if gender == 1 & win_age_g_ind == 1 || ///

scatter income_m_age_g age if gender == 0 & win_age_g_ind == 1, ///

legend(lab (1 "female") lab (2 "male")) ///

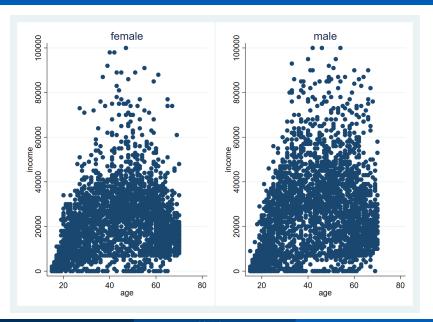

graphregion(fcolor(white)) ///

title("income") ///

title("income") age & gender")

graph export "mean_income_age_gender.png", replace
```

Mean income conditional on age and gender



Income-age scatter by gender

Stata code

```
scatter income age if gender == 0 & year == 15, ///
graphregion(fcolor(white)) ///
title("male") ///
saving(income_age_male, replace)
scatter income age if gender == 1 & year == 15, ///
graphregion(fcolor(white)) ///
title("female") ///
saving(income_age_female, replace)
gr combine income_age_female, gph income_age_male.gph
graph export "income_age_gender.png", replace
```

Income-age scatter by gender

How to get β_0 , $\beta_1 \& \beta_2$: OLS

$$\min_{\beta_0,\beta_1,\beta_2} \sum_{i=1}^n [Y_i - (\beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i})]^2$$
 (4)

$$min_{\beta}(\mathbf{Y} - \mathbf{X}\beta)'(\mathbf{Y} - \mathbf{X}\beta)$$
 (5)

Toivanen ECON-C4100 Lecture 6 24 / 49

How to get β_0 , $\beta_1 \& \beta_2$: OLS

$$\hat{\beta}_{1} = \frac{\sum x_{2}^{2} \sum x_{2}y - \sum x_{1}x_{2} \sum x_{1}y}{\sum x_{1}^{2} \sum x_{2}^{2} - (\sum x_{1}x_{2})^{2}}$$
$$\hat{\beta} = (\mathbf{X}'\mathbf{X})^{-1}(\mathbf{X}'\mathbf{Y})$$

- Note: now not using matrix algebra leads to very cumbersome mathematics; with matrix algebra, the solution stays the same as with univariate regression.
- The expression for \hat{eta}_2 is symmetric with that of \hat{eta}_1 .
- Finally, $\hat{\beta_0} = \bar{Y} \hat{\beta_1}\bar{X_1} \hat{\beta_2}\bar{X_2}$.

Let's compare univariate regressions to multivariate regression

$$Income = \beta_{0AgeUV} + \beta_{AgeUV}Age + u_{AgeUV}$$
 (6)

$$Income = \beta_{0GUV} + \beta_{GUV}G + u_{GUV} \tag{7}$$

$$Income = \beta_0 + \beta_{AgeMV}Age + \beta_{GMV}G + u_{MV}$$
 (8)

Toivanen ECON-C4100 Lecture 6 26 / 49

Univariate regressions

Table: Univariate income regressions

(1)	(2)
income	income
296.8***	
(13.35)	
	-4424.6***
	(440.5)
10654.7***	25478.2***
(607.6)	(309.3)
5973	5973
0.0764	0.0166
493.9	100.9
	income 296.8*** (13.35) 10654.7*** (607.6) 5973 0.0764

Standard errors in parentheses

Toivanen

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

Multivariate regression

Table: Income regressions

	(1)	(2)	(3)
	income	income	income
Age	296.8***		298.5***
	(13.35)		(13.23)
Gender		-4424.6***	-4545.0***
		(440.5)	(422.9)
Constant	10654.7***	25478.2***	12819.2***
	(607.6)	(309.3)	(634.6)
Observations	5973	5973	5973
r2	0.0764	0.0166	0.0939
F	493.9	100.9	309.4

Standard errors in parentheses

Toivanen ECON-C4100 Lecture 6

28 / 49

^{*} *p* < 0.05, ** *p* < 0.01, *** *p* < 0.001

- 1 How do the individual coefficients compare to univariate results?
- 2 What explains the difference(s)?
- 3 What about statistical significance of individual coefficients?
- What about several / all coefficients?
- **5** What about R^2 ?

- 6 What is the interpretation of individual coefficients?
- (under what assumptions) does OLS work?
- 8 How to choose which explanatory variables to include / exclude?
- What if the world is more complicated than linear?
- What all can go wrong, and how would I know / find out?

Q1 & Q2 multivariate vs. univariate?

- 1 How do the individual coefficients compare to univariate results?
- 2 What explains the difference(s)?

Q1 & Q2 multivariate vs. univariate?

- Compare the *Age* coefficient in the univariate to that in the multivariate regression.
- What can you conclude? Recall

$$\hat{\beta}_{\textit{AgeUV}} = \beta_{\textit{AgeMV}} + \beta_{\textit{G}} \textit{MV} \rho_{\textit{Age},\textit{G}} \times \frac{\sigma_{\textit{G}}}{\sigma_{\textit{Age}}}$$

Multivariate regression

. estout income_age income_gender income_age_gender, cells(b(star fmt(3)) se(par fmt(3)))

	income_age b/se	income_gen~r b/se	income_age~r b/se
age	296.754***		298.548***
	(13.353)		(13.228)
gender		-4424.553***	-4545.022***
		(440.537)	(422.935)
_cons	10654.695*** (607.567)	25478.203*** (309.335)	12819.203*** (634.636)

. pwcorr age gender if e(sample) . sum age gender if e(sample)

	age	gender	Variable	0bs	Mean	Std. Dev.	Min	Max
age	1.0000	1.0000	age	5,973	42.60087	15.9866	15	70
gender	0.0126		gender	5,973	.4930521	.4999936	0	1

Q1 & Q2 multivariate vs. univariate?

Plug numbers from the previous slide into the bias formula:

$$\begin{aligned} \textit{Bias}_{\beta_{\textit{ageUV}}} &= \beta_{\textit{GMV}} \rho_{\textit{Age},\textit{G}} \times \frac{\sigma_{\textit{G}}}{\sigma_{\textit{Age}}} \\ &= -4545.02 \times 0.0126 \times \frac{0.500}{15.987} = -1.791 \end{aligned}$$

Compare to

$$\beta_{AgeUV} - \beta_{AgeMV} = 296.754 - 298.548 = -1.794$$

- Do the same for gender.
- What can you conclude?

Q1 & Q2 multivariate vs. univariate?

- Multivariate regression allows the researcher to
 - control for observable variables and thereby either remove (omitted variable) bias and/or increase efficiency.
 - 2 test several hypotheses simultaneously.
 - 3 (as we will see), enrich the main hypotheses to allow for heterogenous effects.

Q3 & Q4 statistical significance, individual coefficients

- 3 What about statistical significance of individual coefficients?
- 4 What about the statistical significance of several / all coefficients?

- Can we reject the null that
 - **1** $\beta_0 = 0$,
 - **2** $\beta_{Age} = 0$,
 - **3** $\beta_G = 0$?

. regr income	age gender	if	year == 15				
Source	SS	df	MS	Numb	er of obs	=	5,973
				F(2,	5970)	=	309.43
Model	1.6524e+11	2	8.2622e+10	Prob	> F	=	0.0000
Residual	1.5940e+12	5,970	267009188	R-sq	uared	=	0.0939
				Adj	R-squared	=	0.0936
Total	1.7593e+12	5,972	294589468	Root	MSE	=	16340
income	Coef.	Std. Err.	t	P> t	[95% C	onf.	Interval]
age	298.5478	13.22762	22.57	0.000	272.61	69	324.4787
gender	-4545.022	422.9347	-10.75	0.000	-5374.1	27	-3715.917
_cons	12819.2	634.6356	20.20	0.000	11575.	09	14063.32

- Are $\beta_0, \beta_{Age}, \beta_g$ all = 0?
- F test (and others) for the joint significance.
- Cannot do this by looking at individual (t-) tests.
- Reason: two or more random variables \rightarrow need their joint distribution.

F test (under homosc.). For illustration only.

$$F = \frac{(SSR_{restricted} - SSR_{unrestricted})/q}{SSR_{unrestricted}/(n - k_{restricted} - 1)}$$
$$= \frac{(R_{restricted}^2 - R_{unrestricted}^2)/q}{(1 - R_{unrestricted}^2)/(n - k_{restricted} - 1)}$$

Modern software calculate the heterosc, robust F-test.

. regr income	age gender	if	year == 15				
Source	SS	df	MS	Numb	er of obs	=	5,973
				F(2,	5970)	=	309.43
Model	1.6524e+11	2	8.2622e+10	Prob	> F	=	0.0000
Residual	1.5940e+12	5,970	267009188	R-sq	uared	=	0.0939
				Adj	R-squared	=	0.0936
Total	1.7593e+12	5,972	294589468	Root	MSE	=	16340
income	Coef.	Std. Err.	t	P> t	[95% C	onf.	Interval]
age	298.5478	13.22762	22.57	0.000	272.61	69	324.4787
gender	-4545.022	422.9347	-10.75	0.000	-5374.1	27	-3715.917
_cons	12819.2	634.6356	20.20	0.000	11575.	09	14063.32

- What about $\beta_{Age} = \beta_G = 0$?
- In other words, Null hypothesis is that a subset of parameters are zero.
- Modern software allow this.

. testparm age gender

```
( 1) age = 0
```

$$F(2, 5970) = 309.43$$

 $Prob > F = 0.0000$

- What about $\beta_{Age} = \beta_{G}$?
- Need either a direct test modern software allow this (easily).
- Or a trick (add and substract).

```
. test age = gender

( 1) age - gender = θ

F( 1, 5970) = 130.92

Prob > F = 0.0000
```

- With multivariate regression:
 - Important to check the regression diagnostic statistics (F-test) (more on this to follow).
 - 2 Rich possibilities to test hypotheses that involve multiple parameters.

Q5 What about R^2 ?

$$R^2 = \frac{ESS}{TSS} = 1 - \frac{SSR}{TSS}$$

- R² increases (almost) surely as you add explanatory variables.
- Adjusted R² corrects for this:

$$adjR^2 = 1 - \frac{n-1}{n-k-1} \frac{SSR}{TSS} = \frac{s_{\hat{u}^2}}{s_Y^2}$$

- n = number of obs; k = number of expl. variables.
- Adjusted R^2 always lower than R^2 .

Q5 What about R^2 ?

age gender	if	year == 15				
SS	df	MS			=	5,973
			- F(2,	5970)	=	309.43
1.6524e+11	2	8.2622e+1	0 Prob	> F	=	0.0000
1.5940e+12	5,970	26700918	8 R-sq	R-squared		0.0939
			- Adj	R-squared	=	0.0936
1.7593e+12	5,972	29458946	8 Root	Root MSE		16340
Coef.	Std. Err.	t	P> t	[95% Co	nf.	Interval]
298.5478	13.22762	22.57	0.000	272.616	9	324.4787
-4545.022	422.9347	-10.75	0.000	-5374.12	7	-3715.917
12819.2	634.6356	20.20	0.000	11575.0	9	14063.32
	SS 1.6524e+11 1.5940e+12 1.7593e+12 Coef. 298.5478 -4545.022	SS df 1.6524e+11 2 1.5940e+12 5,970 1.7593e+12 5,972 Coef. Std. Err. 298.5478 13.22762 -4545.022 422.9347	SS df MS 1.6524e+11 2 8.2622e+1 1.5940e+12 5,970 26700918 1.7593e+12 5,972 29458946 Coef. Std. Err. t 298.5478 13.22762 22.57 -4545.022 422.9347 -10.75	SS df MS Numb F(2, 1.6524e+11 2 8.2622e+10 Prob 1.5940e+12 5,970 267009188 R-sq Adj 1.7593e+12 5,972 294589468 Root Coef. Std. Err. t P> t 298.5478 13.22762 22.57 0.000 -4545.022 422.9347 -10.75 0.000	SS df MS Number of obs 1.6524e+11 2 8.2622e+10 Prob > F 1.5940e+12 5,970 267009188 R-squared Adj R-squared Adj R-squared Coef. Std. Err. t P> t [95% Co 298.5478 13.22762 22.57 0.000 272.616 -4545.022 422.9347 -10.75 0.000 -5374.12	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Q5 What about R^2 ?

- High R^2 / an increases in R^2 says nothing about causality.
- High R^2 does not mean your model does not suffer from omitted variable bias.
- High R^2 does not mean you have the right set of explanatory variables.
- ullet High \mathbb{R}^2 tells nothing about the economic significance of your results.
- High R^2 means that factors outside your model (= the stuff going into the error term) play a relatively speaking smaller role in the process that determines the value of Y.
- But, as we saw from the F-test formual, (changes in) R^2 are indicative and a certain level of R^2 is needed to reject the Null that all your model parameters are insignificant.