# ECON-C4100 - Capstone: Econometrics I Lecture 7: Multiple regression #2: estimation

Otto Toivanen

Toivanen

- At the end of this lecture, you
- 1 understand what how multivariate regression differs from univariate regression.
- 2 understand how and why to carry out a multivariate regression analysis.
- 3 appreciate the assumptions made in multivariate regression analysis.
- 4 are aware of the most common pitfalls in regression analysis.

- 1 How do the individual coefficients compare to univariate results?
- **2** What explains the difference(s)?
- 3 What about statistical significance of individual coefficients?
- **4** What about several / all coefficients?
- **5** What about  $R^2$ ?

- **6** What is the interpretation of individual coefficients?
- 7 (under what assumptions) does OLS work?
- 8 How to choose which explanatory variables to include / exclude?
- 9 What if the world is more complicated than linear?
- What all can go wrong, and how would I know / find out?

• Our estimation equation is:

$$Income = \beta_0 + \beta_{AgeMV}Age + \beta_{GMV}G + u_{MV}$$
(1)

### Interpretation of individual coefficients

• Regression yields the **conditional expectation** of the dependent variable *Y*:

$$\mathbb{E}[Y|\mathbf{X} = \mathbf{x}] = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots$$
(2)

$$\mathbb{E}[Income_i | \boldsymbol{X} = \boldsymbol{x}] = \beta_0 + \beta_{AgeMV} Age_i + \beta_{GMV} G_i$$
(3)

• By plugging into the regression those values of **X** that we are interested we get the conditional expectation of Y.

### Interpretation of individual coefficients

• Example: the expected income of a woman of 35 years of age is:

$$\mathbb{E}[Income_i | \mathbf{X} = 35, 1] =$$
  
12819.2 + 298.55 × 35 - 4545.02 × 1 = 18723.4

• Example: the expected income of a man of 55 years of age is:

$$\mathbb{E}[\textit{Income}_i | \textbf{X} = 55, 0] = \\ 12819.2 + 298.55 \times 55 - 4545.02 \times 0 = 29239.45$$

### Interpretation of individual coefficients

• Coefficients as partial derivatives:

$$\frac{\partial \mathbb{E}[\textit{Income}_i | \mathbf{X}]}{\partial X_k} = \beta_k \tag{4}$$

 With discrete explanatory variables cannot take derivatives, so a coefficient measures the change in Y from a one unit change in X<sub>k</sub>:

$$\beta_k = \mathbb{E}[Income_i | \boldsymbol{X}, X_k = m] - \mathbb{E}[Income_i | \boldsymbol{X}, X_k = m - 1]$$
(5)

- Notice that in both, we fix all other variables (their effect on Y).
- So β<sub>G</sub> is the effect of gender on income, keeping the effect of Age constant.

- **1** Strict exogeneity:  $\mathbb{E}(u|\mathbf{X}) = 0$ .
- (X<sub>i</sub>, Y), i = 1, ..., n are independent and identically distributed across observations.
- **3**  $X_i$  and  $Y_i(u_i)$  have finite *fourth* moments.
- **4** No perfect multicollinearity (X has full column rank).
- **5** Auxiliary:  $u_i$  is homoscedastic.

- Analog: To solve a system of equations, you need as many equations as you have unknowns.
- Two variables are perfectly (multi)collinear if one is a perfect linear function of the other.
- Example: Think of a phenomenon with two **mutually exclusive and exhaustive** outcomes, A and B.
- A dummy taking value 1 if A is true and 0 otherwise:  $D_A = 1 D_B$ , where  $D_B$  is the dummy taking value 1 if B is true and 0 otherwise ("dummy variable trap)".
- Perfect collinearity = correlation +/-1.

- Recall from previous lecture the two-variable model (App 6.2. in S&W).
- 2 explanatory variables and homosc. errors,  $\rho_{X_1,X_2} \neq 0$ . Then

$$\sigma_{\beta_1}^2 = \frac{1}{n} \frac{1}{1 - \rho_{X_1, X_2}} \frac{\sigma_u^2}{\sigma_{X_1}^2}$$

- Notice what happens when  $\rho_{X_1,X_2} \rightarrow 1$ .
- Collinearity (= "high" ρ<sub>X1,X2</sub>) increases the standard error(s) of the other coefficient(s).
- Correlation between the **X**s is a two-edged sword:
  - 1 It removes omitted variable bias.
  - 2 It reduces the efficiency gains from introducing a further explanatory variable.

- Collinearity refers to the (high) correlation between two variables.
- Multicollinearity is a characteristic of a matrix (vector) X.
- while the pair-wise correlations between elements of **X** may be "not so high", the aggregate effect of them may lead to inflated standard errors.

- Too few explanatory variables ightarrow possible omitted variable bias.
- Too many variables may lead to multicollinearity and inflated se's.
- Note: "too many" requires correlation among explanatory variables.
- Can one test one's way out of this?
- No, but tests do help.

- There are tests of individual and of joint significance. Why cannot I run these on autopilot?
- Case #1: start from a small model, add variables according to some (statistical) criterion.
- Case #2: start from a large model, drop variables according to some (statistical) criterion.
- Case #3: use machine learning methods (for later). Designed especially for the case where number of variables > number of observations.

- What goes wrong?
  - **1** Statistical significance  $\neq$  economic significance.
  - **2** Statistical significance  $\neq$  economic relevance.
  - **3** You may end up with variables that are highly correlated with Y, but have no real connection to it.
  - 4 Multiple testing leads to wrong (too good) test results.

- The principled approach:
  - 1 Before touching your data, write down a protocol.
  - 2 Base explanatory (control) variables on theory and existing knowledge.
  - **3** Specify a testing protocol.
  - 4 Execute.

- The practical approach:
  - **1** Try to be as close to the principled approach as possible.
  - **2** Learning allowed and encouraged  $\rightarrow$  new/respecification.
  - 3 Robustness testing.

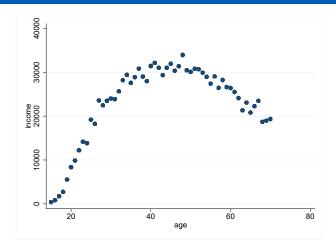
- Robustness testing:
  - 1 It is rarely the case that there is a "right model" that you can (re)cover.
  - 2 Ask: are your results sensitive to small, well-justified changes to your model?
    - 1 Adding (meaningful) variables.
    - Deleting variables.
    - **3** Changing functional form.
    - **4** Changing assumptions about the error term.

- Well, nothing prevents us from making our model nonlinear.
  - **1** Keep the **X** base-variables the same, but make the function  $f(\mathbf{X})$  more complicated.
  - 2 Transform the variables.
- Let's start by making  $f(\mathbf{X})$  more complicated.
- Let's remind ourselves of what the income age graph looks like.
- But before that let's remind ourselves of what polynomial functions are.

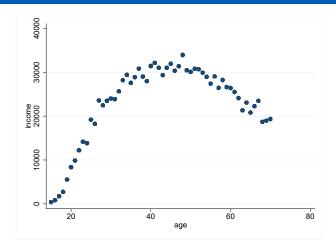
• Polynomial of order k (of one variable):

$$p(X) = \sum_{i=0}^{k} \alpha_i X^i$$
$$= \alpha_0 + \alpha_1 X + \alpha_2 X^2 + \dots \alpha_k X^k$$

• Polynomials may consist of several variables.



• The figure suggests that an inverted - U shaped function could be a good fit.



- The figure suggests that an inverted U shaped function could be a good fit.
- Let's try a quadratic function of age.

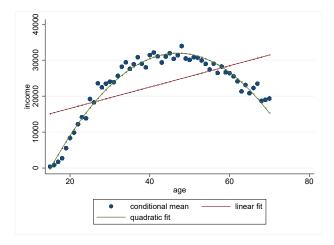
| Toivanen | ECON-C4100 | Lecture 7 22 / 6 | 65 |
|----------|------------|------------------|----|
|          |            |                  |    |

|                                | (1)        | (2)         |  |  |  |
|--------------------------------|------------|-------------|--|--|--|
|                                | income     | income      |  |  |  |
| Age                            | 296.8***   | 2958.2***   |  |  |  |
|                                | (13.35)    | (74.84)     |  |  |  |
| Age2                           |            | -31.48***   |  |  |  |
| -                              |            | (0.874)     |  |  |  |
| Constant                       | 10654.7*** | -37549.0*** |  |  |  |
|                                | (607.6)    | (1446.6)    |  |  |  |
| Observations                   | 5973       | 5973        |  |  |  |
| r2                             | 0.0764     | 0.241       |  |  |  |
| F                              | 493.9      | 949.9       |  |  |  |
| Standard errors in parentheses |            |             |  |  |  |

#### Table: Polynomial income regressions

Standard errors in parentheses

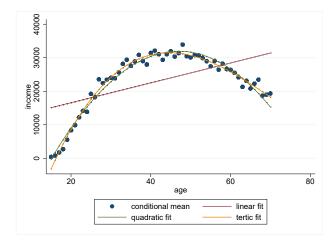
$$^{st}$$
  $ho < 0.05$ ,  $^{st st}$   $ho < 0.01$ ,  $^{st st}$   $ho < 0.001$ 



- How to test for the order of the polynomial?
  - Start from an order that is a reasonable (high) one, such as 3 or 4.
     Test down, i.e., whether the high(er) order term(s) are (jointly) significant.
- Notice: here you have a prior plan.
- Notice #2: a more modern version of this would involve a **semi** or **non-parametric** approach (for later courses).
- Let's test whether a second order polynomial is sufficient by adding a third order term.
- Notice that for pedagogical purposes I am doing things in the **wrong** order.

|              | (1)        | (2)         | (3)       |
|--------------|------------|-------------|-----------|
|              | income     | income      | income    |
| Age          | 296.8***   | 2958.2***   | 4685.0**  |
|              | (13.35)    | (74.84)     | (317.0)   |
| Age2         |            | -31.48***   | -75.69*** |
|              |            | (0.874)     | (7.934)   |
| Age3         |            |             | 0.346***  |
|              |            |             | (0.0618)  |
| Constant     | 10654.7*** | -37549.0*** | -57597.8* |
|              | (607.6)    | (1446.6)    | (3856.7)  |
| Observations | 5973       | 5973        | 5973      |
| r2           | 0.0764     | 0.241       | 0.245     |
| F            | 493.9      | 949.9       | 646.9     |

#### Table: Polynomial income regressions



- Can you do more than use polynomials?
- Yes... though polynomials give very good approximations. Y = f(X) + u
- Give f(X) any shape you like.
- We will skip this for now (semi- and nonparametric estimation).

- What if there is reason to believe that the effect of X<sub>1</sub> depends on the value of X<sub>2</sub>?
- Examples:
  - **1** Returns to experience (=age) and/or education different by gender.
  - 2 Effect of R&D subsidies different by firm size.

$$Income = f(Age, G, u) = \beta_0 + \beta_{Age} \times Age + \beta_G \times G + u$$
  
$$Income = f(Age, G, u) = \beta_0 + \beta_{Age} \times Age + \beta_g \times G$$
  
$$+ \beta_{AgeG} \times Age \times G + u$$

- What is now the expected income | gender?
- What is now the expected income | age?

- How to calculate the effect of age on income?
- Now depends on the value of G directly.
- Notice
  - without the interaction Age × G the effect of age on income independent of G (= the same no matter what value G takes).

**2** not true any more with the interaction.

• **Note:** if you add an interaction, make sure to have the original variables in the specification as well.

|                                                                               | (1)        | (2)        |  |  |  |
|-------------------------------------------------------------------------------|------------|------------|--|--|--|
|                                                                               | income     | income     |  |  |  |
| Age                                                                           | 298.5***   | 333.5***   |  |  |  |
|                                                                               | (13.23)    | (18.80)    |  |  |  |
| Gender                                                                        | -4545.0*** | -1598.7    |  |  |  |
|                                                                               | (422.9)    | (1203.3)   |  |  |  |
| Age_G                                                                         |            | -69.16**   |  |  |  |
|                                                                               |            | (26.44)    |  |  |  |
| Constant                                                                      | 12819.2*** | 11336.3*** |  |  |  |
|                                                                               | (634.6)    | (850.8)    |  |  |  |
| Observations                                                                  | 5973       | 5973       |  |  |  |
| r2                                                                            | 0.0939     | 0.0950     |  |  |  |
| F                                                                             | 309.4      | 208.8      |  |  |  |
| Standard errors in parentheses * $p < 0.05$ , ** $p < 0.01$ , *** $p < 0.001$ |            |            |  |  |  |

#### Table: Polynomial income regressions

Toivanen

- What is a transformation of a variable?
- Use some g(X) instead of X.
- Most often use (natural) log of X.
- Sometimes  $\frac{1}{X}$ .
- Always use a *monotonic* transformation!

- *Y*, *X*, or both (all)?
- Using logs *smooths* the data, i.e., decreases the differences across different values that the variable takes.
- Taking logs allows negative values for a non-negative variable (if value <1)
- On the other hand, cannot take logs if < 0.

$$\ln(Y + \Delta Y) - \ln(Y) \cong \frac{\Delta Y}{Y}$$

1. Only Y

In Income = 
$$\beta_0 + \beta_{Age} \times Age + \beta_G \times G + u$$
  
Income =  $e^{\beta_0 + \beta_{Age} \times Age + \beta_G \times G + u}$   
=  $e^{\beta_0} e^{\beta_{Age} \times Age} e^{\beta_G \times G} e^u$ 

2. Only *X* 

$$\textit{Income} = \beta_0 + \beta_{\ln Age} \times \ln Age + \beta_G \times G + u$$

- Interpretation of  $\beta_{\ln Age}$ ?
- A 1% increase in Age is associated with at 0.01  $\times$   $\beta_{\ln Age}$  change in income.



### 3. Both Y and X

$$\ln \textit{Income} = \beta_0 + \beta_{\ln \textit{Age}} \times \ln \textit{Age} + \beta_{\textit{G}} \times \textit{G} + u$$

- Interpretation of  $\beta_{\ln Age}$ ?
- $\beta_{\ln Age} = \%$ -change in income due to a 1% increase in Age.
- In other words,  $\beta_{\ln Age}$  is the **age elasticity of income**.

## Stata code

```
1
   gen lnincome = ln(income)
2
   gen |nage = |n(age)|
3
   regr income age gender if year == 15 & income != . & income_age_m != ., robust
4
       eststo linear
5
   regr Inincome age gender if year == 15 & income != . & income_age_m != ... robust
6
7
       eststo loglin
   regr income lnage gender if year == 15 & income != . & income_age_m != ., robust
8
       eststo linlog
9
   regr Inincome Inage gender if year == 15 & income != . & income_age_m != ., robust
10
       eststo loglog
11
  estout linear loglin linlog loglog, cells(b(star fmt(3)) se(par fmt(2))) ///
12 stats(r2 r2_a F N, fmt(%9.5f %9.5f %9.0g))
```

|              | (1)        | (2)        | (3)         | (4)       |
|--------------|------------|------------|-------------|-----------|
|              | income     | Inincome   | income      | Inincome  |
| Age          | 298.5***   | 0.0206***  |             |           |
|              | (13.23)    | (0.000723) |             |           |
| Gender       | -4545.0*** | -0.143***  | -4503.1***  | -0.140*** |
|              | (422.9)    | (0.0226)   | (412.7)     | (0.0217)  |
| InAge        |            |            | 14059.7***  | 0.982***  |
|              |            |            | (486.4)     | (0.0269)  |
| Constant     | 12819.2*** | 8.970***   | -26075.9*** | 6.236***  |
|              | (634.6)    | (0.0350)   | (1806.8)    | (0.100)   |
| Observations | 5973       | 5695       | 5973        | 5695      |
| r2           | 0.0939     | 0.130      | 0.137       | 0.194     |
| F            | 309.4      | 425.3      | 475.3       | 686.8     |

#### Table: Polynomial income regressions

\* p < 0.05, \*\* p < 0.01, \*\*\* p < 0.001

## Interpretations of $\beta_{Age}, \beta_{\ln Age}$ (mean age = 43)

• Linear: a 1 unit = 1 year ( $\approx$  2.3%) increase in age increases income by

300€

- Log-linear: a 1 unit = 1 year increase in age increases income by
   2.1% → 0.021 × 23296.67€≈ 490€
- Linear-log: a 1% (note: ln(1.01)  $\approx$  0.01) increase in age ( $\approx$  0.43 years) increases income by

 $0.01 \times 14059 \in \approx 140 \in \rightarrow \text{ effect of } 1 \text{ year increase} \approx 2.5 \times 140 \in \approx 350 \in 1000$ 

- Log-log: a 1% increase in age increases income by 0.982%. Effect of a 1 year increase
  - $\approx 2.5 \times 0.00982 \times 23296.67 {\textcircled{\mbox{e}}} \approx 570 {\textcircled{\mbox{e}}}$

# Interpretations of $\beta_{Age}, \beta_{\ln Age}$ (mean age = 43)

- Using the log of the dependent variable  $\rightarrow$  coefficient interpretation in **percent**.
- Typically, in economic data, using log of explanatory variable leads to higher *R*<sup>2</sup>.
- Many economic variables have a lower limit (income cannot be negative), but OLS assumes that the support is the real line.

 $\rightarrow$  log transformation allows coverage of the real line.

 $\rightarrow$  log transformation necessitates Y(X) > 0.

- 1 Internal validity.
- External validity.

- 1 Omitted variable bias.
- 2 Functional form misspecification (mistake).
- 3 Measurement error in variable(s).
- **4** Sample selection (OVB).
- **5** Simultaneous (reverse) causality (OVB).
- 6 Non-homoskedastic errors.

- The relevant condition the one we have already discussed.
- "Judicious" choice of controls.
- Add variables.
- There are further solutions. We will get to these.

- How can you be sure?
  - **1** Tests between the functional forms you try.
  - 2 Note: can easily test only those functional forms that are "nested".

Example #1: 1st and 2nd order polynomial **nested** (= one is a restricted version of the other).

Example #2: log-log and linear are non-nested.

• Try out different ones and check robustness of your results (see earlier).

## Internal validity 3. - Measurement error in variables

• Case #1: Y measured with error, error random.

$$Y_{observed} = Y + error$$

• Let's have a look at our regressions:

Regression we'd like to estimate:

$$Y = \beta_0 + \beta_1 X + u$$

Regression we can estimate:

$$Y_{observed} = Y + error = \beta_0 + \beta_1 X + u + error$$
$$= \beta_0 + \beta_1 X + v$$

- Measurement error in Y not a big problem (as long as random).
- Leads to higher standard errors, but no bias.

• Case #2: X measured with error, error random.

$$X_{observed} = X + error, \ \rho_{X,error} = 0$$

- This is the case of so-called **classical errors-in-variables**. This case is "well-behaved".
- Let's have a look at our regression:

## Internal validity 3. - Measurement error in variables

We would like to estimate

$$Y = \beta_0 + \beta_1 X + u$$

• However we only observe  $X_{observed} = X + error$ . Hence we need to rewrite

$$Y = \beta_0 + \beta_1 X + u$$
  
=  $\beta_0 + \beta_1 X_{observed} - \beta_1 (X_{observed} - X) + u$   
=  $\beta_0 + \beta_1 X_{observed} - \beta_1 error + u$   
=  $\beta_0 + \beta_1 X_{observed} + v$ 

## Internal validity 3. - Measurement error in variables

• One can show (see SW ch. 9.2):

$$\hat{\beta}_1 = \frac{\sigma_X^2}{\sigma_X^2 + \sigma_{error}^2} \beta_1$$

• 
$$\frac{\sigma_{\chi}^2}{\sigma_{\chi}^2 + \sigma_{error}^2} =$$
 signal to noise - ratio.

- The larger is the role of the error, i.e., the larger is  $\sigma^2_{error}$  relative to  $\sigma^2_X$ , the more biased is  $\hat{\beta_1}$ .
- This is so-called **Attenuation bias**.

- Solution #1: Get better measures.
- Solution #2: Get a measure of  $\sigma^2_{error}$ .
- Solution #3: A technical solution (instrumental variables) that we will get to later.

- Your observations are not a random sample of the underlying population.
- Example #1: Estimate the returns to entrepreneurship using 5 year old firms.
- The non-profitable entrants exit.
- Example #2: Estimate the returns to graduating quickly.
- Those who graduate quickly have unobservable skills that make them (un)attractive to employers.

- Example #3: estimate effects of R&D subsidies.
- Firms that get subsidies not avg. firms.
- Rule: think through and understand selection into your sample.
- Model selection into the sample.
- We will discuss this later, but in general is an advanced topic.

- Sample selection can threaten internal validity the parameters you obtain for the population of interest are biased.
- Sample selection can also threated the external validity of your exercise, i.e., even if you get unbiased estimates for the population in question, your results do not generalize.

- Think of the determination of prices and quantities.
- Price affects how much is sold and produced.
- How much is bought and produced affects the price.

 $\rightarrow$  simultaneous causality.

• We will come back to this.

## Internal validity 6. - Heteroskedasticity

- Deviations from homoskedasticity can take different forms depending on the data.
- With sequential observations, maybe also correlation over time (autocorrelation).
- With e.g. geographical data, correlation across observation units (clustering).
- Affects statistical precision (=standard errors) of individual coefficients, nothing else.
- Can be corrected by using **robust** standard errors (with potential loss of efficiency but robust se's can be smaller than homosc. se's).
- In data with relevant other dimensions (e.g. geographical locations), clustered se's may be more appropriate than regular robust se's.

## Stata code

```
1 regr income age gender if year == 15 & income != . & income_age_m != .
2 eststo linear
3 regr income age gender if year == 15 & income != . & income_age_m != ., robust
eststo linear_het
```

|              | (1)        | (2)              |
|--------------|------------|------------------|
|              | homosc.    | heterosk. robust |
| Age          | 298.5***   | 298.5***         |
|              | (13.23)    | (11.82)          |
| Gender       | -4545.0*** | -4545.0***       |
|              | (422.9)    | (421.6)          |
| Constant     | 12819.2*** | 12819.2***       |
|              | (634.6)    | (566.5)          |
| Observations | 5973       | 5973             |
| r2           | 0.0939     | 0.0939           |
| F            | 309.4      | 369.3            |

#### Table: Polynomial income regressions

\* p < 0.05, \*\* p < 0.01, \*\*\* p < 0.001

#### • Econometrics:

## A branch of economics in which economic theory and statistical methods are fused in the analysis of numerical and institutional data

Hood, W. & Koopmans, T. (1953). Studies in econometric method. Cowles Commission Monograph no. 14, Wiley

- External validity = results generalize to other settings than the one studied.
- Any (material) change to any of the components of your study jeopardizes external validity.
- 1 Differences in (applicable) theory.
- 2 Differences in statistical method.
- **3** Differences in data (including in populations).
- **4** Differences in institutions.

- Example: Do our income age results hold for (an)other year in the FLEED data?
- Let's compare results from current year 15 to year 10.

# External validity: comparison of results from two very similar data

#### Table: Polynomial income regressions

|                                                | (1)        | (2)        |  |  |  |
|------------------------------------------------|------------|------------|--|--|--|
|                                                | year 15    | year 10    |  |  |  |
| Age                                            | 298.5***   | 216.4***   |  |  |  |
|                                                | (13.23)    | (11.74)    |  |  |  |
| Gender                                         | -4545.0*** | -4765.7*** |  |  |  |
|                                                | (422.9)    | (361.7)    |  |  |  |
| Constant                                       | 12819.2*** | 12167.0*** |  |  |  |
|                                                | (634.6)    | (568.5)    |  |  |  |
| Observations                                   | 5973       | 5779       |  |  |  |
| r2                                             | 0.0939     | 0.0803     |  |  |  |
| F                                              | 309.4      | 252.2      |  |  |  |
| Standard errors in parentheses                 |            |            |  |  |  |
| * $p < 0.05$ , ** $p < 0.01$ , *** $p < 0.001$ |            |            |  |  |  |

- Is any study externally valid?
- Yes and no.
- Best to ensure internal validity, and conduct many studies.