ECON-C4100 - Capstone: Econometrics I Lecture 7: Multiple regression #2: estimation

Otto Toivanen

Toivanen

- At the end of this lecture, you
- 1 understand what how multivariate regression differs from univariate regression.
- 2 understand how and why to carry out a multivariate regression analysis.
- 3 appreciate the assumptions made in multivariate regression analysis.
- 4 are aware of the most common pitfalls in regression analysis.

- 1 How do the individual coefficients compare to univariate results?
- **2** What explains the difference(s)?
- 3 What about statistical significance of individual coefficients?
- **4** What about several / all coefficients?
- **5** What about R^2 ?

- **6** What is the interpretation of individual coefficients?
- 7 (under what assumptions) does OLS work?
- 8 How to choose which explanatory variables to include / exclude?
- 9 What if the world is more complicated than linear?
- What all can go wrong, and how would I know / find out?

• Our estimation equation is:

$$Income = \beta_0 + \beta_{AgeMV}Age + \beta_{GMV}G + u_{MV}$$
(1)

Interpretation of individual coefficients

• Regression yields the **conditional expectation** of the dependent variable *Y*:

$$\mathbb{E}[Y|\mathbf{X} = \mathbf{x}] = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots$$
(2)

$$\mathbb{E}[Income_i | \boldsymbol{X} = \boldsymbol{x}] = \beta_0 + \beta_{AgeMV} Age_i + \beta_{GMV} G_i$$
(3)

• By plugging into the regression those values of **X** that we are interested we get the conditional expectation of Y.

Interpretation of individual coefficients

• Example: the expected income of a woman of 35 years of age is:

$$\mathbb{E}[Income_i | \mathbf{X} = 35, 1] =$$

12819.2 + 298.55 × 35 - 4545.02 × 1 = 18723.4

• Example: the expected income of a man of 55 years of age is:

$$\mathbb{E}[\textit{Income}_i | \textbf{X} = 55, 0] = \\ 12819.2 + 298.55 \times 55 - 4545.02 \times 0 = 29239.45$$

Interpretation of individual coefficients

• Coefficients as partial derivatives:

$$\frac{\partial \mathbb{E}[\textit{Income}_i | \mathbf{X}]}{\partial X_k} = \beta_k \tag{4}$$

 With discrete explanatory variables cannot take derivatives, so a coefficient measures the change in Y from a one unit change in X_k:

$$\beta_k = \mathbb{E}[Income_i | \boldsymbol{X}, X_k = m] - \mathbb{E}[Income_i | \boldsymbol{X}, X_k = m - 1]$$
(5)

- Notice that in both, we fix all other variables (their effect on Y).
- So β_G is the effect of gender on income, keeping the effect of Age constant.

- **1** Strict exogeneity: $\mathbb{E}(u|\mathbf{X}) = 0$.
- (X_i, Y), i = 1, ..., n are independent and identically distributed across observations.
- **3** X_i and $Y_i(u_i)$ have finite *fourth* moments.
- **4** No perfect multicollinearity (X has full column rank).
- **5** Auxiliary: u_i is homoscedastic.

- Analog: To solve a system of equations, you need as many equations as you have unknowns.
- Two variables are perfectly (multi)collinear if one is a perfect linear function of the other.
- Example: Think of a phenomenon with two **mutually exclusive and exhaustive** outcomes, A and B.
- A dummy taking value 1 if A is true and 0 otherwise: $D_A = 1 D_B$, where D_B is the dummy taking value 1 if B is true and 0 otherwise ("dummy variable trap)".
- Perfect collinearity = correlation +/-1.

- Recall from previous lecture the two-variable model (App 6.2. in S&W).
- 2 explanatory variables and homosc. errors, $\rho_{X_1,X_2} \neq 0$. Then

$$\sigma_{\beta_1}^2 = \frac{1}{n} \frac{1}{1 - \rho_{X_1, X_2}} \frac{\sigma_u^2}{\sigma_{X_1}^2}$$

- Notice what happens when $\rho_{X_1,X_2} \rightarrow 1$.
- Collinearity (= "high" ρ_{X1,X2}) increases the standard error(s) of the other coefficient(s).
- Correlation between the **X**s is a two-edged sword:
 - 1 It removes omitted variable bias.
 - 2 It reduces the efficiency gains from introducing a further explanatory variable.

- Collinearity refers to the (high) correlation between two variables.
- Multicollinearity is a characteristic of a matrix (vector) X.
- while the pair-wise correlations between elements of **X** may be "not so high", the aggregate effect of them may lead to inflated standard errors.

- Too few explanatory variables ightarrow possible omitted variable bias.
- Too many variables may lead to multicollinearity and inflated se's.
- Note: "too many" requires correlation among explanatory variables.
- Can one test one's way out of this?
- No, but tests do help.

- There are tests of individual and of joint significance. Why cannot I run these on autopilot?
- Case #1: start from a small model, add variables according to some (statistical) criterion.
- Case #2: start from a large model, drop variables according to some (statistical) criterion.
- Case #3: use machine learning methods (for later). Designed especially for the case where number of variables > number of observations.

- What goes wrong?
 - **1** Statistical significance \neq economic significance.
 - **2** Statistical significance \neq economic relevance.
 - **3** You may end up with variables that are highly correlated with Y, but have no real connection to it.
 - 4 Multiple testing leads to wrong (too good) test results.

- The principled approach:
 - 1 Before touching your data, write down a protocol.
 - 2 Base explanatory (control) variables on theory and existing knowledge.
 - **3** Specify a testing protocol.
 - 4 Execute.

- The practical approach:
 - **1** Try to be as close to the principled approach as possible.
 - **2** Learning allowed and encouraged \rightarrow new/respecification.
 - 3 Robustness testing.

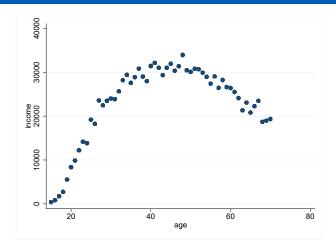
- Robustness testing:
 - 1 It is rarely the case that there is a "right model" that you can (re)cover.
 - 2 Ask: are your results sensitive to small, well-justified changes to your model?
 - 1 Adding (meaningful) variables.
 - Deleting variables.
 - **3** Changing functional form.
 - **4** Changing assumptions about the error term.

- Well, nothing prevents us from making our model nonlinear.
 - **1** Keep the **X** base-variables the same, but make the function $f(\mathbf{X})$ more complicated.
 - 2 Transform the variables.
- Let's start by making $f(\mathbf{X})$ more complicated.
- Let's remind ourselves of what the income age graph looks like.
- But before that let's remind ourselves of what polynomial functions are.

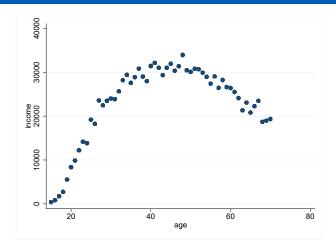
• Polynomial of order k (of one variable):

$$p(X) = \sum_{i=0}^{k} \alpha_i X^i$$
$$= \alpha_0 + \alpha_1 X + \alpha_2 X^2 + \dots \alpha_k X^k$$

• Polynomials may consist of several variables.



• The figure suggests that an inverted - U shaped function could be a good fit.



- The figure suggests that an inverted U shaped function could be a good fit.
- Let's try a quadratic function of age.

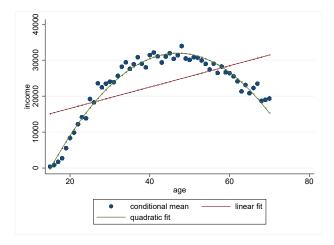
Toivanen	ECON-C4100	Lecture 7 22 / 6	65

	(1)	(2)			
	income	income			
Age	296.8***	2958.2***			
	(13.35)	(74.84)			
Age2		-31.48***			
-		(0.874)			
Constant	10654.7***	-37549.0***			
	(607.6)	(1446.6)			
Observations	5973	5973			
r2	0.0764	0.241			
F	493.9	949.9			
Standard errors in parentheses					

Table: Polynomial income regressions

Standard errors in parentheses

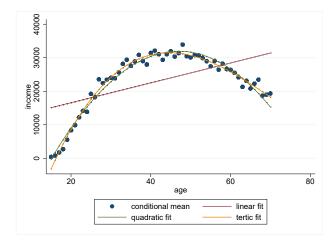
st
 $ho < 0.05$, $^{st st}$ $ho < 0.01$, $^{st st}$ $ho < 0.001$



- How to test for the order of the polynomial?
 - Start from an order that is a reasonable (high) one, such as 3 or 4.
 Test down, i.e., whether the high(er) order term(s) are (jointly) significant.
- Notice: here you have a prior plan.
- Notice #2: a more modern version of this would involve a **semi** or **non-parametric** approach (for later courses).
- Let's test whether a second order polynomial is sufficient by adding a third order term.
- Notice that for pedagogical purposes I am doing things in the **wrong** order.

	(1)	(2)	(3)
	income	income	income
Age	296.8***	2958.2***	4685.0**
	(13.35)	(74.84)	(317.0)
Age2		-31.48***	-75.69***
		(0.874)	(7.934)
Age3			0.346***
			(0.0618)
Constant	10654.7***	-37549.0***	-57597.8*
	(607.6)	(1446.6)	(3856.7)
Observations	5973	5973	5973
r2	0.0764	0.241	0.245
F	493.9	949.9	646.9

Table: Polynomial income regressions



- Can you do more than use polynomials?
- Yes... though polynomials give very good approximations. Y = f(X) + u
- Give f(X) any shape you like.
- We will skip this for now (semi- and nonparametric estimation).

- What if there is reason to believe that the effect of X₁ depends on the value of X₂?
- Examples:
 - **1** Returns to experience (=age) and/or education different by gender.
 - 2 Effect of R&D subsidies different by firm size.

$$Income = f(Age, G, u) = \beta_0 + \beta_{Age} \times Age + \beta_G \times G + u$$

$$Income = f(Age, G, u) = \beta_0 + \beta_{Age} \times Age + \beta_g \times G$$

$$+ \beta_{AgeG} \times Age \times G + u$$

- What is now the expected income | gender?
- What is now the expected income | age?

- How to calculate the effect of age on income?
- Now depends on the value of G directly.
- Notice
 - without the interaction Age × G the effect of age on income independent of G (= the same no matter what value G takes).

2 not true any more with the interaction.

• **Note:** if you add an interaction, make sure to have the original variables in the specification as well.

	(1)	(2)			
	income	income			
Age	298.5***	333.5***			
	(13.23)	(18.80)			
Gender	-4545.0***	-1598.7			
	(422.9)	(1203.3)			
Age_G		-69.16**			
		(26.44)			
Constant	12819.2***	11336.3***			
	(634.6)	(850.8)			
Observations	5973	5973			
r2	0.0939	0.0950			
F	309.4	208.8			
Standard errors in parentheses * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$					

Table: Polynomial income regressions

Toivanen

- What is a transformation of a variable?
- Use some g(X) instead of X.
- Most often use (natural) log of X.
- Sometimes $\frac{1}{X}$.
- Always use a *monotonic* transformation!

- *Y*, *X*, or both (all)?
- Using logs *smooths* the data, i.e., decreases the differences across different values that the variable takes.
- Taking logs allows negative values for a non-negative variable (if value <1)
- On the other hand, cannot take logs if < 0.

$$\ln(Y + \Delta Y) - \ln(Y) \cong \frac{\Delta Y}{Y}$$

1. Only Y

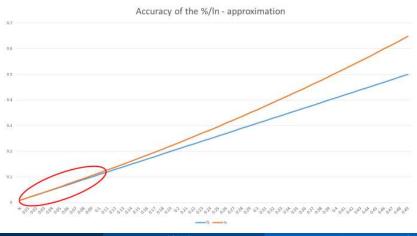
In Income =
$$\beta_0 + \beta_{Age} \times Age + \beta_G \times G + u$$

Income = $e^{\beta_0 + \beta_{Age} \times Age + \beta_G \times G + u}$
= $e^{\beta_0} e^{\beta_{Age} \times Age} e^{\beta_G \times G} e^u$

2. Only *X*

$$\textit{Income} = \beta_0 + \beta_{\ln Age} \times \ln Age + \beta_G \times G + u$$

- Interpretation of $\beta_{\ln Age}$?
- A 1% increase in Age is associated with at 0.01 \times $\beta_{\ln Age}$ change in income.



3. Both Y and X

$$\ln \textit{Income} = \beta_0 + \beta_{\ln \textit{Age}} \times \ln \textit{Age} + \beta_{\textit{G}} \times \textit{G} + u$$

- Interpretation of $\beta_{\ln Age}$?
- $\beta_{\ln Age} = \%$ -change in income due to a 1% increase in Age.
- In other words, $\beta_{\ln Age}$ is the **age elasticity of income**.

Stata code

```
1
   gen lnincome = ln(income)
2
   gen |nage = |n(age)|
3
   regr income age gender if year == 15 & income != . & income_age_m != ., robust
4
       eststo linear
5
   regr Inincome age gender if year == 15 & income != . & income_age_m != ... robust
6
7
       eststo loglin
   regr income lnage gender if year == 15 & income != . & income_age_m != ., robust
8
       eststo linlog
9
   regr Inincome Inage gender if year == 15 & income != . & income_age_m != ., robust
10
       eststo loglog
11
  estout linear loglin linlog loglog, cells(b(star fmt(3)) se(par fmt(2))) ///
12 stats(r2 r2_a F N, fmt(%9.5f %9.5f %9.0g))
```

	(1)	(2)	(3)	(4)
	income	Inincome	income	Inincome
Age	298.5***	0.0206***		
	(13.23)	(0.000723)		
Gender	-4545.0***	-0.143***	-4503.1***	-0.140***
	(422.9)	(0.0226)	(412.7)	(0.0217)
InAge			14059.7***	0.982***
			(486.4)	(0.0269)
Constant	12819.2***	8.970***	-26075.9***	6.236***
	(634.6)	(0.0350)	(1806.8)	(0.100)
Observations	5973	5695	5973	5695
r2	0.0939	0.130	0.137	0.194
F	309.4	425.3	475.3	686.8

Table: Polynomial income regressions

* p < 0.05, ** p < 0.01, *** p < 0.001

Interpretations of $\beta_{Age}, \beta_{\ln Age}$ (mean age = 43)

• Linear: a 1 unit = 1 year (\approx 2.3%) increase in age increases income by

300€

- Log-linear: a 1 unit = 1 year increase in age increases income by
 2.1% → 0.021 × 23296.67€≈ 490€
- Linear-log: a 1% (note: ln(1.01) \approx 0.01) increase in age (\approx 0.43 years) increases income by

 $0.01 \times 14059 \in \approx 140 \in \rightarrow \text{ effect of } 1 \text{ year increase} \approx 2.5 \times 140 \in \approx 350 \in 1000$

- Log-log: a 1% increase in age increases income by 0.982%. Effect of a 1 year increase
 - $\approx 2.5 \times 0.00982 \times 23296.67 {\textcircled{\mbox{e}}} \approx 570 {\textcircled{\mbox{e}}}$

Interpretations of $\beta_{Age}, \beta_{\ln Age}$ (mean age = 43)

- Using the log of the dependent variable \rightarrow coefficient interpretation in **percent**.
- Typically, in economic data, using log of explanatory variable leads to higher *R*².
- Many economic variables have a lower limit (income cannot be negative), but OLS assumes that the support is the real line.

 \rightarrow log transformation allows coverage of the real line.

 \rightarrow log transformation necessitates Y(X) > 0.

- 1 Internal validity.
- External validity.

- 1 Omitted variable bias.
- 2 Functional form misspecification (mistake).
- 3 Measurement error in variable(s).
- **4** Sample selection (OVB).
- **5** Simultaneous (reverse) causality (OVB).
- 6 Non-homoskedastic errors.

- The relevant condition the one we have already discussed.
- "Judicious" choice of controls.
- Add variables.
- There are further solutions. We will get to these.

- How can you be sure?
 - **1** Tests between the functional forms you try.
 - 2 Note: can easily test only those functional forms that are "nested".

Example #1: 1st and 2nd order polynomial **nested** (= one is a restricted version of the other).

Example #2: log-log and linear are non-nested.

• Try out different ones and check robustness of your results (see earlier).

Internal validity 3. - Measurement error in variables

• Case #1: Y measured with error, error random.

$$Y_{observed} = Y + error$$

• Let's have a look at our regressions:

Regression we'd like to estimate:

$$Y = \beta_0 + \beta_1 X + u$$

Regression we can estimate:

$$Y_{observed} = Y + error = \beta_0 + \beta_1 X + u + error$$
$$= \beta_0 + \beta_1 X + v$$

- Measurement error in Y not a big problem (as long as random).
- Leads to higher standard errors, but no bias.

• Case #2: X measured with error, error random.

$$X_{observed} = X + error, \ \rho_{X,error} = 0$$

- This is the case of so-called **classical errors-in-variables**. This case is "well-behaved".
- Let's have a look at our regression:

Internal validity 3. - Measurement error in variables

We would like to estimate

$$Y = \beta_0 + \beta_1 X + u$$

• However we only observe $X_{observed} = X + error$. Hence we need to rewrite

$$Y = \beta_0 + \beta_1 X + u$$

= $\beta_0 + \beta_1 X_{observed} - \beta_1 (X_{observed} - X) + u$
= $\beta_0 + \beta_1 X_{observed} - \beta_1 error + u$
= $\beta_0 + \beta_1 X_{observed} + v$

Internal validity 3. - Measurement error in variables

• One can show (see SW ch. 9.2):

$$\hat{\beta}_1 = \frac{\sigma_X^2}{\sigma_X^2 + \sigma_{error}^2} \beta_1$$

•
$$\frac{\sigma_{\chi}^2}{\sigma_{\chi}^2 + \sigma_{error}^2} =$$
 signal to noise - ratio.

- The larger is the role of the error, i.e., the larger is σ^2_{error} relative to σ^2_X , the more biased is $\hat{\beta_1}$.
- This is so-called **Attenuation bias**.

- Solution #1: Get better measures.
- Solution #2: Get a measure of σ^2_{error} .
- Solution #3: A technical solution (instrumental variables) that we will get to later.

- Your observations are not a random sample of the underlying population.
- Example #1: Estimate the returns to entrepreneurship using 5 year old firms.
- The non-profitable entrants exit.
- Example #2: Estimate the returns to graduating quickly.
- Those who graduate quickly have unobservable skills that make them (un)attractive to employers.

- Example #3: estimate effects of R&D subsidies.
- Firms that get subsidies not avg. firms.
- Rule: think through and understand selection into your sample.
- Model selection into the sample.
- We will discuss this later, but in general is an advanced topic.

- Sample selection can threaten internal validity the parameters you obtain for the population of interest are biased.
- Sample selection can also threated the external validity of your exercise, i.e., even if you get unbiased estimates for the population in question, your results do not generalize.

- Think of the determination of prices and quantities.
- Price affects how much is sold and produced.
- How much is bought and produced affects the price.

 \rightarrow simultaneous causality.

• We will come back to this.

Internal validity 6. - Heteroskedasticity

- Deviations from homoskedasticity can take different forms depending on the data.
- With sequential observations, maybe also correlation over time (autocorrelation).
- With e.g. geographical data, correlation across observation units (clustering).
- Affects statistical precision (=standard errors) of individual coefficients, nothing else.
- Can be corrected by using **robust** standard errors (with potential loss of efficiency but robust se's can be smaller than homosc. se's).
- In data with relevant other dimensions (e.g. geographical locations), clustered se's may be more appropriate than regular robust se's.

Stata code

```
1 regr income age gender if year == 15 & income != . & income_age_m != .
2 eststo linear
3 regr income age gender if year == 15 & income != . & income_age_m != ., robust
eststo linear_het
```

	(1)	(2)
	homosc.	heterosk. robust
Age	298.5***	298.5***
	(13.23)	(11.82)
Gender	-4545.0***	-4545.0***
	(422.9)	(421.6)
Constant	12819.2***	12819.2***
	(634.6)	(566.5)
Observations	5973	5973
r2	0.0939	0.0939
F	309.4	369.3

Table: Polynomial income regressions

* p < 0.05, ** p < 0.01, *** p < 0.001

• Econometrics:

A branch of economics in which economic theory and statistical methods are fused in the analysis of numerical and institutional data

Hood, W. & Koopmans, T. (1953). Studies in econometric method. Cowles Commission Monograph no. 14, Wiley

- External validity = results generalize to other settings than the one studied.
- Any (material) change to any of the components of your study jeopardizes external validity.
- 1 Differences in (applicable) theory.
- 2 Differences in statistical method.
- **3** Differences in data (including in populations).
- **4** Differences in institutions.

- Example: Do our income age results hold for (an)other year in the FLEED data?
- Let's compare results from current year 15 to year 10.

External validity: comparison of results from two very similar data

Table: Polynomial income regressions

	(1)	(2)			
	year 15	year 10			
Age	298.5***	216.4***			
	(13.23)	(11.74)			
Gender	-4545.0***	-4765.7***			
	(422.9)	(361.7)			
Constant	12819.2***	12167.0***			
	(634.6)	(568.5)			
Observations	5973	5779			
r2	0.0939	0.0803			
F	309.4	252.2			
Standard errors in parentheses					
* $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$					

- Is any study externally valid?
- Yes and no.
- Best to ensure internal validity, and conduct many studies.