ECON-C4100 - Capstone: Econometrics I

Lectures 10&11: Causal parameters part II - Instrumental variables regression

Otto Toivanen

Learning outcomes

- At the end of these lectures, you understand
- 1 what simultaneous causality means
- 2 what is meant by an endogeneity problem
- 3 why it causes bias in the parameters
- 4 what an instrumental variable is and why it solves the endogeneity problem
- 5 what characteristics are required of an instrumental variable
- 6 what one should pay attention to when using an instrumental variable

Learning outcomes

- At the end of these lectures, you understand
- 7 what a **reduced form** equation/parameter is
- 8 what a **structural** equation/parameter is
- 9 how to "manually" estimate a model with simultaneous causality
- 10 what **2SLS** estimation means, how you do it and why it is used

Overview

- Demand experiment, market data analysis.
- Simultaneous causality.
- IV regression and 2SLS.
- NOTE: Instrumental variables are used in a large variety of contexts.
- We are exploring it in a particular but historically and practically very important setting.
- In Applied Microeconometrics I and II you will learn more about IV, its use and the interpretation of results.

Simultaneous causality

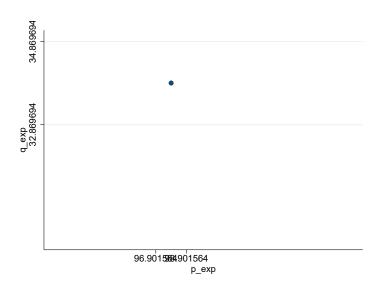
- Your task is to estimate the demand function for a homogeneous good sold at unit price.
- How would you do this in an experiment?

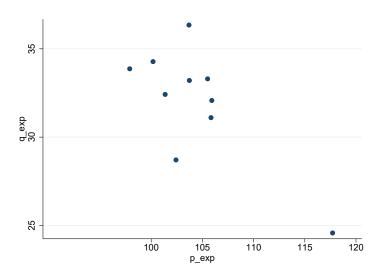
Simultaneous causality

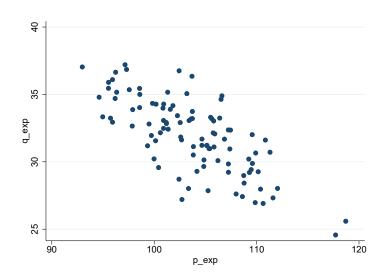
- Your task is to estimate the demand function for a homogeneous good sold at unit price.
- How would you do this in an experiment?
- By changing the price yourself ("at random") and observing how many units are sold at each price.

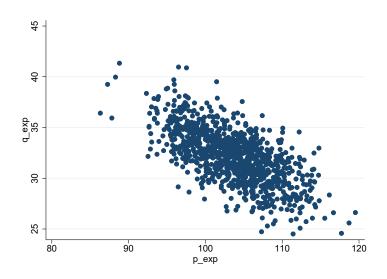
- What does "choosing prices" at random mean?
 - 1 We offer different randomized prices to individual consumers
 - 2 We offer different randomized prices each to a group of consumers
 - 3 Think either of geographically separate markets, or a given market over time.

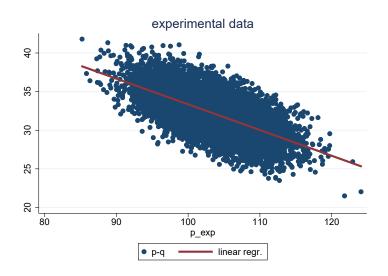
- We record quantity sold at different prices
- We study the outcomes
- For illustration, I have conducted such an experiment in my computer.
- We will get to the details of how I do it later, but now just imagine I have conducted the experiment in a real market.











• Question: why does sold quantity vary between two experiments where the prices are identical?

- Question: why does sold quantity vary between two experiments where the prices are identical?
- Answer: Demand is stochastic from the viewpoint of the econometrician.
- Let's study a simple set-up (the one I used in the experiment) in more detail.

Linear demand

Demand function

$$Q_i = a - bP_i + \epsilon_i$$

- a = average intercept.
- *b* = slope.
- $\epsilon_i = -$ market specific deviation from the average intercept.
- i = a particular market realisation.
- Question: where does this demand function come from?
- Answer: from consumers making utility-maximizing choices.
- Exercise: what does the utility function look like that produces a linear demand function?

Toivanen ECON-C4100 Lectures 10&11

14 / 69

Linear demand

Inverse demand function

$$P_{i} = \frac{a}{b} - \frac{1}{b}Q_{i} + \frac{1}{b}\epsilon_{i} = \alpha + \beta Q_{i} + \tilde{\epsilon}_{i}$$

Regression analysis

. regr q_exp p_exp

Source	ss	df	MS		Number of obs		10,000 6935.10
Model Residual	27500.3163 39645.8875	1 9,998	27500.3163 3.96538183	B Prob B R-sq	,	= = d =	0.0000 0.4096 0.4095
Total	67146.2038	9,999	6.71529193		-	=	1.9913
q_exp	Coef.	Std. Err.	t	P> t	[95%	Conf.	Interval]
p_exp _cons	3329958 66.65341	.0039986 .4145481	-83.28 160.79	0.000	3408 65.84		3251577 67.466

Robustness analysis

```
. gen p_exp^2 = p_exp^2
```

. regr q_exp p_exp*

	Source	SS	df	MS	Number of obs F(2, 9997)	=	10,000 3468.48
	Model Residual	27506.3195 39639.8843	2 9,997	13753.1598 3.96517798	Prob > F R-squared	=	0.0000 0.4096
_	Total	67146.2038	9,999	6.71529191	Adj R-squared Root MSE	=	0.4095 1.9913

q_exp	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
p_exp	4806486	.1200668	-4.00	0.000	7160038	2452935
p_exp2	.0007134	.0005798	1.23	0.219	0004231	.0018498
_cons	74.27605	6.208917	11.96	0.000	62.10532	86.44677

```
. scalar alpha_exp = - _b[_cons] / _b[p_exp]
. scalar beta_exp = -1 / _b[p_exp]
. scalar list alpha_exp beta_exp
alpha_exp = 200.16291
beta exp = 3.003041
```

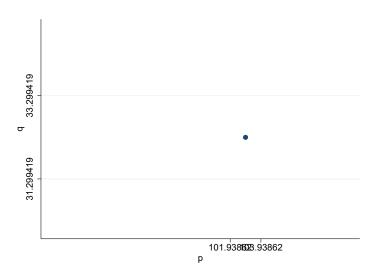
Market outcomes

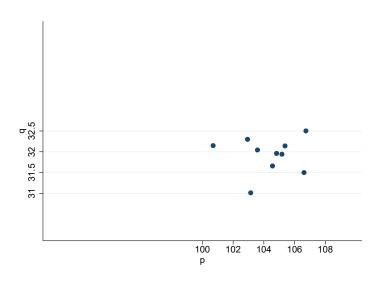
- Assume you are an outside observer of a market say a prospective buyer of a firm or the competition authority.
 - \rightarrow you cannot run experiments.
- You would still want to know demand (to calculate e.g. price cost margins, consumer surplus).

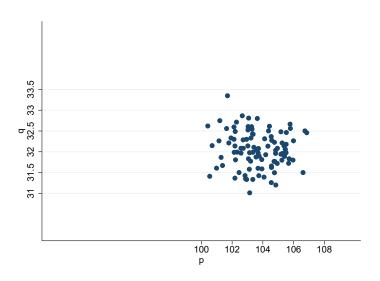
Market outcomes

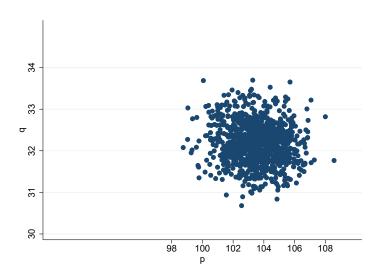
- We collect data from the market.
- We observe pairs (P_i, Q_i) , i = market.
- Let's think how such pairs are determined, using a simple monopoly model.
- Let's allow a monopolist to choose prices instead in the same market.

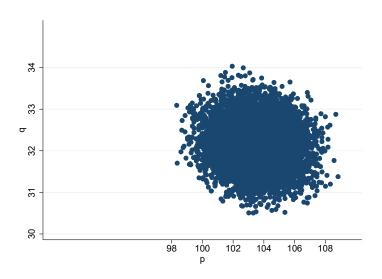
Market outcome data

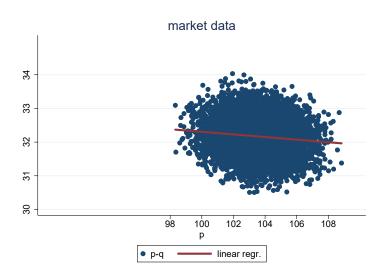




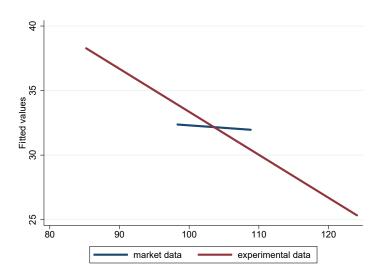








Market outcome data



Regression using market data

. regr q p

Source	SS	df	MS	Number of ob	-	10,000
Model Residual	33.3509286 2468.76463	1 9,998	33.3509286 .246925848		= = d =	0.0100
Total	2502.11556	9,999	.250236579		a =	
q	Coef.	Std. Err.	t	P> t [95%	Conf.	Interval]
p _cons	0386712 36.17252	.0033275		0.0000451 0.000 35.49		0321487 36.84776

Parameter comparison for demand and inverse demand functions

```
. scalar alpha ols
                      = - b[ cons] / b[p]
. scalar beta ols
                     = -1 / b[p]
. scalar a ols = b[ cons]
. scalar b ols = -b[p]
. scalar list a exp b exp a ols b ols
    a exp = 66.653405
    b = xp = .33299579
    a ols = 36.172515
    b ols = .03867121
. scalar list alpha exp beta exp alpha ols beta ols
alpha exp = 200.16291
beta exp = 3.003041
alpha ols = 935.38611
 beta ols = 25.859029
```

Challenge with market data

- Price quantity pairs are a leading example of simultaneous causality.
- This generalizes to more complicated markets with:
 - 1 differentiated goods
 - 2 multiproduct firms
 - 3 endogenous entry and exit
 - 4 dynamic considerations (e.g. collusion, durable goods, ...)
 - 6 advertising
 - **6** ...

Challenge with market data

- Need to address simultaneous causality.
- \bullet \rightarrow need to understand and exploit determinants of price and quantity.
- How did the experiment solve the problem?
- By having the researcher shift (=change) prices instead of the firm.

Linear monopoly

Demand function

$$Q_i = a - bP_i + \epsilon_i$$

- a = average intercept.
- *b* = slope.
- $\epsilon_i = =$ market specific deviation from the average intercept.
- NOTE: we assume the firm observes all these parameters.
- Question: what if the firm did not observe our "unobservable", i.e., $\epsilon_i = ?$

Linear monopoly

Inverse demand function

$$P_{i} = \frac{a}{b} - \frac{1}{b}Q_{i} + \frac{1}{b}\epsilon_{i} = \alpha + \beta Q_{i} + \tilde{\epsilon}_{i}$$

How to get the supply function?

- Inverse demand function.
- Need to specify costs of production: constant marginal cost

$$c_i = c_0 + c_1 z_i + \eta_i$$

 Note: here one should have an understanding of the production technology.

Toivanen ECON-C4100 Lectures 10&11 34 / 69

$$c_i = c_0 + c_1 z_i + \eta_i$$

- c_0 = average of marginal cost when $z_i = 0$.
- $z_i = a$ component of marginal cost that varies across markets (cost of raw materials / unit of output, cost of labor / unit of output, ...)
- η_i = "shock" to average marginal cost / deviation from the avg. This is observed by the firm but not by the econometrician.
- If the firm did not observe η_i , how could it take it into account in its decision?

Toivanen ECON-C4100 Lectures 10&11 35 / 69

The monopolist's problem:

$$max_{P_i}\pi_i = (P_i - c_i) \times Q_i$$

Equilibrium price:

$$P_i = rac{a}{2b} + rac{1}{2}c_i + rac{1}{2b}\epsilon_i$$

$$= rac{a}{2b} + rac{1}{2}(c_0 + c_1z_i + \eta_i) + rac{1}{2b}\epsilon_i$$

36 / 69

Equilibrium quantity

$$Q_i = \frac{a}{2} - \frac{b}{2}(c_0 + c_1 z_i + \eta_i) + \frac{1}{2}\epsilon_i$$

Equilibrium price and equilibrium quantity are functions of:

 \bigcirc (fixed) demand parameters a and b

- \bigcirc (fixed) demand parameters a and b
- 2 (fixed) supply side parameters c_0 and c_1

- (fixed) demand parameters a and b
- **2** (fixed) supply side parameters c_0 and c_1
- 3 variable cost determinant zi

- \bigcirc (fixed) demand parameters a and b
- **2** (fixed) supply side parameters c_0 and c_1
- variable cost determinant z_i
- **4** cost shock η_i

- \bigcirc (fixed) demand parameters a and b
- 2 (fixed) supply side parameters c_0 and c_1
- 3 variable cost determinant z_i
- **4** cost shock η_i
- **5** demand shock ϵ_i

Market data challenge

- Both eq. price and eq. quantity are functions of:
- $oldsymbol{0}$ demand shock ϵ_i
- 2 supply (cost) shock η_i
 - → simultaneous causality.
 - \rightarrow price is an endogenous variable (ϵ_i is the "omitted" variable that affects both price and quantity).

Market data solution

- We want to learn the demand curve.
- Could we mimic the experimental approach with market data?
- Needed: something that shifts firm's (supply) decision at "random".
- Random = without being affected by demand shock ϵ_i .

40 / 69

- Imagine the firm still sets the price,
- But we choose (=randomize) $z_i = z_i^{exp}$.
- Recall that $c_i = c_0 + c_1 z_i^{exp} + \eta_i$.
 - \rightarrow we "shift" firm's marginal cost.

ECON-C4100

Now the firm sets each time the price

$$P_{i} = \frac{a}{2b} + \frac{1}{2}(c_{0} + c_{1}z_{i}^{exp} + \eta_{i}) + \frac{1}{2b}\epsilon_{i}$$

- \rightarrow equivalent to running an experiment.
- Change in price due to (known) change in z_i^{exp} .

42 / 69

- Imagine we raise z_i^{exp} by 1 unit.
- By how much does
 - 1 marginal cost $c_i = c_0 + c_1 z_i + \eta_i$ change? Answer: c_1 .
 - 2 price change? Answer: $\frac{1}{2}c_1$ (by the equilibrium price equation).
 - 3 demand change? Answer: $-b\frac{1}{2}c_1$ (by the equilibrium quantity equation).

- How could we get the slope of the demand function from these changes?
- Yes, by dividing the change in quantity by the change in demand:

$$-\frac{b\frac{1}{2}c_1}{\frac{1}{2}c_1} = -b$$

- How could we get those numbers?
- 1. Regress P_i on z_i^{exp} to get $\frac{1}{2}c_1$.

$$P_i = \gamma_0 + \gamma_1 z_i + e_i$$

$$\gamma_1 = \frac{1}{2}c_i$$

2. Regress Q_i on z_i^{exp} to get $-b\frac{1}{2}c_1$.

$$Q_i = \mu_0 + \mu_1 z_i + w_i$$

$$\mu_1 = -b\frac{1}{2}c_i$$

• The are called reduced form equations.

• The regression equations we estimated, i.e.,

$$P_i = \gamma_0 + \gamma_1 z_i + e_i$$

$$Q_i = \mu_0 + \mu_1 z_i + w_i$$

are called reduced form equations.

What are reduced form equations?

- Proper definition: a **reduced form equation** is an equation whose parameters are functions of the **structural** parameters.
- In our model, structural parameters are a, b, c_0 and c_1 .
 - 1 They are building blocks of the theory model
 - 2 They are determined outside our model
 - They are not functions of any other parameters (or variables) of the model
- The parameters $(\gamma_0, \gamma_1, \mu_0, \mu_1)$ of the two regressions $(P_i \text{ on } z_i \text{ and } Q_i \text{ on } z_i)$ we ran are functions of the structural parameters.

What are reduced form equations?

- Commonly used meaning: a **reduced form equation** is an equation that is not derived from a theoretical model.
- Example: The regressions in the papers we have studied, i.e.,
 - Bronnenberg et al., 2015.
 - Kleven et al., 2011.

- When would this work?
 - 1 z_i^{exp} has to have an impact on the decision of the firm, i.e., have an effect on c_i .
 - $\rightarrow c_1$ cannot be (insignificantly different from) zero.
 - 2 z_i^{exp} may not have an effect on Q_i directly, but only via c_i .

Let's regress P on z.

. regr p z

Source	SS	df	MS	Number of obs	=	10,000 7814.03
Model Residual	9783.4964 12517.9151	1 9,998	9783.4964 1.25204192	Prob > F	=	0.0000 0.4387 0.4386
Total	22301.4115	9,999	2.23036418		=	1.1189
p	Coef.	Std. Err.	t	P> t [95% Co	nf.	Interval]
z _cons	.4986242 101.0138	.0056407 .0304066		0.000 .487567 0.000 100.954		.5096812 101.0734

```
. scalar red_1 = b[z]
```

Let's regress Q on z.

. regr q z

Source	SS	df	MS		er of obs	=	10,000
Model Residual	1121.21997 1380.89558	1 9,998	1121.21997 .138117182	7 Prob 2 R-squ		=	8117.89 0.0000 0.4481 0.4481
Total	2502.11556	9,999	.250236579			=	.37164
q	Coef.	Std. Err.	t	P> t	[95% C	onf.	Interval]
z _cons	1687997 33.01561	.0018735 .0100991	-90.10 3269.17	0.000	17247: 32.995		1651273 33.0354

. scalar red_2 = _b[z]

Let's calculate b.

```
. scalar b_red = red_2 / red_1
. scalar list b_red
    b_red = -.33853094
```

Instrumental variable

- Instrumental variable = a variable that causes variation in price (explanatory variable X) but does not affect demand (dependent variable Y) directly.
- If the variable cost component z_i varies "at random", i.e., without
 affecting demand directly,
 - ightarrow market data allows us to use the "experimental approach" indirectly.

Approach #2

- Could we proceed differently?
 - **1** Regress P_i on z_i . Calculate predicted price $\hat{P}_i = \hat{\gamma}_0 + \hat{\gamma}_1 z_i$.
 - **2** Regress Q_i on \hat{P}_i to get b (and a).
- Equation $Q_i = a bP_i + \epsilon_i$ is a **structural** equation. Why?

Approach #2

- Could we proceed differently?
 - **1** Regress P_i on z_i . Calculate predicted price $\hat{P}_i = \hat{\gamma}_0 + \hat{\gamma}_1 z_i$.
 - **2** Regress Q_i on \hat{P}_i to get b (and a).
- Equation $Q_i = a bP_i + \epsilon_i$ is a **structural** equation. Why?
- Because it is a function of structural parameters only $(+ P_i)$ which is determined within the model.

Approach #2

- The parameters of a structural equation are part of the model primitives, i.e.,
 - they are not determined within the model
 - they are not functions of other parameters of the model
- Reduced form parameters are functions of structural parameters.

Regress P on z, create predicted values

. regr p z

	Source	SS	df	MS	Number			10,000
-	Model Residual	9783.4964 12517.9151	1 9,998	9783.4964 1.25204192	2 R-squa	F red	= =	7814.03 0.0000 0.4387
-	Total	22301.4115	9,999	2.23036418	- Adj R- 3 Root M	*	d = =	0.4386 1.1189
	р	Coef.	Std. Err.	t	P> t	[95%	Conf.	Interval]
_	z	.4986242	.0056407	88.40	0.000	.4875	673	.5096812

.0304066 3322.11

0.000

_cons

(option xb assumed; fitted values)

101.0138

100.9542

101.0734

[.] predict p hat

Regress Q on \hat{P}

. regr q p_hat

Source	SS	df	MS		Number of obs		10,000
Model Residual	1121.21997 1380.89558	1 9,998	1121.21997	R-squ	> F ared	= = =	8117.89 0.0000 0.4481 0.4481
Total	2502.11556	9,999	.250236579		-squared	=	.37164
q	Coef.	Std. Err.	t	P> t	[95% (Conf.	Interval]
p_hat cons	3385309 67.21192	.0037573	-90.10 172.80	0.000	3458 66.44		3311659 67.97433

Why / how do these approaches work?

- **1** Regress P_i on z_i to get $\frac{1}{2}c_1 = \frac{cov(P_i, z_i)}{var(z_i)}$.
- 2 Regress Q_i on z_i to get $-b\frac{1}{2}c_1 = \frac{cov(Q_i,z_i)}{var(z_i)}$.

$$\rightarrow -b = \frac{cov(Q_i, z_i)}{cov(P_i, z_i)}$$
.

$$b = \frac{cov(Q_i, \hat{P}_i)}{var(\hat{P}_i)} = \frac{cov(Q_i, \hat{\gamma}_0 + \hat{\gamma}_1 z_i)}{var(\hat{\gamma}_0 + \hat{\gamma}_1 z_i)}$$

$$\rightarrow b = \frac{\hat{\gamma}_1 cov(Q_i, z_i)}{\hat{\gamma}_1^2 var(z_i)} = \frac{1}{\hat{\gamma}_1} \frac{cov(Q_i, z_i)}{var(z_i)}$$

$$\text{because } \hat{\gamma}_1 = \frac{cov(P_i, z_i)}{var(z_i)} \rightarrow$$

$$b = \frac{var(z_i)}{cov(P_i, z_i)} \frac{cov(Q_i, z_i)}{var(z_i)} = \frac{cov(Q_i, z_i)}{cov(P_i, z_i)}$$

2SLS / instrumental variables regression

- In practice, want to use the so called Two Stage Least Squares (2SLS) or instrumental variables regression command. In Stata, ivregress or from SSC ivreg2.
- Manual and ivregress command(s) produce same point estimates, but the latter corrects the standard errors.
- This is important, as the manual approach yields too small standard errors: It ignores the uncertainty in the parameters $\hat{\gamma}_0$ and $\hat{\gamma}_1$ used to calculate \hat{P}_i .

2SLS estimation of demand

```
. ivregress 2sls q (p = z)

Instrumental variables (2SLS) regression

Number of obs = 10,000
Wald chi2(1) = 2506.07
Prob > chi2 = 0.0000
R-squared = .
Root MSE = .66888

q Coef. Std. Err. z P>|z| [95% Conf. Interval]
```

ď	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
	3385309 67.21192				351785 65.83988	

Instrumented: p Instruments: z

Requirements for an instrument

- Think of our normal regression $Y = \beta_0 + \beta_1 X + u$.
 - Instrument relevance: The instrument Z has to affect the (endogenous) explanatory variable X of the equation of interest ("2nd stage equation") in the equation

$$X = \alpha_0 + \alpha_1 Z + v.$$

2 Instrument exogeneity: The instrument Z may not be correlated with the error term of the equation of interest, i.e.,

$$cov(Z, u) = 0.$$

Instrument relevance / Weak instrument

- Relevance = instrument Z needs to be "correlated enough" with the endogenous explanatory variable X.
- What happens when $cov(Z, X) \rightarrow 0$?
- β_1 becomes undefined!

Instrument relevance / Weak instrument

- \rightarrow you want to check that your instrument is relevant.
- = you don't have a **weak instrument**.
- Rule of thumb: F-statistic of Z when you regress X on Z (and possible further controls) > 10.
- Note: with 1 instrument, F-test is the square of the t-test.
- Notice that the test for weak instruments is stricter than our usual 5% confidence level (t-stat 2).

2SLS estimation

. estat firststage

First-stage regression summary statistics

Variable	R-sq.	Adjusted R-sq.	Partial R-sq.	F(1,9998)	Prob > F
р	0.4387	0.4386	0.4387	7814.03	0.0000

Minimum eigenvalue statistic = 7814.03

Critical Values Ho: Instruments are weak	<pre># of endogenous regressors: 1 # of excluded instruments: 1</pre>			
2SLS relative bias	5% 10% 20% 30% (not available)			
2SLS Size of nominal 5% Wald test LIML Size of nominal 5% Wald test	10% 15% 20% 25% 16.38 8.96 6.66 5.53 16.38 8.96 6.66 5.53			

Instrument relevance / Weak instrument

- There are more sophisticated tests.
- There are ways of allowing for weak instruments.
- We leave all that for later courses.
- Good instruments are hard to find...

Instrument correlated with error

= "exogeneity" assumption or exclusion restriction:

$$\mathbb{E}[u|\mathbf{X}]=0$$

If this condition does not hold \rightarrow biased estimate of β_1 .

• Similar to omitted variable bias.

68 / 69

Instrument correlated with error

- What can be done?
 - 1 Strong story for why no correlation between instrument and error.
 - 2 With multiple instruments, may do tests.
 - 3 There are ways of allowing for (some) correlation to check robustness of your results (for later).