3 Stochastic dependence and independence

In this exercise you learn techniques for investigating when given random variables are mutually independent. You also get to analyse events concerning infinite random sequences.

3.1 Independent pairs. Let X and Y be \mathbb{R} -valued random variables defined on a common probability space $(\Omega, \mathscr{F}, \mathsf{P})$.

- (a) Show that if X and Y are independent, then f(X) and g(Y) are independent for any Borel-measurable functions $f, g: \mathbb{R} \to \mathbb{R}$.
- (b) Show that if f(X) and g(Y) are independent for all Borel-measurable functions $f, g: \mathbb{R} \to \mathbb{R}$, then X and Y are independent.
- (c) Assume that P[X + Y = 42] = 1. Is it possible that X and Y are independent?

3.2 Independence of three sigma-algebras. Let $(\Omega, \mathscr{F}, \mathsf{P})$ be a probability space and let $\mathscr{G}_1, \mathscr{G}_2, \mathscr{G}_3 \subset \mathscr{F}$ be sigma-algebras on Ω . Assume that \mathscr{G}_k is generated by a π -system \mathscr{I}_k which contains Ω .

(a) Show that $\mathscr{G}_1, \mathscr{G}_2, \mathscr{G}_3$ are independent if and only if

$$\mathsf{P}\big[I_1 \cap I_2 \cap I_3\big] = \mathsf{P}[I_1] \mathsf{P}[I_2] \mathsf{P}[I_3]$$

for all $I_1 \in \mathscr{I}_1, I_2 \in \mathscr{I}_2, I_3 \in \mathscr{I}_3$.

(b) Why did we require that \mathscr{I}_k contains Ω ?

3.3 Product of independent random signs. Let $(X_0, X_1, X_2, ...)$ be a sequence of independent random integers such that $\mathsf{P}[X_n = -1] = \mathsf{P}[X_n = +1] = \frac{1}{2}$ for all n, and let

$$Z_n = X_0 X_1 \cdots X_n.$$

- (a) Are Z_0 and Z_2 independent?
- (b) Is the collection $\{Z_0, Z_1, Z_2\}$ independent?
- (c) Is the collection $\{Z_0, Z_1, Z_2, ...\}$ independent?

Justify your answers carefully.

MS-E1600 Probability Theory Department of Mathematics and Systems Analysis Aalto University

3.4 Decimal digits of a uniform random number. Let P be the uniform probability measure on the unit interval [0,1] (see Example II.12). Let $D_k(\omega)$ be the k-th digit in the decimal representation of a number $\omega \in [0, 1]$, so that

$$\omega = \sum_{k=1}^{\infty} D_k(\omega) \, 10^{-k},$$

and denote the run length of zeroes starting from the k-th digit by

$$Z_k = \begin{cases} 0, & \text{if } D_k \neq 0, \\ m, & \text{if } D_k = D_{k+1} = \dots = D_{k+m-1} = 0 \text{ and } D_{k+m} \neq 0. \end{cases}$$

For this exercise you may assume it known that D_1, D_2, \ldots are mutually independent random variables (on the sample space $\Omega = [0, 1]$).

- (a) Show that $\mathsf{P}[Z_k = m] = \frac{9}{10^{m+1}}$ for all integers $m \ge 0$ and $k \ge 1$.
- (b) Show that $\mathsf{P}[Z_k = 42 \text{ for infinitely many } k] = 1.$
- (c) Show that $\mathsf{P}[Z_k = k \text{ for infinitely many } k] = 0.$

 ${\bf Hint.} Borel-Cantelli\ lemmas.$

3.5 Infinite-horizon events. Let X_1, X_2, X_3, \ldots be a sequence of random numbers (\mathbb{R} -valued random variables) defined on a probability space $(\Omega, \mathscr{F}, \mathsf{P})$. Which of the following events belong to the tail sigma-algebra $\mathcal{T}_{\infty} = \bigcap_{n \geq 1} \sigma(X_{n+1}, X_{n+2}, \ldots)$? Justify your answers carefully.

(a):
$$\left\{ \omega \in \Omega \mid \lim_{n \to \infty} X_n(\omega) \text{ exists} \right\}$$

(b): $\left\{ \omega \in \Omega \mid \sum_{n=1}^{\infty} X_n(\omega) \le 42 \right\}$
(c): $\left\{ \omega \in \Omega \mid \forall \ell \in \mathbb{N} \exists n \in \mathbb{N} \text{ such that } X_n(\omega) = X_{n+1}(\omega) = \dots = X_{n+\ell}(\omega) \right\}$
= {there exists arbitrarily long repetitions in the sequence X_1, X_2, \dots }