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1 Introduction

Various optical phenomena are caused by scattering of light: for example the
blue colour of the sky, the white colour of milk and the colours of a rainbow.
The colour of the sky is due to light scattering from air molecules, whose size
is much smaller than the wavelength of light. These small particles scatter light
in all directions, but the amount of scattering is larger for shorter wavelengths,
which means that blue light is scattered the most. The light coming from the sky
is normally scattered, which is why sky has a blue colour. The behavior is de-
scribed by Rayleigh scattering.[1] Milk is white, because it consists of colloidal
particles, whose size is of the order of the wavelength of light. Scattering from
such particles can be understood by examining the Mie solution to Maxwell’s
equations.[1] In general, particles whose size is larger than the wavelength of
light, scatter light in all directions almost equally. That is why colloidal disper-
sions such as milk or paint look white. The colour of a rainbow is caused by dis-
persion of light from rain drops. The wavelength of incident light determines
to which angle it is refracted to. Shorter wavelengths get refracted to smaller
angles, which causes the spectrum of light being displayed on a rainbow.

Photonic bandgaps occur in materials where the structure of the material causes
constructive and destructive interference of the scattered light. Scattering ac-
companied with interference behaviour is called diffraction. Some examples of
photonic bandgap (PBG) materials found in nature are the vivid colours of the
eye in a peacock feather, the green iridescent colour of certain beetles, the blue
colour of certain butterflies and the colours of the mineral opal (see Fig. 1).[2, 3]
Usually colours are caused by molecules, which absorb light, but these “struc-
tural colours” are caused by forbidden solutions of the Maxwell’s equations. In
all of the examples above, the colour displayed is caused by destructive and
constructive interference taking place from an ordered, periodic structure and
not by absorption of light. These structural colours are usually highly angle
dependent and they often exhibit a metallic glow.

1.1 Photonic crystals and semiconductors

The main feature of PBG materials is the periodic modulation of refractive index
along one, two or three directions of space. If the scattering centers are regularly
arranged in a medium, light is coherently scattered. In this case, interference will
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Figure 1: Many colours in nature are caused by photonic bandgaps. Exam-
ples of these are the eye in a peacock feather, shells of certain beetles, the
wings of the Blue Morpho butterfly, and the mineral opal.

eventually cause that some frequencies will not be allowed to propagate, giving
rise to forbidden and allowed bands. What is more, by introducing defects in the
PBG materials, we can introduce allowed energy levels in the gap in analog to
doping of semiconductors with impurities.[4] All these facts permit to establish
a parallelism between the formalism used for electrons in ordinary crystals and
that for photons in PBG materials.

Fig. 2 shows examples of band structures for semiconductor and for a photonic
crystal. For semiconductors, there is a gap between certain energy levels, which
is marked white in the figure. This is called the electronic band gap and it is what
gives semiconductors their unique properties. Electrons with certain energies
are not allowed to propagate through the structure.

The figure on the bottom in Fig. 2 is a band structure for a fictional photonic
crystal. A frequency (ω) range where there exists no bands spreads out through
the entire x-axis. This is called a photonic band gap and it is marked white in
the figure. The band structure is similar to the electronic band structure of the
semiconductor. Comparing the electronic and photonic band structures, it is
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Figure 2: Examples of band diagrams for free electrons and electrons con-
fined in a crystal lattice (top) and for photons in vacuum and in a periodic
dielectric. [5]

easy to understand why PBG materials are sometimes called semiconductors of
light.

In figure 3, it is shown how the calculated energy band gap is related to the
measured optical response in relfectance, transmittance and diffuse intensity in
an artificial opal -type PBG structure.

1.2 Artificial opals

Spherical particles of the same size can spontaneously self-assemble into well-
ordered crystalline materials. They form lattices of spheres that are arranged in
a cubic close packed structure. The structure resembles that of the mineral opal.
Such a material behaves as a Bragg reflector and is a three-dimensional photonic
bandgap material or a photonic crystal. It reflects light of a specific wavelength.
In other words, it behaves as a mirror for a narrow wavelength range but is like
a window for the other part of the spectrum.

Scattering from opaline structures is described by the following Bragg’s equa-
tion modified for optical region,

λ = 2d111

(
n2

eff − sin2 θi
)1/2

, (1)
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Figure 3: Optical response of an artificial polystyrene opal. a) Calculated
energy bands, b) reflectance, c) transmittance and d) diffuse intensity. [6]

Figure 4: Stacking of the 111 planes of a fcc crystal (first three images) and
stacking of the hcp structure. Take note of the hexagonal arrangement of
the spheres on a single layer and the tetragonal packing of the second layer.

in which λ is the wavelength of light in free space, d111 is the spacing between the
111 crystal planes, neff is the effective (average) refractive index of the assembly
(also including the void space) and θi is the angle (calculated from the normal
of the plane) of the incident beam.

1.3 Close-packing of spheres

Close-packed structures are the most effective way of filling space with spheres.
A single layer of spheres is closest-packed with a hexagonal coordination of each
sphere. The second layer of spheres is placed in the indentations left by the first
layer so that three spheres on the bottom layer and one sphere on top will form
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a regular tetrahedron.

When a third layer of spheres is placed in the indentations of the second layer
there are two choices. The third layer can lie in indentations directly in line with
the 1st layer. Layer ordering may be described as ABA and the forming structure
is called hexagonal close-packed (hcp). Alternatively the third layer can lie in
the other indentations leaving it staggered with respect to both previous layers.
Layer ordering may be described as ABC. The forming structure is called face
centered cubic or fcc (see Fig. 4). Self-assembled hard spheres have been shown
to usually pack into the fcc structure with the 111 latticle plane parallel with the
substrate.

An alternative way to demonstrate the fcc structure is via its unit cell. A primi-
tive unit cell is the smallest piece of space which describes the structure unam-
biguously. Usually structures are demonstrated by using (non-primitive) cubic
unit cells, which are more easy to understand visually. The non-primitive cubic
unit cell for the fcc structure is shown in Fig. 5. The figure on the left shows the
location of the spheres with respect to the unit cell. The 111 planes in the unit
cell are also shown. The figure on the right shows the actual unit cell when it is
close-packed with spheres.

Figure 5: The (non-primivite) unit cell of a fcc structure (on the left) and the
close-packing of the unit cell (on the right).

The filling factor is the ratio between the space occupied by the spheres divided
by the size of the unit cell. There are several ways to calculate the filling factor,
but probably the easiest way is by considering the cubic unit cell of the structure.
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1.4 Effective medium approximations

The calculation of refractive indices for different inhomogeneous materials is
done by using effective medium approximations (EMAs). These can be quite
tricky to calculate and several different models have been introduced. Different
models have applications where they give good results.

A simple EMA, which is based on taking a weighed average of the individual
dielectric constants, can be used to describe the effective dielectric constant of
an artificial opal structure,

εeff = ΦAεA + ΦBεB , (2)

where ΦA and ΦB are the volume fractions of domains A and B, and εA and
εB are their dielectric constants, respectively. The relation between the dielectric
constant and the refractive index, n, for dielectrics is ε = n2.
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2 Measurements and equipment

2.1 UV-Vis-NIR spectrophotometry

The instrument used for measuring the PBG samples is a UV-Vis-NIR spec-
trophotometer (Perkin-Elmer Lambda 950 UV-Vis-NIR spectrophotometer). It mea-
sures the transmission, absorption, or reflection spectrum of a sample. Usable
wavelength range is 175–3300 nm. Sample is usually either a liquid or a solid
film. A simplified block diagram for the device is shown in Fig. 6.

Figure 6: A simplified schematic representation of the UV-Vis-NIR spec-
trophotometer. Light source is a tungsten or deuterium lamp, MC is the
monochromator, BS is the beam splitter, R and S refer to the reference and
sample, respectively, and DET is the detector.

The light source emits at a broad wavelength range and it is either a tungsten or
a deuterium lamp. The wanted wavelength is then selected with a monochroma-
tor (MC), which lets only a narrow wavelength range pass. After the monochro-
mator, the beam splitter (BS) splits the light beam into two similar beams. Then
the light passes through a series of mirrors, slits and beam masks before enter-
ing the sample compartment, where lies the sample (S) and the reference sample
(R). The sample changes the intensity of the beam and the resulting intensity is
recorded with the detector (DET). Before the measurements, the full intensity
baseline is gathered. The response from the sample is then compared to this
baseline intensity and the absorption, transmission, or reflection values are de-
termined from the relative intensity. The effect of substrates or solvents can be
reduced by placing a reference sample at the reference beam. The program au-
tomatically reduces the effect of the reference from the measured data.

Transmission or transmittance is a value, which tells how large percentage of
the emitted intensity is transmitted through the sample to the detector,

T =
I

I0
, (3)

where I0 is the baseline intensity. The absorption or absorbance is a logarithmic
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quantity, which tells how strongly the sample absorbs the incoming light. Ab-
sorbance value of zero corresponds to a transmittance value of 100%, value of
one corresponds to T=10%, two corresponds to T=1%, and so on. Our spectrom-
eter can measure absorbance values up to 4, but the best results are achieved
when the absorbance is in the range from 0 to 1.

In a system where there are two absorbing media, such as a sample and a sub-
strate, the transmittance can be divided into two parts. Before the sample the
intensity of the beam is I0. After the sample the intensity becomes Is = TsI0,
where Ts is the transmittance of the sample. After the substrate the intensity
becomes I = TsubstrIs = TsTsubstrI0, and the overall transmittance of the system
is thus T = TsTsubstr. By measuring the spectrum of the substrate separately, the
transmittance of the sample can be extracted from the measured spectrum.

2.2 Optical microscopy

The instrument used for analyzing the structure of the PBG samples is a polar-
ized light microscope (Leica DM4500). The microscope is equipped with objec-
tives ranging from 5x to 40x which result in magnifications ranging from 50x
to 400x. The microscope is also equipped with polarizers which can be used to
study e.g. the birefringence of samples. However, in this work, the polarizers
are not necessarily needed. Images of the samples can be obtained by using
the software-controlled camera that is attached on the microscope. The assistant
will give instructions on how to use the microscope.
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3 Lab instructions

1. Make the colloidal crystal samples.

• At all times, when working in the lab, use protective glasses and
gloves. You will receive them from the assistant.

• Take five glass slides, clean them with ethanol and dry them. Save
one slide as a reference.

• Attach a silicone mold (a “well”) to the four of the glass slides. Press
firmly and observe the attaching from the back side of the slide.

• Using a “Finn-pipette”, cast predefined volumes of the dispersions in
the wells. You’ll receive instructions on how to use the pipettes.

• Let the drops dry on a hot plate set to about 60 degrees.

2. Measure the transmission spectra of your colloidal crystals.

• There is a predefined method, “PBG 2015” in the software that you
will use.

• Measure the full intensity and dark baselines.

• Measure the UV-vis-NIR transmittance spectra of all samples to that
sample is perpendicular to the beam (0◦angle).

• Measure spectra of one of the samples at 0◦, 8◦, 16◦, 24◦and 32◦angles.

• Measure also the clean glass slide at 0◦, 8◦, 16◦, 24◦and 32◦angles.

3. Investigate the structure of your PBG materials with an optical microscope
(Leica DM4500).

• You’ll receive instructions on how to use the microscope.

• Acquire representative optical microscope images of all your sam-
ples. Use the same settings (zoom, light intensity, direction of light)
for all samples for easier comparison.

• Remember to insert scale bars into the images.
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4 Prerequisite questions

You need to write down short answers to all of the questions below in order to
do the lab work.

1. What is the analogy between atomic crystals and photonic crystals? How
about X-ray diffraction and the photonic bandgap effect? What is differ-
ent?

2. What is the analogy between semiconductors and photonic crystals?

3. What does “structural colour” mean? What is the difference between the
colour from e.g. some blue flower compared to the blue colour from the
Blue Morpho butterfly?

4. In the lab work, the colloidal dispersions contain a certain number of poly-
styrene (PS) particles per millilitre. One way of preparing colloidal crys-
tals is just to evaporate the water out from the dispersions. This is done
by pouring the dispersion in a circular pool with diameter of 20 mm. Cal-
culate how much dispersion (volume) is needed to fill the pool with ten
layers of the spheres (i.e. calculate how many particles are needed to make
one monolayer and use the particle concentration to calculate the needed
volume). Fill the calculated values in the table below. Assume that spheres
are packed in hexagonally arranged layers and use the particle diameters
given in the second column.

material size from DLS/nm particles/ml volume for 10 monolayers

PS 202 ± 11 5.6 ·1011

PS 356 ± 14 1.0 ·1011

PS 465 ± 11 4.6 ·1010

PS 505 ± 8 3.1 ·1010
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5 Report

Describe photonic bandgap materials in general and make an analogy between
semiconductors and photonic crystals. Also mention the basic similarities and
differences between X-ray scattering from crystals and light scattering from pho-
tonic crystals. Why are PBG materials interesting? Think of some applications.
Note that the properties of a PBG can be changed by external stimuli, such as
pH, temperature, humidity, electric field, . . .

Describe the structure of an artificial opal and calculate the filling factor for the
close packed fcc structure. Locate the 111 planes in the unit cell of the structure
(draw a picture) and calculate the interplane distance, d111, with respect to the
diameter of the spheres, D. Derive the optical Bragg equation for the structure
by assuming that the light is reflected from 111 crystal planes, whose spacing is
d111. Hints on how to do this are given in App. A. By using the effective medium
approximation, calculate the effective refractive index for the colloidal crystals.
Your samples consist of polystyrene, whose refractive index n = 1.59 [8].

Briefly describe the UV-Vis-NIR spectrophotometer and its operational princi-
ple. What quantity does the spectrometer measure? How are values such as
transmittance or absorbance extracted from the measured data? What is the re-
lation between absorbance, transmittance, and reflectance?

The particle manufacturer has determined the size of the particles by dynamic
light scattering (DLS). Read an article named “A comparison of atomic force
microscopy (AFM) and dynamic light scattering (DLS) methods to characterize
nanoparticle size distributions”. Describe briefly, what is DLS based on. What
are the pros and cons of DLS? What other methods are there to determine the
size of such nanoparticles?

Measure the particle sizes from the electron microscope images found on the ex-
ercise web page. A good program to use is ImageJ (http://rsb.info.nih.
gov/ij/). If needed, the assistant can give advise on using ImageJ. Measure
at least 20 particles from each sample and calculate the average size and also
the standard deviation of the size. Remember to describe the process and put
your data in a table. Include also the particle sizes supplied by the manufac-
turer (page 12). Which particle sizes data (DLS or electron microscopy) should
you use in the data analysis in this work? Justify your choice.
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Remember also to describe the sample preparation procedure!

Plot the spectra of the colloidal crystals (transmittance or absorbance) and locate
the bandgap. You need to reduce the effect of the substrate from your spectra.
Estimate the accuracy of the location of the bandgap. Discuss the sources for
error in the measurements.

Plot the location of the bandgap (from UV-Vis-NIR) as a function of the particle
size. Fit a straight line to your plot and estimate the error of the slope by drawing
error lines. Plot also the theoretical response you calculated before. Does the
theoretical curve fit nicely? Discuss the differences.

Plot the location of the bandgaps as a function of angle in a λ2/sin2 (θ) -graph.
You will end up with a straight line when you do this correctly. Remember
to make error estimations with error curves. Again, you need to extract the
error limits for the slope. Plot the appropriate theoretical curves and compare
them to your measurements. Try to make the correlation better by varying some
parameter. Again, justify your choice.

Finally, gather your results from transmission measurements in table form and
discuss them.

Include also the optical microscope images to your report and analyze the im-
ages. What can you see in the images? Comment on the quality of your sam-
ples. Can you suggest improvements for the sample preparation procedure?
Read section 3 from the review article “Self-Assembled Photonic Structures”.
Describe different colloidal photonic crystal preparation techniques introduced
in the article. Discuss the pros and cons of different preparation techniques.

Send your report to the assistant (jukka.hassinen(at)aalto.fi) as .pdf and .txt files.
To help archiving reports, the files should be named as “2015-group number-
author’s surname" (e.g. 2015-1-Meikäläinen). Files should not be larger than few
MB.
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A How to derive the optical Bragg law?

Consider the situation described in Fig. 7. An incident beam with wavelength
λ hits an array of spheres. Approximate the situation so that before the first
layer there is only air, n = n0 = 1, and after there is a material with a refractive
index of n = neff . Scattering occurs from crystal planes with a spacing of d.
What makes this situation different from scattering of X-rays from crystals, is
that the optical refractive index must be taken into account. Write the optical
path difference, ∆, for the two waves going from A to D and A through B to
C. The optical path is defined as the refractive index of the medium times the
physical path.

Figure 7: Scattering occurs from crystal planes. Also the refractive indices
of the materials have to be taken into account.

Once you have formulated the path difference, divide the path ABC into four
partsAE,EB,BF , and FC. Make use of trigonometric functions. You also need
to use Snell’s law at some point,

n0 sin Θi = neff sin Θt , (4)

and note that n0 = 1 for air. Scattering occurs when the path difference is an
integer multiple of the wavelength of the incident light,

Nλ = ∆ ,where N ∈ {1, 2, 3, . . .} . (5)
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Combine this solution with the scattering rule and you should end up with the
optical Bragg law (Eq. 1).
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