
Paper 53-27

- 1 -

DATA Step vs. PROC SQL: What’s a neophyte to do?

Craig Dickstein, Tamarack Professional Services, Weare, NH
Ray Pass, Ray Pass Consulting, Hartsdale, NY

ABSTRACT
"What's all the buzz about Proc SQL? I am just now
beginning to understand the power of the DATA step
within the SAS System and I am being told that it can all
be done bigger and better in the SQL procedure. Do I
have to use it? Should I use it? When and where is the
appropriate use for PROC SQL?"

For the beginner/novice SAS programmer, this paper will
answer the above questions and attempt to demystify the
must use, should use, and nice to use aspects of the
DATA step as it compares and contrasts with Structured
Query Language (SQL). General efficiencies of machine
resources and programmer resources, as well as the
proficiencies of the programmer, as choice criteria need to
be considered. Business functions/needs and technology
standards may also play a role as they apply to developing
data management routines. Primary data management
tasks to be considered are: creating, inputting, sub-setting,
merging, transforming, and sorting. This paper will not
discuss platform dependencies or benchmark efficiencies.
Advanced data management/manipulation techniques will
not be discussed. This is not an attempt to teach PROC
SQL, but rather to inform the user wanting to make an
educated choice of available techniques.

INTRODUCTION
Structured Query Language (SQL) is a widely used
language for retrieving and updating data in tables and/or
views of those tables. It has its origins in and is primarily
used for retrieval of tables in relational databases. PROC
SQL is the SQL implementation within the SAS System.
Prior to the availability of PROC SQL in Version 6.0 of the
SAS System, DATA step logic and a few utility procedures
were the only tools available for creating, joining, sub-
setting, transforming, and sorting data.

As a Beginning Tutorial topic, this paper will attempt to
compare and contrast the data management elements of
the SQL procedure with analogous methods in the DATA
step and other non-SQL base SAS techniques, and
discuss the advantages and disadvantages of each for a
given purpose. For the beginner SAS programmer, i.e.,
those without strong biases about one method or another,
an attempt will be made to show several ways to
accomplish the same task.

Finally, the benefits and advantages of either non-SQL
base SAS techniques or PROC SQL will be discussed
along with some thoughts on choosing the best tool for the
job at hand.

SIMILARITIES AND DIFFERENCES

ORIGINS
To understand the relative similarities and differences
between PROC SQL and DATA step programming, one
has only to recognize the origins of the two techniques.

SQL has its roots in the world of relational databases
whereas SAS was developed to manage and analyze
"flat" files. For all intents and purposes, the following
elements of the two languages are equivalent:

SAS SQL
Data sets Tables
Observations Rows
Variables Columns
Merge Join
Extract Query

SAS implemented a version of SQL so as to be able to
access relational database tables and create SAS data
sets as an outcome of such access. Since all RDBMSs
are based on rectangular tables as their basic building
block and SAS data sets are just another type of
rectangular data table, PROC SQL works quite nicely with
them.

SYNTAX
One important foundation in the understanding of the
differences between PROC SQL and the DATA step (or
non-SQL base SAS) is the syntactical construct of each
method.

The PROC SQL statement, and any associated options,
initiates a process much like any other base SAS
procedure. At this point, Structured Query Language
syntax takes over leaving behind the standard structure of
SAS. A QUIT statement is required to terminate a SQL
step as opposed to the implicit step boundaries (PROC,
DATA) or explicit step boundary (RUN) of non-SQL base
SAS.

SQL procedure statements are divided into clauses.
These clauses begin with known keywords and contain
arguments (both for the statement and clauses) separated
by commas. For example, the most basic SELECT
statement contains the SELECT and FROM clauses.
Other clauses are optionally available. Each clause may
contain one or more components. Components can also
contain other components. The analogous situation in the
DATA step has statements beginning with a keyword and
arguments are separated by blanks or unique symbols.
Commas in PROC SQL and spaces in non-SQL base SAS
separate "lists" of variables or tables.

Aliases are available in PROC SQL to be associated with
field and table names; this concept is not known in non-
SQL base SAS. They are defined by the AS clause. The
AS clause is not always necessary (with table aliases) but
explicit use is good coding technique – a matter of
preference for the programmer.

SAS Log messages, while expressing the same thought,
differ depending on the use of SQL or the DATA step.
(E.g., table vs. data set, rows vs. observation, and
columns vs. variables).

SUGI 27 Beginning Tutorials

- 2 -

CAVEATS
A data "view" is a named virtual data set or table that
contains no data but rather describes a set of instructions
for surfacing SAS data sets or RDBMS tables. This paper
will assume interchangeable reference to tables and
views.

Nuances of interactive SAS vs. batch SAS will not be
discussed. No operating system specifics will be
discussed.

Any mention of efficiencies is qualitative and not
quantitative. It is left to the reader to consider these gains
or losses within their own environment based on platform,
file size, use of indices (or not), and use of RDBMSs.

The conventions used in the ensuing code examples are
as follows: All SAS and SQL keywords, options, and
formats are upper case. Any user defined "words" such
as variable names, table/data set names, and data values
are lower case. Generic lists and parentheticals are
italicized. Ellipses (…) will signal incomplete code.

CREATING DATA SETS

NEW DATA SETS FROM NON-RDBMS SOURCE
One very distinct and important difference between PROC
SQL and the DATA step is that the former cannot create
tables from non-relational external data sources such as
EBCDIC flat file structures (e.g., VSAM files, sequential
data sets, partitioned data sets), spreadsheets, or ASCII
files.

Although SQL can input data from in-stream record
images, this is rarely used to initially create tables; it is
rather usually used to modify limited portions of existing
tables. The difficulty is demonstrated here. When faced
with this particular task from within the SAS environment,
DATA step coding is the method of choice. The following
example shows the creation of a SAS data set from "in-
stream" data, and the subsequent PRINTing of the data
set.

DATA step:
DATA table1;
 INPUT charvar1 $3.
 +1 charvar2 $1.
 +1 numvar1
 +1 numvar2 DATE7.
 ;
DATALINES;
me1 F 35786 10oct50
me3 M 57963 25jun49
fg6 M 25754 17jun47
fg7 F . 17aug53
PROC PRINT DATA=table1;
RUN;

In the above example, the data records stand alone as
separate lines in the program. The keyword DATALINES
alerts the internal processor that data will continue to
follow until a line with a semicolon is encountered.

With SQL the VALUES clause is the key element for
INSERTing data values INTO a TABLE.

PROC SQL:
PROC SQL;
 CREATE TABLE table1
 (charvar1 CHAR(3)
 , charvar2 CHAR(1)
 , numvar1 NUM
 , numvar2 NUM INFORMAT=DATE7.)
 ;
 INSERT INTO table1
 VALUES('me1','F',35786,'10oct50'd,)
 VALUES('me3','M',57963,'25jun49'd)
 VALUES('fg6','M',25754'17jun47'd)
 VALUES('fg7','F',.,'17aug53'd)
 ;
 SELECT *
 FROM table1;
QUIT;

The SELECT statement retrieves and displays all fields
from the created table. This is equivalent to the PROC
PRINT above.

NEW DATA SETS FROM RELATIONAL DATABASES
The SAS System supports reading, updating, and creating
RDBMS tables with both non-SQL base SAS and PROC
SQL.

For non-SQL base SAS coding techniques, the LIBNAME
statement is crucial for the setup. If a RDBMS
SAS/ACCESS product is installed, then the LIBNAME
statement, accompanied by a RDBMS engine
specification, can be used to associate a libref with a
referenced RDBMS. Tables in the RDBMS can then be
employed in SAS procedures or DATA steps as though
they were SAS data sets, by using two-level SAS names.

DATA step:
LIBNAME olib ORACLE
 SAS/ACCESS-engine-connection-options
 ;
DATA table1;
 SET olib.oracle_table;
 IF var1 = "value1" THEN...
...

In the above example, olib is the user defined SAS libref
that points to an Oracle database via the ORACLE access
engine. Additional connection options (identification
credentials) are required and are RDBMS engine specific.
The two-level name in the SET statement then
dynamically brings in a specific table from the Oracle
database.

SUGI 27 Beginning Tutorials

- 3 -

PROC SQL also works very nicely with RDBMS to both
read and write external RDBMS tables. Using a
SAS/ACCESS interface engine, the SQL Pass-Through
Facility enables establishment and termination of
connections with a RDBMS. You must have the requisite
SAS/ACCESS software installed for your RDBMS. While
connected, both query and non-query SQL statements can
be sent to the RDBMS for processing.

The SQL procedure Pass-Through Facility performs the
following tasks:

♦ Establish a connection with the RDBMS
using a CONNECT statement and terminate
the connection with the DISCONNECT
statement.

♦ Send non-query RDBMS-specific SQL
statements to the RDBMS using the
EXECUTE statement.

♦ Retrieve data from the RDBMS via a SQL
query with the CONNECTION TO
component in the FROM clause of the
SELECT statement.

To reduce data movement and translation, PROC SQL will
use the Pass-Through Facility to take advantage of the
capabilities of a RDBMS by passing it certain operations
whenever possible. For example, before implementing a
join, PROC SQL checks to see if the RDBMS can do the
join. If it can, PROC SQL will pass the processing of the
join to the RDBMS. If the RDBMS cannot do the join,
PROC SQL does it.

Using the CONNECT/DISCONNECT construct, PROC
SQL establishes a connection with the CONNECT
statement, communicates between the RDBMS and the
SAS environment and then terminates the connection with
the DISCONNECT statement.

While “connected” to the RDBMS, database specific
queries and non-query statements can be passed directly
for execution in the native environment using the
EXECUTE statement. Query results are then passed
back to the SAS environment. The procedure also has the
ability, when connected directly to a RDBMS, to send
query statements to the RDBMS as an argument in the
CONNECTION TO statement [e.g. CONNECTION TO
RDBMS-name (RDBMS-query)]. This expands upon the
power of DMBS manipulation from within SAS.

The discussion of RDBMS access engines and their use is
beyond the scope of this paper. See the SAS/ACCESS
documentation for more information. However, a simple
example of accessing an Oracle table will suffice to make
the point that RDBMS tables can be brought into a SAS
program and treated as SAS data sets.

The following example shows how to connect to a
particular database, pass queries for action by that
RDBMS (the parenthetical code), return table results to
SAS, and then disconnect from the database.

PROC SQL:
PROC SQL;
 CONNECT TO rdbms
 AS dbref (dbms-definitions);
 CREATE TABLE table3 AS
 SELECT col1, col2, col3
 FROM CONNECTION TO dbref
 (SELECT col1, col2, col3
 FROM table1, table2
 WHERE table1.co11
 = table2.col5
 ORDER BY col1
);
 DISCONNECT FROM dbref;
QUIT;

SORTING DATA
Given that a prime difference between PROC SQL and
non-SQL base SAS processing is the way each handles
the sorting of data, that functionality will be addressed
next. The discussion will then be exemplified in most of
the ensuing discussion's example code.

The SORT procedure is the base SAS utility that sorts
SAS data sets by a single variable or list of variables (a
nested sort). While a powerful yet simple procedure to
code, it is potentially resource intensive. In the following
example, table1 is sorted and stored as table2 with var1
being the primary sort key and var2 the secondary sort
key, i.e., within each unique value of var1, the
observations are sorted by var2.

Non-SQL Base SAS:
PROC SORT DATA=table1
 OUT=table2
 NODUPLICATES;
 BY var1 var2;

One highly touted benefit of PROC SQL is its ability to
process unsorted data and create tables in a sorted
fashion. While it is arguable as to the efficiencies of
PROC SORT vs. PROC SQL for this functionality, it is
clear that PROC SQL requires far less attention to the
detail of program design and considerably less coding.

When SELECTing or CREATEing tables with PROC SQL,
the ORDER BY clause sorts the resultant data table by the
specified columns. This is equivalent to using PROC
SORT after a data set is created or using the OUT= option
to store a new sorted instance of the data set. Tables do
not need to be presorted for use with PROC SQL.
Therefore, the use of the SORT procedure with PROC
SQL programs is not needed as is usual and customary
with other SAS procedures.

SUGI 27 Beginning Tutorials

- 4 -

PROC SQL:
PROC SQL;
 CREATE TABLE table2 AS
 SELECT DISTINCT *
 FROM table1
 ORDER BY var1 var2;
QUIT;

A special use case of sort routines is the removal of
duplicate data records. As demonstrated in the PROC
SORT example above, the NODUPLICATES option
accomplishes this task. PROC SQL provides the same
functionality with the DISTINCT component of the
SELECT clause as is shown. Please note that this is not
the same as the NODUPKEY option of PROC SORT,
which checks for and eliminates observations with
duplicate BY values.

Another special case of sorting should be mentioned here,
the grouping of data for summarization. When requesting
summary statistics on groups of data (discussed later in
detail) the GROUP BY clause is used to define the
"groups" within which summary statistics are desired. This
ability is not available directly in the DATA step, but is
generally equivalent to using BY statement processing in
base SAS procedures such as MEANS and UNIVARIATE.
As with any BY statement processing, the SAS data sets
would need to be presorted. See the example on page 7.

The data do not have to be sorted in the order of the
group-by values because PROC SQL handles sorting
automatically. You can still however use the ORDER BY
clause to specify the order in which rows are displayed in
the resulting table. If you specify a GROUP BY clause in
a query that does not contain a summary function, your
clause is transformed into an ORDER BY clause and a
message to that effect is written to the SAS log.

JOINING DATA
Combining data sets or tables is a common and frequent
technique for data management prior to performing
analytics. Data are combined primarily for two reasons:

♦ to combine files with similar variable
composition layouts and different sets of
observations

♦ to combine files with different variable
composition layouts and similar sets of
observations

Once combined, many actions can be taken on the
resultant set of data:

♦ extracting a subset of records

♦ extracting a subset of variables

♦ calculating a new set of variables

Be aware that all SQL join processing operates by initially
producing a full "Cartesian product". Simply stated this is
an intermediate table made up of all combinations of all
rows from all the selected contributing tables. Selection
criteria are then applied to this intermediary table as coded

in the PROC SQL to yield the table subset that is actually
desired. The intermediate full table is generally not the
required result, and this Cartesian processing is different
from the way a DATA step MERGE operates. However, if
this total crossing of all records from all data is exactly
what is needed, PROC SQL is hands down the way to go
since this is what happens by default. The important
lesson here - Know thy data!!

CONCATENATING
The concatenating or "stacking" of data files is done for
the purpose of making one large file from two or more files
of a similar variable structure. It can be done as a simple
concatenation of one after another (stacking) or based on
some key set of variables (interleaving). Interleaving is
important if the resultant file needs to be in a known order.
To accomplish interleaving in some situations,
concatenating and then sorting may be more efficient
(e.g., for large files) than pre-sorting the component parts.

The DATA step SET statement, the APPEND procedure,
or the APPEND statement of PROC DATASETS are three
non-SQL base SAS methods for simply stacking data.
The APPEND route is the more efficient technique
providing that no DATA step processing is required. An
analogous technique is available in PROC SQL with the
OUTER UNION statement.

The use of a BY variable in conjunction with the SET
statement accomplishes an interleaving of data sets.
The data sets being "set" need to be pre-sorted by the key
variable(s). The resultant data set is then in the known
sort order. PROC APPEND does not interleave data sets.

The following examples demonstrate the simple stacking
of two data sets with similar variable structure.

 DATA step:
DATA table3;
 SET table1
 table2;

PROC SQL:
PROC SQL;
 CREATE TABLE table3 AS
 SELECT *
 FROM table1
 OUTER UNION CORRESPONDING
 SELECT *
 FROM table2;
QUIT;

Performing an OUTER UNION is very similar to the DATA
step with a SET statement referencing two or more data
sets. The OUTER UNION concatenates the intermediate
results from the table-expressions. Thus, the resultant
table for the query-expression contains all the rows
produced by the first table-expression followed by all the
rows produced by the second table-expression.

As with the DATA step SET statement, if a table has fewer
columns than the one(s) with which it is being 'set', PROC

SUGI 27 Beginning Tutorials

- 5 -

SQL extends the rows of the smaller table with columns
containing missing values of the appropriate data type,
before it builds the resulting table.

The CORRESPONDING, or CORR, keyword causes
PROC SQL to match the columns in table-expressions by
name and not by ordinal position. Without the use of
CORRESPONDING, matching columns from the
contributing columns with the same name would be
created in separate columns in the result table. This table
would then include duplicate columns (names and
contents).

MATCH MERGING
Merging of data is done for the purpose of combining
records from two or more source tables into a new data
file with a new combined record layout. For simplicity
sake, we will assume that the merging is done based on a
key variable(s). There may be reasons to do otherwise
(non-keyed merging), but this technique is fraught with
potential problems and is rarely a desired result.

Also of major importance is that, except for the key
variable(s), the data to be merged should usually contain
different fields. If the data sets being merged have
commonly named variables, the left-most value(s) is(are)
overwritten with the right-most value. This may be an
intended result for "updating" purposes. The UPDATE
statement is a special case of merging in the DATA step
and requires just two data sets, a master and a
transaction. This functionality will not be discussed here.

Again, with DATA step merging, the data sets must be
sorted prior to merging with a BY variable. With PROC
SQL this is not a requirement. In fact, the key variable on
which the data are joined with SQL does not need to have
the same variable name in all data sets being merged.
Employing the RENAME= data set option will correct for
dissimilar BY variables in the DATA step merging of data
sets.

Practically speaking, several types of joins or merges are
used:

♦ Inner join – Retrieves only matching rows that
meet the selection criteria.

♦ Outer joins – Outer joins can be left, right, or full
and will return all rows from one or more files in the
selection, depending upon the selection criteria.

♦ Left join – The first dataset mentioned (left)
is the master and the second (right) is the
transactional. All rows from the "master" are
returned with information, as available,
added from the “transaction” when rows from
both tables “match” on the matching
column(s).

♦ Right join – The second dataset mentioned
is the master and the first is the
transactional.

♦ Full join – The resultant table has records
from all data sets, including “matching” rows
as well as “non-matching” rows.

With the MERGE statement and DATA step processing,
the IN= data set option, in conjunction with IF/THEN logic
is employed to control the type of join.

DATA step:
DATA table3;
 MERGE table1 (IN=l)
 Table2 (IN=r);
 BY keyvar;
 IF l AND r; /* inner join */

The expression "IF l;" would result in a left join and the
expression "IF r;" would yield a right join. The
expression "IF l or r;", or the lack of an IF statement
altogether, would produce a full outer join.

With PROC SQL, several key clauses are used to control
the join type: LEFT JOIN, RIGHT JOIN, OUTER JOIN, or
INNER JOIN. The WHERE clause or ON clause describes
the conditions (SQL-expression) under which the rows in
the Cartesian product are kept or eliminated in the result
table. WHERE is used to select rows from inner joins. ON
is used to select rows from inner or outer joins.

PROC SQL:
PROC SQL;
 CREATE TABLE table3 AS
 SELECT *
 FROM table1 AS l
 INNER JOIN table2 AS r
 ON l.keyvar=r.keyvar;
QUIT;

Whenever possible, PROC SQL passes the processing of
joins to the RDBMS rather than doing the joins itself. This
enhances performance.

SUBSETTING DATA
The subsetting of data is the bread and butter of data
preparation for subsequent analysis. Specific record types
may be selected, and needed variables retained or
dropped as required by the ensuing analysis.

ROWS
SAS data set observations are generally selected based
on the value of a variable or set of variables. For
example, only females of a certain age group may be
required. All others are discarded.

In non-SQL base SAS this may be accomplished with a
variety of techniques:

♦ The WHERE statement in procedures, DATA
steps, or data set options

♦ The subsetting IF statement

♦ IF / THEN / DELETE code

SUGI 27 Beginning Tutorials

- 6 -

DATA step:
DATA table2;
 SET table1(WHERE=(var1=value1));

DATA table4;
 SET table3
 IF var1=value1 AND
 var2 IN (value-list);

DATA table7;
 MERGE table5 table6;
 BY var1;
 IF M0D(var4,3) NE 0 THEN DELETE;

In the SQL procedure, several simple techniques are also
available:

PROC SQL:
PROC SQL;
 CREATE TABLE table3 AS
 SELECT var1, var2, var3, var4
 FROM table1 AS a,
 table2 AS b
 WHERE a.var1=b.var1
 AND a.var1 IN (value-list);
QUIT;

PROC SQL;
 CREATE TABLE table4 AS
 SELECT *
 FROM table3;
 DELETE
 FROM table4
 WHERE var1 IS MISSING;
QUIT;

COLUMNS
As with the retention or deletion of observations, variables
are easily included in or excluded from a table.

The DROP and KEEP statements or data set options are
workhorses of base SAS. They are most efficiently used
as data set options.

DATA step:
DATA table2;
 SET table1(DROP=var4-var6);

DATA table4;
 MERGE table2 table3;
 BY keyvar;
 KEEP keyvar var1 var2;

In the SQL procedure, it is a simple matter of SELECTing
only those columns that are required.

PROC SQL:
PROC SQL;
 CREATE TABLE table1 AS
 SELECT var1, var2, var3, var6
 FROM table2;
QUIT;

Being another base SAS procedure working with SAS
data sets, albeit in a unique and hybrid way, PROC SQL
can apply most of the SAS data set options. The options
such as KEEP= and DROP= can work with the SAS tables
being read (SELECT FROM) or written (CREATE TABLE).
As in DATA step code, the options are separated by
spaces and are enclosed in parentheses following
immediately after the table name.

PROC SQL:
PROC SQL;
 CREATE TABLE table2(DROP=var4-var6) AS
 SELECT *
 FROM table1;
QUIT;

TRANSFORMING DATA
A common data management function is to create new
data by transforming the value(s) of one or several
variables or by summarizing data to key points of
information stored in smaller tables.

CREATING NEW VARIABLES
In non-SQL base SAS, new variables are created from
existing ones via the assignment statement. Assignment
statements generally use SAS functions or mathematical
expressions to create (or re-create) variables from other
variables or constants.

DATA step:
DATA table2;
 SET table1;
 newvar1 = oldvar2 / oldvar3;
 newvar2 = SUBSTR(charvar5,3,5);

PROC SQL provides similar constructs within the SELECT
statement. Please note that the order of the expression is
reversed.

PROC SQL:
PROC SQL;
 CREATE TABLE table2 AS
 SELECT var1, var2,
 oldvar2/oldvar3 AS newvar1
 FROM table1;
QUIT;

SUGI 27 Beginning Tutorials

- 7 -

SUMMARIZING DATA
Simple summarization techniques are available in PROC
SQL via several useful functions, some of which are
shown in the following table, along side the analogous
non-SQL base SAS procedure. The SQL procedure
supports most of the functions found in non-SQL base
SAS. In conjunction with the GROUP BY clause, a table
is produced with the requisite group level statistic.
Although convoluted, similar results may be obtained with
DATA step programming.

SQL Function Base SAS
COUNT(field) PROC FREQ
MIN(field) PROC MEANS
MAX(field) PROC MEANS
SUM(field) PROC MEANS

Let's look at a simple example of finding the sum, non-
missing count, and missing value count for a numeric
variable within a classification variable.

Non-SQL Base SAS:
PROC SORT DATA=table1;
 BY catvar1;

PROC MEANS DATA=table1;
 BY catvar1;
 VAR var4;
 OUTPUT OUT=table2
 SUM=totvar4
 N=cntvar4
 NMISS=missvar4 ;

PROC SQL:
PROC SQL;
 CREATE TABLE table2 AS
 SELECT catvar1,
 SUM(var4) AS totvar4,
 COUNT(var4) AS cntvar4,
 NMISS(var4) AS missvar4
 FROM table1
 GROUP BY catvar1
 ORDER BY catvar1
 ;
QUIT;

Counts could have been obtained from PROC FREQ, but
for the purposes of also acquiring sums, PROC MEANS
was employed. Note that the GROUP BY functionality in
PROC SQL is analogous to BY statement processing in
PROC MEANS. The ORDER BY clause performs the
functionality of PROC SORT: returning the resultant table
in a known sort order. If GROUP BY is omitted, all the
rows in the table or view are considered to be a single
group.

COMPARATIVE FUNCTIONALITY
The following table is intended to provide the reader with a
summary of the above-discussed comparative techniques.

Function Non-SQL
Base SAS
STATEMENT /
OPTION

PROC SQL
STATEMENT /
CLAUSE

Create a table DATA CREATE TABLE

Create a table
from raw data

INPUT INSERT

Add columns Assignment
statement

SELECT … AS …

Drop columns DROP
KEEP

SELECT

Add rows OUTPUT INSERT INTO

Delete rows WHERE
IF/THEN
DELETE

DELETE FROM

Sorting PROC SORT ORDER BY

De-dupe records NODUPLICATE DISTINCT

Establish a
connection with
a RDBMS

LIBNAME CONNECT
DISCONNECT

Send a RDBMS-
specific non-
query SQL
statement to a
RDBMS

 CONNECTION TO

Concatenating SET OUTER JOIN

Match merging MERGE / SET
BY
 IF in1
 IF in2
 IF in1 & in2

FROM
 LEFT JOIN
 RIGHT JOIN
 FULL JOIN
WHERE / ON

Rename column RENAME AS

Displaying
resultant table

PROC PRINT SELECT

Summarizing PROC / BY GROUP BY

BENEFITS/ADVANTAGES
The following list of benefits is not intended to be complete
as much as a more general comment on issues of which
the beginning SAS programmer should be aware. The
lists are in no particular priority order.

SUGI 27 Beginning Tutorials

- 8 -

PROC SQL

♦ PROC SQL provides the combined functionality of

the DATA step and several base SAS procedures.

♦ Less complex and lengthy, but not as legible, code
can be written in PROC SQL.

♦ PROC SQL code may execute faster for smaller
tables.

♦ PROC SQL code is more portable for non-SAS
programmers and non-SAS applications.

♦ PROC SQL processing does not require explicit
code to presort tables.

♦ PROC SQL processing does not require common
variable names to join on, although same type and
length are required.

♦ By default, a PROC SQL SELECT statement prints
the resultant query; use the NOPRINT option to
suppress this feature.

♦ Knowledge of relational data theory opens the
power of SQL for many additional tasks.

♦ PROC SQL processing forces attention to resultant
data set structures, as SQL is unforgiving of "errors
of design".

♦ Efficiencies within specific RDBMS are available
with Pass-thru code for the performance of joins.

♦ Use of aliases for shorthand code may make some
coding tasks easier.

NON-SQL BASE SAS

♦ DATA step set operators can handle more data

sets at a time than PROC SQL outer joins.

♦ Non-SQL techniques can open files for read and
write at the same time.

♦ Customized DATA step report writing techniques
(DATA _NULL_) are more versatile than using
PROC SQL SELECT clauses.

♦ The straightforward access to RDBMS tables as if
they were SAS data sets negates the need to learn
SQL constructs.

♦ Input of non-RDBMS external sources is easier.

CHOOSING A TECHNIQUE
Here comes the tricky part. A premise of this paper from
the outset was that there are many ways to 'skin a cat'
using SAS software, with advantages and disadvantages
to each. We have demonstrated that this is certainly true
when comparing PROC SQL and non-SQL base SAS for
data management techniques.

While elegance vs. functionality is always a consideration,
the choice of one technique over another should be made
based on the following criteria:

♦ Familiarity – Given the fast pace of today's
business world, demanding faster and more

accurate answers, it is best that the programmer
employ those techniques that are most familiar and
comfortable.

♦ Correctness – Care in the choice of tools should be
a dominant theme. While all techniques will provide
results, not all results are correct relative to the
process design. See as a clear example the
discussion of “Cartesian products” above.

♦ Maintenance – An often-overlooked feature of
program development is its maintainability. While
succinct code is often desirable, emphasis should
be placed on clear, concise (but not necessarily
terse), and maintainable code.

♦ Efficiency of human resources – Efficient and
effective effort is defined as “doing the right things
right”. From a programmer perspective this relates
to the comfort level and skill sets of the individual
programmer.

♦ Efficiency of processing resources - Any mention of
computing efficiencies in this paper has been
qualitative and not quantitative. It is left to the
readers to consider these gains or losses within
their own environment based on platform, file size,
use of indices (or not), and use of RDBMSs.

♦ Futures – What is the ultimate goal of the effort?
Where will the code reside? These are pertinent
design questions that should be considered when
moving data or porting code to and from an
RDBMS environment.

While not expressly discussed herein, it can be
understood that data management and extraction with
PROC SQL can become as powerful (and convoluted) as
non-SQL base SAS programming. Sub-queries, complex
grouping, and complicated summarizations can be
accomplished with either facility.

CONCLUSION
So… What's a neophyte to do? Expand your horizons!
Explore alternate methodologies! Find out about those
other ways to skin that proverbial SAS cat! Don’t get tied
to the only way you know now. Heeding this advice will
start you on your journey to better data manipulation
techniques on the small scale and to optimal
methodologies when using the SAS System in general.

REFERENCES
The reader is directed to the following papers for
additional and important information on the contrast
between non-SQL base SAS programming and PROC
SQL.

How Should I Combine My Data, Is the Question,
Thompson, S. and Sharma, A., Proceedings of the 12th
Annual NorthEast SAS Users Group Conference,
Washington, DC, 1999.

SUGI 27 Beginning Tutorials

- 9 -

Alternatives to Merging SAS Data Sets … But be Careful,
Wieczkowski, M., Proceedings of the 12th Annual
NorthEast SAS Users Group Conference, Washington,
DC, 1999.

PROC SQL for DATA Step Die-Hards, Williams, C.S.,
Proceedings of the 12th Annual NorthEast SAS Users
Group Conference, Washington, DC, 1999.

Scerbo, M., Dickstein, C., and Wilson, A. (2001). Health
Care Data and the SAS System, Cary, NC: SAS Institute
Inc.

SAS SQL Procedure User's Guide, Version 8, Cary, NC:
SAS Institute Inc.

CONTACT INFORMATION
Your comments and questions are valued and
encouraged. Contact the authors at:

Craig Dickstein
Tamarack Professional Services, LLC
603-529-3818
cdickstein@att.net

Ray Pass
914-693-5553
raypass@att.net

SAS is a registered trademark of the SAS Institute Inc.,
Cary, NC

SUGI 27 Beginning Tutorials

	SUGI 27 Title Page

