

1

PROC SQL: Tips and Translations for Data Step Users
Susan P Marcella, ExxonMobil Biomedical Sciences, Inc.

Gail Jorgensen, Palisades Research, Inc.

ABSTRACT
SAS® has always been an extremely powerful data manipulation language. The inclusion of PROC SQL in the SAS pack-
age made a very powerful addition to the SAS programmer’s repertoire of tools. However, for those of us who learned SAS
before the addition of PROC SQL, the terminology and very different syntax of this procedure may be enough to prevent us
from taking advantage of its flexibility and usefulness. There are several books that teach the concepts of queries, joins, and
relational databases to instruct the novice user. This paper, however, is aimed at providing a clear explanation of the PROC
SQL query by comparing it to the already-familiar Data step, and will offer some tips and techniques for the types of situa-
tions when PROC SQL can be particularly effective and useful.

SQL BASICS
Before going into the details of how to use PROC SQL, we will provide a quick overview of some of the funda-
mentals of SQL.

TERMINOLOGY

A quick primer on terminology used in PROC SQL and this paper:

PROC SQL thinks in terms of tables, rather than datasets. In keeping with this concept, observations are called
rows, and variables are called columns. In this paper, these terms are used interchangeably.

SYNTAX

In order to use PROC SQL, there are a few basics that you need to understand. Generally, a query is structured
as follows:

Proc SQL;
 create table/view newdsname as
 select var1, var2, … varN
 from dsname
 where condition ;
Quit;

An invocation of PROC SQL starts with the PROC SQL statement. The SQL procedure, like the DATASETS pro-
cedure, invokes an environment that stays in effect until ended with a QUIT statement. This allows you to proc-
ess several queries without having to keep reissuing the PROC SQL statement. (While the QUIT statement is
officially required to exit the SQL environment, SAS is smart enough to exit the environment automatically if an-
other PROC or DATA statement is encountered.)

Queries start with a CREATE TABLE (or CREATE VIEW) statement or a SELECT statement. The CREATE
TABLE statement (we will discuss Views later in this paper), is the equivalent of the DATA statement – it identifies
the table (dataset) to be created. If a CREATE TABLE statement is not included in a query, then the results of
the query are sent to the OUTPUT window, making the query essentially equivalent to a DATA Step followed by a
PROC PRINT.

The SELECT statement is the heart of an SQL query. The SELECT statement identifies the variables to be cre-
ated or selected from the incoming dataset. Unlike ‘regular’ SAS procedures and Data steps, SQL likes commas.
Variable names in a query are separated by commas, except for the last variable listed before the FROM clause.
You can select existing variables in a SELECT statement, or create new ones; you can assign literals as variable
values, or assign values conditionally. We will explore all these options.

The FROM clause is the equivalent of the SET or MERGE statement; it identifies the incoming dataset(s).

The WHERE clause performs the same function as the WHERE or subsetting IF statements in a Data Step, al-
lowing conditional selection of rows.

Programming Beyond the BasicsNESUG 2009

2

There are several other optional clauses in an SQL procedure, but these few constitute the basics of a query. We
will be examining several of the additional clauses later in this paper.

A query (defined by a SELECT statement and one or more of the clauses described above), is ended by a semi-
colon. Unlike in a ‘regular’ SAS procedure, each subclause of the query does not end with a semicolon. The
semicolon signals the end of the entire query. Multiple queries, each ending with a semicolon, may be run under
a single PROC SQL statement.

JOINS DEMYSTIFIED
In speaking with many experienced SAS programmers, I find that one of the things they find most confusing in
SQL is the concept of different types of joins. Joins are simply SQL terminology for merging datasets on a com-
mon variable or variables. There are two basic categories of joins in SQL: inner joins, which select only match-
ing records from the incoming datasets, and outer joins, which select all the records (even non-matching ones)
from one or more of the incoming datasets.

The best method of showing how the SQL query and DATA step compare is to show examples. Using the follow-
ing datasets (Drinkers and Smokers), side-by-side examples of SQL queries and comparable DATA steps will be
shown, with explanations and notes on differences and issues of note.

For this paper, the following data files will be used (this is a subset of the entire datafile for reference):

Drinkers:

Obs SubjID Height Weight EverAlc CurrentAlc EverBeer CurrentBeer EverGW CurrentGW EverRW

1 700121 160 55 Yes Yes Yes Yes No No Yes

2 700123 165 54 Yes Yes Yes Yes No No Yes

3 700129 170 75 Yes Yes Yes Yes No No No

4 700130 163 82 Yes Yes No No No No Yes

5 700136 167 60 Yes Yes Yes Yes No No No

6 700146 156 60 Yes Yes Yes Yes No No No

7 700147 168 60 Yes Yes Yes Yes No No No

8 700148 158 70 Yes Yes Yes Yes No No No

9 700150 174 63 Yes Yes Yes Yes No No No

10 700153 170 56 Yes Yes Yes Yes No No No

Smokers:

Obs ID Height Weight EverSmoked Ever100Cigs EverSmokeDaily SmokeNow

1 700123 165 54 Yes Yes Yes Daily

2 700126 175 73 Yes Yes No Occasionally

3 700129 170 75 Yes Yes Yes Daily

4 700134 171 55 Yes No No Occasionally

5 700152 168 68 Yes Yes Yes Daily

6 700156 176 55 Yes No No Occasionally

7 700161 167 75 Yes Yes Yes Daily

8 700166 168 79 Yes Yes Yes Daily

9 700167 170 75 Yes Yes Yes Daily

10 700168 165 60 Yes No No Occasionally

Programming Beyond the BasicsNESUG 2009

3

INNER JOINS

In DATA step terms, an inner join on two incoming datasets is equivalent to using a MERGE statement with an IF
ina and inb statement. Only records found in both datasets will be in the output dataset. Using our example
files, if we want to pull the records for everyone who both drinks and smokes, we would use the following Data
Step or PROC SQL code:

proc sort data=L.drinkers; by subjid; run;
proc sort data=L.smokers; by id; run;

data L.IJSmokeDrinkDATA;
 merge L.smokers(in=smoke)
 L.drinkers(in=drink re-
name=(subjid=id));
 by id;
 if smoke and drink;
run;

proc sql;
 create table L.IJSmokeDrinkSQL as
 select smokers.*, drinkers.*
 from L.smokers, L.drinkers
 where smokers.id=drinkers.subjid;
quit;

The code above introduces a few concepts that need to be noted:

 Selecting variables in a dataset. In a DATA step, unless otherwise specified in a KEEP or DROP
statement, all variables in all input datasets will occur in the output dataset. In PROC SQL, you must
name each variable you want in the output dataset. You can use the * (asterisk) character to select all
variables from a dataset. When there are multiple input datasets, it is necessary to indicate the input
dataset from which each variable is taken by preceding the variable name with the dataset name (e.g.,
Smokers.id indicates the id variable from the Smokers dataset, while Drinkers.* indicates all variables in
the Drinkers dataset).

 Merging on differing field names. Since the subject id field in the two datasets does not have the same
name (SubjID in the Drinkers dataset, ID in the Smokers dataset), the Data Step method of merging re-
quires that you rename one of the fields. In PROC SQL, it is not necessary to do this. However, note
that, since we are selecting all fields from both input datasets, both id columns appear in the SQL output
dataset.

 Conditioning joins with a WHERE statement. The WHERE statement can contain any condition on
which to match the datasets.

 No sorting needed. Notice that, in the PROC SQL code, there is no preceding sort. One of the advan-
tages of using PROC SQL is that it will merge the incoming datasets appropriately without re-sorting
them. This can be very useful in instances where you wish to retain the original order of your input data.

The results of both the DATA Step and the PROC SQL methods are essentially the same, with the exception of
the appearance of both id variables (id and subjid) in the PROC SQL output.

Results from Data Step:

Obs ID Height Weight EverSmoked Ever100Cigs EverSmokeDaily SmokeNow EverAlc CurrentAlc EverBeer

1 700123 165 54 Yes Yes Yes Daily Yes Yes Yes

2 700129 170 75 Yes Yes Yes Daily Yes Yes Yes

3 700161 167 75 Yes Yes Yes Daily Yes Yes Yes

4 700167 170 75 Yes Yes Yes Daily Yes Yes Yes

5 700168 165 60 Yes No No Occasionally Yes Yes Yes

6 700558 179 73 Yes Yes Yes Daily Yes Yes No

7 700559 175 60 Yes Yes Yes Daily Yes Yes Yes

8 700560 183 91 Yes Yes Yes Daily Yes Yes No

9 700561 174 85 Yes Yes Yes Daily Yes Yes Yes

10 700564 178 70 Yes Yes Yes Daily Yes Yes No

Programming Beyond the BasicsNESUG 2009

4

Results from SQL Step:

OUTER JOINS

There are three types of outer joins:

 LEFT JOIN: A left join is the equivalent of using the IF ina DATA Step statement; it selects all records
from table A and only matching records from table B

 RIGHT JOIN: A right join is the equivalent of using the IF inb DATA Step statement; it selects matching
records from table A and all records from table B

 FULL JOIN: A full join is the equivalent of a DATA Step with no subsetting IF statement; it selects all re-
cords from both incoming datasets.

LEFT JOINS:

A left join takes all the records from the table on the left and merges them with matching records from the table
on the right. The left and right designation refers to the position of the dataset names in the FROM statement:
the first table named in the FROM statement is the left dataset and the last table named in the FROM statement
is the right dataset (one limitation of SQL joins is that you can only perform an outer join on two tables at a time;
inner joins can be performed on multiple datasets).

Using our sample files, if we want to select all drinkers and add their smoking information, we would use the fol-
lowing code. (Note that, in this example, we are going to assume that both input datasets have the key field
named ID.)

proc sort data=L.drinkers; by id; run;
proc sort data=L.smokers; by id; run;

data L.LJSmokeDrinkdata;
 merge L.smokers(in=smoke) L.drinkers(in=drink);
 by id;
 if smoke;
run;

proc sql;
 create table L.LJSmokeDrinkSQL as
 select s.*, d.*
 from L.smokers as s left join L.drinkers as d
 on s.id=d.id;
quit;

A few notes about the statements in the above PROC SQL code:

 The keywords LEFT JOIN replace the comma between the datasets in the FROM statement

 When using an outer join, the keyword WHERE is replaced by the keyword ON

 PROC SQL allows the use of an alias to replace dataset names when identifying variables. An alias is a
shortened ‘nickname’ for a dataset that can be used in SELECT statements to identify the dataset in

Obs ID Height Weight EverSmoked Ever100Cigs EverSmokeDaily SmokeNow SubjID EverAlc CurrentAlc EverBeer

1 700123 165 54 Yes Yes Yes Daily 700123 Yes Yes Yes

2 700129 170 75 Yes Yes Yes Daily 700129 Yes Yes Yes

3 700161 167 75 Yes Yes Yes Daily 700161 Yes Yes Yes

4 700167 170 75 Yes Yes Yes Daily 700167 Yes Yes Yes

5 700168 165 60 Yes No No Occasionally 700168 Yes Yes Yes

6 700558 179 73 Yes Yes Yes Daily 700558 Yes Yes No

7 700559 175 60 Yes Yes Yes Daily 700559 Yes Yes Yes

8 700560 183 91 Yes Yes Yes Daily 700560 Yes Yes No

9 700561 174 85 Yes Yes Yes Daily 700561 Yes Yes Yes

10 700564 178 70 Yes Yes Yes Daily 700564 Yes Yes No

Programming Beyond the BasicsNESUG 2009

5

which a variable is found. Aliases are assigned in the FROM statement, after the keyword AS. In the ex-
ample above, the statement FROM L.Drinkers AS d LEFT JOIN d L.Smokers AS s
assigns the alias d to the Drinkers dataset and the alias s to the Smokers dataset, allowing us to use the
notation d.* and s.* instead of drinkers.* and smokers.* in our SELECT statment. Aliases can be any
length, but since the whole point of using them is to avoid having to type long dataset names, it makes
sense to keep them short.

When comparing the output datasets created by both the merge and join, we find that they are identical.

Results from Data Step:

Obs ID Height Weight EverSmoked Ever100Cigs EverSmokeDaily SmokeNow EverAlc CurrentAlc EverBeer

1 700123 165 54 Yes Yes Yes Daily Yes Yes Yes

2 700126 175 73 Yes Yes No Occasionally

3 700129 170 75 Yes Yes Yes Daily Yes Yes Yes

4 700134 171 55 Yes No No Occasionally

5 700152 168 68 Yes Yes Yes Daily

6 700156 176 55 Yes No No Occasionally

7 700161 167 75 Yes Yes Yes Daily Yes Yes Yes

8 700166 168 79 Yes Yes Yes Daily

9 700167 170 75 Yes Yes Yes Daily Yes Yes Yes

10 700168 165 60 Yes No No Occasionally Yes Yes Yes

Results from SQL:

Obs ID Height Weight EverSmoked Ever100Cigs EverSmokeDaily SmokeNow EverAlc CurrentAlc EverBeer

1 700123 165 54 Yes Yes Yes Daily Yes Yes Yes

2 700126 175 73 Yes Yes No Occasionally

3 700129 170 75 Yes Yes Yes Daily Yes Yes Yes

4 700134 171 55 Yes No No Occasionally

5 700152 168 68 Yes Yes Yes Daily

6 700156 176 55 Yes No No Occasionally

7 700161 167 75 Yes Yes Yes Daily Yes Yes Yes

8 700166 168 79 Yes Yes Yes Daily

9 700167 170 75 Yes Yes Yes Daily Yes Yes Yes

10 700168 165 60 Yes No No Occasionally Yes Yes Yes

RIGHT JOINS:

A right join selects all the records in the last-named dataset (in the FROM statement) and only the matching re-
cords from the first-named dataset. Continuing with our sample files, if we want all smokers with their drinking
information, we would use the following code:

proc sort data=L.drinkers; by id; run;
proc sort data=L.smokers; by id; run;

data L.RJSmokeDrinkData;
merge L.smokers(in=smoke)
 L.drinkers(in=drink);
by id;
if drink;
run;

proc sql;
create table L.RJSmokeDrinkSQL as
select s.*, d.*
from L.smokers as s right join L.drinkers as d
on s.id=d.id;
quit;

Programming Beyond the BasicsNESUG 2009

6

Notice, however, that our output this time is NOT the same; for those smokers who have no drinking information,
the ID, Height, and Weight fields are blank. This is due to a very important difference in the way SQL handles
values of variables found in both incoming datasets. Unlike the DATA Step, when SQL encounters variables of
the same name in both datasets, it keeps the value of the first-seen dataset. In our example, since the Smokers
dataset is named first in the SELECT statement, the value of any variable that exists in both datasets will come
from the Smokers dataset. For those records where there is no matching Smokers record, the value of these
fields will be blank in our output dataset.

Data Step Results:

Obs ID Height Weight EverSmoked Ever100Cigs EverSmokeDaily SmokeNow EverAlc CurrentAlc EverBeer

1 700121 160 55 No Yes Yes Yes

2 700123 165 54 Yes Yes Yes Daily Yes Yes Yes

3 700129 170 75 Yes Yes Yes Daily Yes Yes Yes

4 700130 163 82 No Yes Yes No

5 700136 167 60 No Yes Yes Yes

6 700146 156 60 No Yes Yes Yes

7 700147 168 60 No Yes Yes Yes

8 700148 158 70 No Yes Yes Yes

9 700150 174 63 No Yes Yes Yes

10 700153 170 56 No Yes Yes Yes

PROC SQL Results:

Obs ID Height Weight EverSmoked Ever100Cigs EverSmokeDaily SmokeNow EverAlc CurrentAlc EverBeer

1 . . . Yes Yes Yes

2 700123 165 54 Yes Yes Yes Daily Yes Yes Yes

3 700129 170 75 Yes Yes Yes Daily Yes Yes Yes

4 . . . Yes Yes No

5 . . . Yes Yes Yes

6 . . . Yes Yes Yes

7 . . . Yes Yes Yes

8 . . . Yes Yes Yes

9 . . . Yes Yes Yes

10 . . . Yes Yes Yes

In order to prevent this type of occurrence, when using a right or left join, make sure that the dataset from which
you want to keep all records is in the appropriate position on the SELECT statement (i.e., in a right join, specify
the ‘right’ dataset first in the SELECT statement; in a left join, specify the ‘left’ dataset first).

proc sql;
create table L.RJSmokeDrinkSQLb as
select d.*, s.*
from L.smokers as s right join L.drinkers as d
on s.id=d.id;
quit;

Programming Beyond the BasicsNESUG 2009

7

Our output from this code now matches that from the Data Step, except that the columns from the Drinkers data-
set now appear before the columns from the Smokers dataset (since we have now listed the Drinkers dataset first
in our SELECT statement).

Obs ID Height Weight EverAlc CurrentAlc EverBeer EverSmoked Ever100Cigs EverSmokeDaily SmokeNow

1 700121 160 55 Yes Yes Yes No

2 700123 165 54 Yes Yes Yes Yes Yes Yes Daily

3 700129 170 75 Yes Yes Yes Yes Yes Yes Daily

4 700130 163 82 Yes Yes No No

5 700136 167 60 Yes Yes Yes No

6 700146 156 60 Yes Yes Yes No

7 700147 168 60 Yes Yes Yes No

8 700148 158 70 Yes Yes Yes No

9 700150 174 63 Yes Yes Yes No

10 700153 170 56 Yes Yes Yes No

FULL JOINS:

In a full join, we pull all records from both input datasets, merging those that match, but including all records --
even those that don’t match. For this example, we are going to use a different pair of datasets to enable us to
highlight some other features of PROC SQL.

Our new sample datasets contain information for subjects in two different smoking studies. There is some over-
lap of subjects between the studies – a subject could be in Study A or Study B or both. Both datasets contain
identically named variables.

StudyA Data:

Obs id Weight IntDate EverSmoked SmokeNow

1 448 60 13JUL2006 Yes Daily

2 449 64 13JUL2006

3 450 70 14JUL2006 Yes Daily

4 451 70 13JUL2006 Yes Daily

5 452 60 14JUL2006

6 453 82 13JUL2006

7 454 70 13JUL2006

8 455 80 13JUL2006

9 7001 53 22OCT2003 No No

10 7002 55 22OCT2003 No

Programming Beyond the BasicsNESUG 2009

8

StudyB Data:

Obs id Weight IntDate EverSmoked SmokeNow

1 457 49 13JUL2006 Yes Daily

2 458 74 13JUL2006 Yes Daily

3 459 65 13JUL2006 No

4 460 45 13JUL2006

5 461 60 13JUL2006

6 462 70 13JUL2006 No

7 463 65 13JUL2006 Yes Daily

8 464 65 13JUL2006 No

9 465 70 13JUL2006

10 466 60 13JUL2006

In this example, we want to pull the data from both studies for each subject, keeping all subjects from both stud-
ies. Since some of the variables occur with the same name in both input datasets, and we want to keep the val-
ues from both datasets, we will need to rename them for the output dataset so that we can have both sets of vari-
ables in each record. One of the advantages of using PROC SQL is that we can easily rearrange the order in
which the variables appear on the output dataset by simply specifying the desired variables in the order in which
we want them to appear. This allows us to juxtapose similar variables for easier comparison.

PROC SQL also allows you to rename variables, or even create new variables, as you specify them in the SE-
LECT statement, by using the AS keyword followed by the new variable name.

proc sort data=L.studya; by id; run;
proc sort data=L.studyb; by id; run;

data L.FJStudyData;
merge L.studya (rename=(weight=WeightA
 intdate=IntDateA
 eversmoked=EverSmokedA
 smokenow=SmokeNowA))
 L.studyb (rename=(weight=WeightB
 intdate=IntDateB
 eversmoked=EverSmokedB
 smokenow=SmokeNowB));
by id;
run;

proc sql;
create table L.FJStudySQLx as
select a.id, a.weight as WeightA, b.weight as WeightB,
 a.intdate as IntDateA, b.intdate as IntDateB,
 a.eversmoked as EverSmokeA,
 b.eversmoked as EverSmokeB,
 a.smokenow as SmokeNowA, b.smokenow as SmokeNowB
from L.studya as a full join L.studyb as b
on a.id=b.id;
quit;

Data Step Results:

Obs id WeightA IntDateA EverSmokedA SmokeNowA WeightB IntDateB EverSmokedB SmokeNowB

1 448 60 13JUL2006 Yes Daily . .

2 449 64 13JUL2006 . .

3 450 70 14JUL2006 Yes Daily . .

4 457 . . 49 13JUL2006 Yes Daily

5 458 . . 74 13JUL2006 Yes Daily

6 459 . . 65 13JUL2006 No

7 7001 53 22OCT2003 No No 55 13JUL2006 No

8 7002 55 22OCT2003 No 60 13JUL2006 No

9 7003 45 22OCT2003 No 47 13JUL2006 No

Programming Beyond the BasicsNESUG 2009

9

Obs id WeightA IntDateA EverSmokedA SmokeNowA WeightB IntDateB EverSmokedB SmokeNowB

10 7004 80 22OCT2003 Yes Daily 76 14JUL2006 Yes Daily

PROC SQL Results:

Obs id WeightA WeightB IntDateA IntDateB EverSmokeA EverSmokeB SmokeNowA SmokeNowB

1 448 60 . 13JUL2006 . Yes Daily

2 449 64 . 13JUL2006 .

3 450 70 . 14JUL2006 . Yes Daily

4 . . 49 . 13JUL2006 Yes Daily

5 . . 74 . 13JUL2006 Yes Daily

6 . . 65 . 13JUL2006 No

7 7001 53 55 22OCT2003 13JUL2006 No No No

8 7002 55 60 22OCT2003 13JUL2006 No No

9 7003 45 47 22OCT2003 13JUL2006 No No

10 7004 80 76 22OCT2003 14JUL2006 Yes Yes Daily Daily

Notice that, in the case of the full join, we encounter the same problem that we found with the right join – we are
missing the subject id for some of our records. The problem here is that, no matter which dataset we specify first
on our SELECT statement, records from the other dataset will fail to have a value shown in the output. This leads
us to a discussion of the ways in which to deal with duplicate variable names in PROC SQL.

DEALING WITH DUPLICATE VARIABLE NAMES:

There are three basic approaches to handling the issue of incoming datasets having variables with the same
name:

 Always select the value from one dataset (this is actually the default, since SQL will take the value from
the first-named dataset)

 Keep the variables from both datasets as separate variables in the output dataset

 Assign the value of the output variable based on the values of the incoming variables

The method we select depends on several factors, including whether or not the variable in question is a key field
(a unique field used to identify which records match for merging).

Selecting the value from one dataset:

 Specify the table from which you want to get the variable value (e.g., always take the keyfield value from
table A)

SELECT a.keyfield, a. var1, a.var2, b.var3, b.var4
FROM a left join b
ON a.keyfield=b.keyfield;

This method works for key fields only if you’re using a one-sided merge (as discussed in the section on
right joins) or if both datasets have all the same keyfield values (as with an inner join); otherwise, you end
up with missing values, as we saw in the right join and full join examples

 Drop one of the variables (PROC SQL allows the use of all the same dataset options that you can use in
a DATA step: DROP, KEEP, RENAME, etc).

SELECT a.*, b.*
FROM a left join b (drop=weight)
ON a.idfld=b.idfield;

Programming Beyond the BasicsNESUG 2009

10

This method will not work for key fields, since dropping the variable in the FROM statement results in it
not being read into the program vector; it would therefore be unavailable for matching.

Keeping the variable values from both datasets:

In PROC SQL, you can keep the incoming variables from both datasets the same way you would in a Data Step –
by renaming the variable from one of the datasets.

SELECT a.keyfield, a.var1, a.var2, b.keyfield AS idfld, b.var3, b.var4
FROM a full join b
ON a.keyfield=b.keyfield;

This approach will work with key field variables, since values from both tables will be read in and will appear in the
output dataset; however, the output dataset will have two separate columns with key field values in them – one
named keyfield and one named idfld -- hardly an ideal outcome.
(Note also that the FROM statement referenced the key field on dataset B by its original name (keyfield) – this is
because the new name (idfld) is only assigned to output dataset.

Selecting the value for the output dataset based on the values of the incoming variables:

This is usually the preferred method for handling duplicate key field variables, since it allows us to pick whichever
incoming variable is non-missing or does not have an invalid value. There are two ways to accomplish this:

 The CASE statement -- PROC SQL’s method of allowing conditional assignment of values

 The COALESCE function – a function that allows the selection of the first non-missing value in a list of
variables.

The simplest way of handling duplicate key field variables is to use the COALESCE function. In our full join ex-
ample above, we would use the following code:

proc sql;
 select coalesce(b.subjid, a.id) as ID, a.weight as WeightA, b.weight as WeightB,
 a.height as HeightA, b.height as HeightB,
 a.eversmoked, a.smokenow, b.everalc, b.currentalc
 from L.studya as a full join L.studyb as b

 on a.id=b.subjid;
quit;

This code causes SQL to select the first non-missing value of either ID field and assign it to the output variable
specified after the AS keyword. The output dataset key field variable can have the same name as the incoming
variables (as in our example), or you could assign a new variable name after the AS keyword
(e.g., coalesce(b.subjid, a.id) as KEY). The resulting dataset shows that we have solved the problem of missing
values in the key field variable of our output dataset.

Obs ID WeightA WeightB HeightA HeightB EverSmoked SmokeNow EverAlc CurrentAlc

1 700121 . 55 . 160 Yes Yes

2 700123 54 54 165 165 Yes Daily Yes Yes

3 700126 73 . 175 . Yes Occasionally

4 700129 75 75 170 170 Yes Daily Yes Yes

5 700130 . 82 . 163 Yes Yes

6 700134 55 . 171 . Yes Occasionally

7 700136 . 60 . 167 Yes Yes

8 700146 . 60 . 156 Yes Yes

9 700147 . 60 . 168 Yes Yes

10 700148 . 70 . 158 Yes Yes

Programming Beyond the BasicsNESUG 2009

11

CONDITIONAL VARIABLE ASSIGNMENT IN PROC SQL

Many times, we wish to assign a value to a variable based on the results of a calculation or comparison or the
value of another variable. In a DATA Step, this is a simple matter of using an IF/THEN statement. PROC SQL
syntax does not allow for the use of the IF statement. However, conditional assignment of a value to a variable is
possible using the CASE clause of the SELECT statement.

The syntax of the CASE clause can take two forms:

CASE CASE(varname)
 WHEN (condition) THEN value WHEN (value) THEN statement
 WHEN (condition) THEN value WHEN (value) THEN statement
 ELSE value ELSE statement
END AS varname END AS varname

Note that the CASE clause can have any number of WHEN statements, but there should be an ELSE statement
(much like the SELECT/WHERE construct in the DATA step). If there is no ELSE statement, a warning message
will occur in the log, and a missing value will be assigned to the variable being created for any situation not cov-
ered by one of the WHEN statements. The CASE statement also requires an END AS statement; this is where
you specify the name of the variable being created.

In the event of duplicate incoming variable names, a CASE clause could be used to select the value to assign to
the output dataset variable as follows:

SELECT
 CASE
 WHEN (missing(a.id)) THEN b.id
 ELSE a.id
 END AS ID,
 a.weight as WEIGHTA, b.weight as WEIGHTB, …

In the code above, if the ID variable in dataset A has a missing value (i.e., there is no matching record in dataset
A for the ID in dataset B), the value of the ID field in dataset B will be used as the ID field in the output dataset; in
all other situations, the value of the ID field from dataset A will be the value of the ID field in the output dataset.
(Note that the entire CASE clause is treated like a single variable name, and should be followed by a comma be-
fore listing the rest of the variables to select from the incoming datasets.)

The CASE clause can be used with calculations and/or comparisons, as shown in the example below:

proc sql;
create table CaseExample as
select *,
 case

when (weighta > weightb) and not missing(weighta) and not missing(weightb) then 'Decrease'
 when (weighta < weightb) and not missing(weighta) and not missing(weightb) then 'Increase'
 when (weighta = weightb) and not missing(weighta) and not missing(weightb) then 'Stable'
 else ' '
 end as WeightChg,
 case (calculated weightchg)
 when ('Increase') then weightb-weighta
 when ('Decrease') then weighta-weightb
 else .
 end as WeigthDiff
from s.combinedstudiessql2;

A few things to note about this example:

Programming Beyond the BasicsNESUG 2009

12

 You can have multiple CASE clauses in a query

 To avoid getting a warning message in the log, we used an ELSE statement to assign a null value to any
records that don’t match one of the WHEN statements

 A CASE clause can only assign values to one variable; to assign values to multiple variables, you must
use multiple CASE clauses

 To reference a variable that is created in the query (as opposed to being read in from an incoming data-
set), you must preface the variable name with the keyword CALCULATED.

As you may have gathered from these examples, performing conditional variable assignments is one of the func-
tions that is much easier and neater in a Data Step than in a PROC SQL query. However, the CASE clause will
accomplish the task if you are using PROC SQL to take advantage of its many other strengths.

ADVANTAGES OF PROC SQL
So, now that we’ve compared SQL joins to Data Step merges, and seen that they can accomplish many of the
same tasks, why would we want to use PROC SQL rather than the Data Step many of us are so much more used
to?

There are, in fact, several capabilities of PROC SQL, beyond the useful but not terribly exciting ones that we have
seen so far, that render it extremely useful, including some tasks that only it can do. We will explore some of
them now.

DOWN CALCULATIONS:

In a Data Step, calculations are generally performed on variables across a single observation (with some limited
access to previous observations available through the LAG function). One of the unique characteristics of PROC
SQL, however, is that it permits the results of downward calculations to be added to observations. For instance, if
we wish to calculate, for each subject in Study A, the difference between the individual’s weight and the average
weight of all subjects, we would need to use multiple Data Steps to first total all the weights, then calculate and
save the average and use it to calculate the individual differences.

proc means data=L.StudyA noprint;
 var weight;
 output out=aw mean=AvgWeight;
run;

data fmaw; set aw; keep dummy AvgWeight;
 dummy=1; label AvgWeight='Average Weight';
run;

data fmStudyA; set L.StudyA; dummy=1; run;

data L.DownCalcData;
 merge fmStudyA fmaw;
 by dummy;
 DiffFromAvg=Weight-AvgWeight;
 drop dummy;
 format DiffFromAvg 8.2;
run;

Using this approach, we first calculate the average weight of all subjects, using PROC MEANS. We then add a
‘dummy’ variable to the dataset created by the MEANS procedure and our StudyA dataset, in order to provide a
‘by’ variable on which to merge the average with our study data. Then, we can finally perform the actual merge.

Programming Beyond the BasicsNESUG 2009

13

In PROC SQL, however, this can all be done in one short and simple step:

proc sql;
create table DownCalc1 as
select id, height, weight, everalc, currentalc,
 eversmoked, smokenow, weight - AVG(weight) as DiffFromAvg
from s.demogshort;

The AVG function in this example performs the calculation down the weight column, and makes the result avail-
able to each incoming record. Our output dataset would look like this:

Obs ID Height Weight DiffFromAvg

1 700118 160 55 -5.9696

2 700119 158 59 -1.9696

3 700120 140 42 -18.9696

4 700121 160 55 -5.9696

5 700122 159 58 -2.9696

6 700123 165 54 -6.9696

7 700124 167 75 14.0304

8 700125 163 55 -5.9696

9 700126 175 73 12.0304

10 700127 154 54 -6.9696

CONTROL BREAKS:

We can render this ability even more useful by including control breaks. For instance, we might want to group our
subjects by smoking frequency, calculating the difference of each subject’s weight from the average weight of
subjects in their smoking category, rather than from the average of the total population. To create control breaks
in an SQL query, we add the GROUP BY clause, as follows:

proc sql;
create table DownCalc2 as
select id, weight, eversmoked, smokenow,
 avg(weight) as AvgWeight format 8.2,
 weight - AVG(weight) as DiffFromAvg format 8.2
from L.StudyA
group by smokenow;
quit;

Notice that, in our query, we also applied a format to the newly created variables AvgWeight and DiffFromAvg.
Formats and labels can be applied to variables in an SQL query by following the name of the variable with the
keyword FORMAT (or LABEL), followed by the desired format or text, without an equal sign (=). If the format
and/or label applies to a variable that is not the last-named variable, it must appear before the comma that sepa-
rates the variable from the next variable.

The results of this query show that the subjects are grouped by smoking status, and the results of the calculation
are shown with only two decimal places, as specified by our format. We included the AvgWeight variable so you
can see that each group has its own average. The calculation could just as well have been done without includ-
ing the AvgWeight variable in our output dataset, however.

Programming Beyond the BasicsNESUG 2009

14

Obs id Weight EverSmoked SmokeNow AvgWeight DiffFromAvg

1 7090 60 No 63.59 -3.59

2 7012 80 No 63.59 16.41

3 8119 50 Yes Daily 69.05 -19.05

4 8116 62 Yes Daily 69.05 -7.05

5 8114 70 Yes Daily 69.05 0.95

6 7007 65 Yes Daily 69.05 -4.05

7 8110 59 Yes No 62.75 -3.75

8 8127 74 Yes No 62.75 11.25

9 7015 90 Yes Occasionally 85.00 5.00

10 7025 80 Yes Occasionally 85.00 -5.00

COUNTS AND SUMMARY FUNCTIONS:

The downward summary functions (COUNT, SUM, MIN, MAX, AVG) in PROC SQL can be extremely useful as
tools for gathering quick information. For instance, if we are planning on creating a ‘Do loop’ or array to process
multiple records for each subject, it would help to know the number of observations per subject that occur in our
data. With PROC SQL, we can quickly determine the range of observations.

In our smoking study, we have multiple samples for each subject. Our Sample table looks like this:

Obs ID Height Weight SmokeNow samplecode timefrom timeto Results SampDate

1 700559 175 60 Daily AH1873 7:15:00 11:30:00 26.91 21OCT2003

2 700559 175 60 Daily AH1574 8:30:00 11:30:00 245.50 20OCT2003

3 700559 175 60 Daily AH3049 8:00:00 11:00:00 0.01 23OCT2003

4 700559 175 60 Daily QW9775 8:10:00 9:50:00 59.31 27OCT2003

5 700559 175 60 Daily AH1628 8:40:00 12:30:00 55.36 17OCT2003

6 700559 175 60 Daily QF0248 8:15:00 12:40:00 29.40 13OCT2003

7 700559 175 60 Daily QF0974 8:00:00 12:00:00 3149.48 14OCT2003

8 700559 175 60 Daily QF0500 8:00:00 10:00:00 58.63 24OCT2003

9 700559 175 60 Daily QW9996 9:00:00 13:10:00 44.42 16OCT2003

10 700559 175 60 Daily AW3292 9:10:00 13:10:00 32.46 16OCT2003

11 700560 183 91 Daily QF1271 8:20:00 12:50:00 0.21 16OCT2003

12 700560 183 91 Daily AH1371 8:15:00 13:10:00 0.01 21OCT2003

13 700560 183 91 Daily AH1093 8:15:00 13:05:00 0.60 17OCT2003

14 700560 183 91 Daily QW9922 8:15:00 12:30:00 0.01 15OCT2003

15 700560 183 91 Daily QW9891 8:10:00 13:50:00 0.01 14OCT2003

16 700560 183 91 Daily QF0702 8:30:00 12:20:00 0.61 20OCT2003

17 700560 183 91 Daily AH2140 8:20:00 12:30:00 0.01 27OCT2003

18 700560 183 91 Daily AH2131 8:15:00 13:50:00 0.01 24OCT2003

19 700560 183 91 Daily QF0384 8:25:00 13:45:00 0.01 13OCT2003

20 700560 183 91 Daily AH1532 8:15:00 13:00:00 0.01 23OCT2003

We need to know the minimum and maximum number of samples we have for any subject so we can set up the
parameters of our ‘do loop’ or array or whatever other processing we need to do. With the following query, we
can easily count the number of samples per subject, saving the results into a new table, and then find the mini-
mum and maximum counts:

Programming Beyond the BasicsNESUG 2009

15

proc sql;
 create table SampleCounts as
 select distinct id, count(*) as SampleCnt
 from s.smokesamples
 group by id;

 select min(samplecnt) as MinCnt, max(samplecnt) as MaxCnt
 from samplecounts;
quit;

The result of the first query is to produce a table with one row per subject id, containing the number of samples for
that subject:

SampleCounts table:

ID SampleCnt

700559 10

700560 11

700561 10

700564 7

700567 5

700569 10

700570 10

700572 5

The second part of the query calculates the minimum and maximum sample counts in the dataset:

 Output:

MinCnt MaxCnt

1 13

With this information, we can decide how to handle any iterative processing we might need to do.

OTHER SAS FUNCTIONS:

It should be noted here that, while the summary functions of COUNT, MIN, MAX, and AVG perform their calcula-
tions down rows in PROC SQL, other SAS functions can be used in an SQL query the same way as in a Data
step. For instance, in our CASE statement example (on page 11), we could have performed the task of the sec-
ond CASE statement by using the ABS function:

proc sql;
create table CaseExample as
select *,
 case

when (weighta > weightb) and not missing(weighta) and not missing(weightb) then 'Decrease'
 when (weighta < weightb) and not missing(weighta) and not missing(weightb) then 'Increase'
 when (weighta = weightb) and not missing(weighta) and not missing(weightb) then 'Stable'
 else ' '
 end as WeightChg,

 abs(weighta - weightb) as WeightDiff
from s.combinedstudiessql2;

Programming Beyond the BasicsNESUG 2009

16

NESTING QUERIES:

With PROC SQL, you can perform queries, including ones with downward calculations, on data from multiple ta-
bles. Suppose, in our previous example, we have the same type of sample data for our drinking subjects as for
our smoking subjects. We want to calculate the average result for our smoking subjects vs our drinking subjects.
We can accomplish this in one query:

proc sql outobs=1;
select
 (select avg(results) from s.smokesamples) as AvgSmokeResult,
 (select avg(results) from s.drinksamples) as AvgDrinkResult
from s.smokesamples;
Quit;

There are a few things you should note about this query:

 We start the query with a SELECT statement as usual

 We have used the option OUTOBS=1 in our PROC SQL statement. This is because, when you are nest-
ing queries from multiple tables, SQL will automatically produce one line of output for each input record,
even if you are only performing summary functions. Without the OUTOBS=1 option, we would have the
average results printed as many times as there are records in the two input datasets.

 Each subquery, which contains its own SELECT statement with FROM clause, returns a single value
which acts as a variable in the main SELECT statement.

 Each subquery is enclosed within parentheses, with the name of the variable being produced by that sub-
query outside the parentheses.

 The main query must contain a FROM clause, even though all the variables in the query are created by
subqueries with their own FROM clauses. If there are other variables in the query that do not come from
a subquery, the dataset named in the main FROM clause would be the dataset that contains those vari-
ables. In our example, where there are no variables not created in a subquery, you could use the name
of any existing, non-empty dataset in the main FROM clause. (If you specify an empty dataset in the
main FROM clause, no output will be produced, even if there are observations in the subquery datasets.)

The results of the above query are:

AvgSmokeResult AvgDrinkResult

30.92641 39.83145

Another situation in which nesting queries can be very useful is when you want to select rows from one table
based on values in another. For instance, perhaps I wish to look at the samples for only those subjects in my
drinking study who are not also smokers. I do not have any smoking information in my sample table, and, since I
only want non-smokers, I do not want to merge with my smoking table. The easiest way to accomplish this is to
select the sample data for those subjects who do not appear in the smoking table:

proc sql;
create table NonSmokerSamples as
select * from L.Drinksamples
where id not in (select id from L.smokesamples);
quit;

The output would be as follows:

Programming Beyond the BasicsNESUG 2009

17

Obs ID Height Weight EverAlc CurrentAlc samplecode timefrom timeto Results SampDate

1 700565 164 60 Yes Yes QF1497 8:40:00 11:40:00 9.69 13OCT2003

2 700565 164 60 Yes Yes QF0705 7:30:00 14:00:00 3.73 15OCT2003

3 700565 164 60 Yes Yes AW3294 8:20:00 14:00:00 2.57 16OCT2003

4 700565 164 60 Yes Yes QF0410 7:40:00 14:00:00 3.05 16OCT2003

5 700565 164 60 Yes Yes QF0319 7:40:00 13:20:00 7.27 14OCT2003

6 700565 164 60 Yes Yes QF1418 7:20:00 11:20:00 15.14 17OCT2003

7 700618 160 65 Yes Yes QW9966 7:40:00 14:00:00 0.55 16OCT2003

8 700618 160 65 Yes Yes QF1235 7:30:00 14:00:00 1.88 15OCT2003

9 700618 160 65 Yes Yes QF0765 8:40:00 11:40:00 5.23 13OCT2003

10 700618 160 65 Yes Yes QW9915 7:40:00 13:20:00 2.53 14OCT2003

11 700618 160 65 Yes Yes QF1267 7:20:00 11:20:00 9.01 17OCT2003

12 702927 165 60 Yes Yes AH1344 12:30:00 19:25:00 71.90 08OCT2004

13 702927 165 60 Yes Yes AH0166 12:34:00 19:20:00 166.10 07OCT2004

14 702928 160 60 Yes Yes AH2138 12:30:00 19:20:00 88.80 07OCT2004

15 702928 160 60 Yes Yes AH1192 13:31:00 19:45:00 93.40 06OCT2004

16 702930 165 56 Yes Yes AH2062 4:10:00 11:35:00 431.90 06OCT2004

17 702930 165 56 Yes Yes AH2018 4:39:00 9:00:00 212.40 13SEP2004

18 702930 165 56 Yes Yes AH1759 4:47:00 11:40:00 185.00 04OCT2004

19 702930 165 56 Yes Yes AH1411 4:05:00 11:35:00 35.20 09OCT2004

20 702930 165 56 Yes Yes AH1007 3:50:00 11:20:00 45.10 08OCT2004

21 702930 165 56 Yes Yes AH0059 4:18:00 11:20:00 29.70 07OCT2004

22 702930 165 56 Yes Yes AH1202 4:25:00 11:30:00 227.20 10OCT2004

23 702955 175 70 Yes Yes AH2134 12:35:00 19:20:00 249.10 07OCT2004

24 702955 175 70 Yes Yes AH1742 12:50:00 19:20:00 35.10 10OCT2004

25 702955 175 70 Yes Yes AH1827 12:45:00 19:30:00 44.90 09OCT2004

26 702955 175 70 Yes Yes AH1088 4:32:00 11:40:00 192.30 04OCT2004

ACCESSING SAS DICTIONARY TABLES:

One of the things that can only be done with PROC SQL is accessing the SAS dictionary tables. While an in-
depth discussion of these tables is outside the scope of this paper, it helps to know a few facts about the type of
data that they contain, in order to understand why using PROC SQL to access them can be so helpful.

The following dictionary tables are frequently of use:

DICTIONARY.COLUMNS – Contains information about the columns in your datasets:

Column Name Column Label

libname Library Name

memname Member Name

memtype Member Type

name Column Name

type Column Type

Programming Beyond the BasicsNESUG 2009

18

Column Name Column Label

length Column Length

npos Column Position

varnum Column Number in Table

label Column Label

format Column Format

informat Column Informat

idxusage Column Index Type

sortedby Order in Key Sequence

xtype Extended Type

notnull Not NULL?

precision Precision

scale Scale

transcode Transcoded?

DICTIONARY.TABLES – Contains the following information about the your datasets:

Column Name Column Label

libname Library Name

memname Member Name

memtype Member Type

dbms_memtype DBMS Member Type

memlabel Data Set Label

typemem Data Set Type

crdate Date Created

modate Date Modified

nobs Number of Physical Observations

obslen Observation Length

nvar Number of Variables

protect Type of Password Protection

compress Compression Routine

encrypt Encryption

npage Number of Pages

filesize Size of File

pcompress Percent Compression

reuse Reuse Space

bufsize Bufsize

delobs Number of Deleted Observations

nlobs Number of Logical Observations

maxvar Longest variable name

maxlabel Longest label

maxgen Maximum number of generations

gen Generation number

attr Data Set Attributes

Programming Beyond the BasicsNESUG 2009

19

Column Name Column Label

indxtype Type of Indexes

datarep Data Representation

sortname Name of Collating Sequence

sorttype Sorting Type

sortchar Charset Sorted By

reqvector Requirements Vector

datarepname Data Representation Name

encoding Data Encoding

audit Audit Trail Active?

audit_before Audit Before Image?

audit_admin Audit Admin Image?

audit_error Audit Error Image?

audit_data Audit Data Image?

num_character Number of Character Variables

num_numeric Number of Numeric Variables

DICTIONARY.MEMBERS – Contains the following external data about your datasets:

Column Name Column Label

libname Library Name

memname Member Name

memtype Member Type

dbms_memtype DBMS Member Type

engine Engine Name

index Indexes

path Pathname

With this information available to our queries, we can use PROC SQL to take some shortcuts. For instance, in
one of our datasets, we have several variables that are flags for particular circumstances. There are many of
these variables, and they all have names that contain the word ‘flag’. Using an SQL query, we can pull all these
variables names, save them into a macro variable, and use that to allow us to print or process them without typing
out all the names:

proc sql;
 select name into :flags separated by ' '
 from dictionary.columns
 where memname='HRDATA' and lowcase(name) contains 'flag';
quit;
proc freq data=L.hrdata;
tables &flags;
run;

Sample Output from the above code:

Programming Beyond the BasicsNESUG 2009

20

Flag_Absence_begin_date1 Frequency Percent
Cumulative
Frequency

Cumulative
Percent

MMDDYY8 FORMAT 31210 100.00 31210 100.00

Frequency Missing = 5691

Flag_Absence_begin_date2 Frequency Percent
Cumulative
Frequency

Cumulative
Percent

MMDDYY8 FORMAT 30544 100.00 30544 100.00

Frequency Missing = 6357

Flag_Absence_end_date1 Frequency Percent
Cumulative
Frequency

Cumulative
Percent

MMDDYY8 FORMAT 30544 100.00 30544 100.00

Frequency Missing = 6357

Flag_Absence_end_date2 Frequency Percent
Cumulative
Frequency

Cumulative
Percent

INVALID FORMAT 1 0.00 1 0.00

MMDDYY8 FORMAT 29985 100.00 29986 100.00

Frequency Missing = 6915

Notes about this query:
 CREATING THE MACRO VARIABLE

 To create a macro variable, use the INTO keyword, and precede the name of the macro variable with a
colon (:)

 To store multiple values in a single macro variable, follow the name of the variable with the keywords
SEPARATED BY and the text (enclosed in quotes) that should separate each value. In our example,
since we are using the macro variable flags in a PROC FREQ, we use a space (‘ ‘) as our separator. If
we were creating the macro variable to be used in a PROC SQL query, then we would use a comma and
a space (‘, ’) as our separator.

 If we had wanted to store the column names into separate, numbered macro variables, we could have
used the syntax SELECT name INTO :flag1 - :flagn (where n is the number of flag variables we have).
This assumes that we know ahead of time how many column names we have.

 Once created, use the macro variable as usual, by prefacing it with an ampersand (&)
 SELECTING THE DESIRED COLUMNS

 Table names (memname) and library names (libname) are always stored in the dictionaries as all upper
case.

 Column names (name) are stored in the dictionary the way they were created. Because of this, and since
the selection criteria is case-sensitive, it is safest to use the UPCASE or LOWCASE functions to ensure
that you match all the variables you want (e.g., lowcase(name) contains ‘flag’).

Programming Beyond the BasicsNESUG 2009

21

 If you only want the variables from a particular dataset, it is important to restrict your selection to that par-
ticular dataset, and even, possibly, the particular library it is in, to avoid pulling similarly named variables
from other datasets in your library.

When creating a single macro variable containing multiple variable names, it is important to know how you will
use that macro variable. In addition to needing to use the appropriate separator between the variable names, you
may need to append additional characters to each variable name as well. For instance, if we want to use our
macro variable in a subsequent join query, we may need to have the variable names refaced with the name or
alias of the dataset in which they occur (e.g., a.flag_absence). This can easily be accomplished by concatenating
the name or alias of the dataset to the variable name, as shown in the following code:

proc sql;
 select 'h.'|| name into :flags separated by ', '
 from dictionary.columns
 where memname='HRDATA' and lowcase(name) contains 'flag';

 create table flagvariables as
 select h.id, &flags, m.*
 from L.hrdata as h left join moredata as m
 on h.id=m.id;
quit;

Note that, in this example, we separated the variable names with a comma and a blank (‘, ‘) since we were plan-
ning on using the variable names in an SQL query.

USING PROC SQL TO MAKE MASS CHANGES TO DATASETS:

We can use this ability to access the dictionary information in a variety of ways. In our study, we may find, after
we have created our datasets, that one of our variables has an incorrect value. Since several of our tables may
contain that particular variable, it is important to ensure that we fix the value in all tables that contain the relevant
variable. If we do this manually, not only can it be an onerous task, but we run the risk of missing one or more
instances. We can, however, use PROC SQL and the dictionary tables to identify all datasets that have the rele-
vant variable and then use a macro to loop through and apply the change to each of them.

In the example below, we have discovered, after creating our datasets, that one of our subjects has an incorrect
value in his/her SmokeNow variable. Since the SmokeNow variable occurs in several of our datasets, we want to
make sure that we change the value for that subject in all of them. The code below accomplishes this:

%macro FixSmokeNow;
proc sql;

/* count number of datasets containing smokenow variable */ A
select count(memname) into :dscnt
from dictionary.columns
where libname='L' and name='SmokeNow';

%let dscnt=&dscnt; /* removes trailing blanks from &dscnt */ B

/* get names of all datasets containing the smokenow variable */ C
select memname into :ds1 - :ds&dscnt
from dictionary.columns
where libname='L' and lowcase(name)='smokenow';
quit;

/* for each dataset, reassign value of smokenow for subject 712271 */ D
%do i=1 %to &dscnt;
 data L.&&ds&i;
 set L.&&ds&i;
 if jcml_id=712271 then smokenow='Daily';
 run;

Programming Beyond the BasicsNESUG 2009

22

 proc print data=L.&&ds&i noobs; E
 where jcml_id=712271;
 var jcml_id smokenow;
 title "Corrected Record in Dataset &&ds&i";
 run;
%end;
%mend fixsmokenow;

%fixsmokenow;

Let’s look at this code step by step:

 Step A: We use the COUNT function to store the number of datasets, in the library named L, that contain
the SmokeNow variable.

 Step B: Since all macro variables are created as text, but we are storing a number (which is right justi-
fied), the dscnt macro variable contains some leading blanks that interfere with concatenating it with the
dataset name in the Do Loop parameters. The %let dscnt=&dscnt statement removes those blanks,
enabling us to concatenate the count to our last macro variable name.

 Step C: Once we know how many datasets contain the SmokeNow variable, we can store the names of
those datasets in a series of macro variables named DS1 through DS&dscnt.

 Step D: Now that we have our dataset names stored in macro variables, we can set up a loop to read in
each dataset, recreate it with the same name, and update the desired record.

 Step E: As part of our loop, we wish to print out the corrected observation for each updated dataset to
create a record of which ones were updated.

Note that our macro contains a mix of PROC SQL queries and Data Steps. When writing any program, we fre-
quently find that we switch between the two tools based on whatever seems simplest or most useful at the time.
We could easily accomplish this task using only SQL queries by replacing steps D and E with the following code:

%do i=1 %to &sdscnt;
 update L.&&sds&i
 set smokenow='Daily'
 where jcml_id in (select subject_id from smokefixes);

 title "Reassigned SmokeNow Values In Dataset &&sds&i";
 select jcml_id, smokenow
 from L.&&sds&i
 where jcml_id in (select subject_id from smokefixes);
%end;

In this version, we use the UPDATE statement, which allows us to specify only the variable(s) to be changed in
the query, without having to name all the other variables. This saves the trouble of having to type out the names
of all the variables in the table.

VIEWS

An SQL View is a virtual table. Essentially, a view is a predefined window into one or more existing tables; unlike
a physical table, it exists only as a definition and does not contain any actual data. A view will appear to a user to
be just like a regular table, but no data is loaded into the view until it is accessed.

The ability to create views provides many advantages. In many databases, not all users are allowed to access all
the data. In an HR database, for example, managers may be allowed to access the personnel data of employees
in their department, but not data pertaining to employees in other departments. Different levels of management
may have access to data across departments, but perhaps not to all details. We can create views of our data to
restrict the fields and rows that each user is allowed to access. Since the views are essentially predefined que-

Programming Beyond the BasicsNESUG 2009

23

ries against a set of tables, this method avoids actual duplication of data, facilitating database updates and pre-
serving data integrity. It also provides the advantage to the user of always giving access to the most current data,
since it is not necessary to refresh local or personalized versions of the tables.

Views are created in the same manner as tables, with a CREATE VIEW statement. Harking back to our com-
bined drinkers and smokers table, which we created during our discussion of inner joins, we could have used the
approach of creating a view, rather than a new physical table. In this manner, when the individual Drinkers and
Smokers tables were updated, it would not be necessary to recreate the combined table as well, since the
SmokeAndDrinkView would, whenever it was used, automatically recreate itself using the current data in the
Smokers and Drinkers datasets.

proc sql;
create view s.SmokeAndDrinkView as
select Smokers.*, Drinkers.*
from L.Smokers, L.Drinkers
where drinkers.subjid=smokers.id;
quit;

With the exception of replacing the word TABLE with the word VIEW, this is the exact same query that we ran
earlier. At its conclusion, there will be what looks like a table named SmokeAndDrinkView in our study library. It
will appear and act just like a regular table: when we click on it, it will open and display the data; we can use it in
other queries. To the end user, a view will behave exactly as does any other table (albeit a bit slower). However,
from a database standpoint, we have only one copy of the data to maintain (helping to avoid our earlier scenario
of having to change the value of a variable that occurs in multiple datasets). In addition, we can apply passwords
and security restrictions to views just as we do to any SAS datasets. By constructing views for our users, we can
easily restrict access to whichever rows and columns and combinations of datasets are necessary for each indi-
vidual user without having multiple copies of our data to maintain.

CONCLUSIONS
The examples in this paper illustrate just a few of the advantages provided by using PROC SQL as part of your
programming tool kit. We have found that using both SQL and the Data Step greatly increases the power and
flexibility of the SAS language. Each of these tools has certain tasks that it accomplishes more easily or effi-
ciently; our purpose in this paper is not to advocate one over the other, but to make PROC SQL more familiar and
to illustrate the type of situations in which it can greatly enhance your code.

ACKNOWLEDGMENTS
SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

We would like to thank Rob Schnatter and Wendy Huebner for allowing us to ‘borrow’ some of their data and
for their support.

CONTACT INFORMATION
Contact the authors at:

Author Name: Susan P Marcella Gail Jorgensen
 Company: ExxonMobil Biomedical Sciences, Inc Palisades Research
 Address: 1545 Rt 22 East 154 Southside Ave
 City, State ZIP Annandale, NJ 08801 Bridgewater, NJ 08807
 Work Phone: (908) 730-1063 (908) 722-3604
 Fax: (908) 730-1192 (866) 350-6344
 Email: susan.p.marcella@exxonmobil.com gail.jorgensen@verizon.net

*

Programming Beyond the BasicsNESUG 2009

