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Last Lecture – Fibre Optics & Optical Telecom 

• Fibre optics
• Optical telecom

Today’s Lecture – Diffraction I 
• Diffraction
• Diffraction integral
• Fraunhofer and Fresnel approximations
• Fraunhofer diffraction intensity for one, two and N slits
• Diffraction grating and grating spectrometer



Diffraction Limit

In 1873 Ernst Abbe found out that light with wavelength λ traveling in a 
medium with refractive index n and converging into a spot at an angle θ
will form a spot with diameter
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Diffraction Limit
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The denominator nsinθ is the numerical aperture NA and it can reach
about 1.4–1.6 using the best modern lenses. Considering green light at
500 nm and a NA of 1 the Abbe limit is roughly equal to λ = 500 nm (0.5
μm) which is small compared to most biological cells (1 μm to 100 μm) but
large compared to viruses (100 nm), proteins (10 nm) and less complex
molecules (1 nm).

Shorter wavelengths such as UV and X-ray offer better resolution but are
expensive, suffer from the lack of contrast in biological samples and are
likely to damage the sample.





Super-resolution Microscopy –
Beyond the Diffraction Limit

Stimulated Emission Depletion - STED Stochastic Optical Reconstruction 
Microscopy (STORM)



Diffraction
In the 15th century it was observed that intense light created a shadow that did not
have ’sharp edges’ as predicted by the geometrical optics (’particle-like’ light).

Diffraction – deviation of light from rectlinear propagation (= geometrical optics)
due to obstruction



Interference and Diffraction
• There is no physical difference between interference and diffraction.
• However, it has become customary to differentiate the two concepts from each other:

 interference = interplay between a few (discrete) EM waves
 diffraction = interplay between a large number of EM waves (geometrically large, 

continuous surface of a light source)

Like for interference, wave optics is also a powerful tool to study diffraction. 



Diffraction

Other remarks on the solutions of diffraction problems:
• If S’ is large compared with the wavelength of light, the edges of the aperture

(electrons) do not significantly contribute to diffraction.
• If S’ is small (~λ), the effects due to electrons in the aperture edges must be included.

In Fraunhofer approximation it is assumed that a plane wave arrives at the aperture S’
• both light source and obervation location are ”far away from the aperture”
• R > a2/λ, where R is the shortest distance before and after the aperture

and a is the largest dimension of the aperture
In Fresnel approximation a spherical wave is assumed on the surface S’ 

• both light source and obervation location are ”close to the aperture”

For light diffraction in an aperture S’ so called diffraction integral can be derived.
Solving the diffraction integral is tedious so approximations have been developed:



Diffraction Integral

𝐸𝐸 𝑥𝑥,𝑦𝑦, 𝑧𝑧 =
1
𝑠𝑠𝜆𝜆𝑧𝑧

𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖�
𝑆𝑆′

𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥′,𝑦𝑦𝑦 𝑒𝑒
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E(x,y,0)

z = 0

E(x,y,L) = ?

z = L



Diffraction Integral

𝐸𝐸 𝑥𝑥, 𝑦𝑦 = �𝑁𝑁 𝑘𝑘𝑥𝑥, 𝑘𝑘𝑦𝑦 𝑒𝑒−𝑖𝑖 𝑖𝑖𝑥𝑥𝑥𝑥+𝑖𝑖𝑦𝑦𝑦𝑦 𝑑𝑑𝑘𝑘𝑥𝑥𝑑𝑑𝑘𝑘𝑦𝑦

E(x,y,0)

z = 0

E(x,y,L)

z = L

At z = 0 the field amplitude E(x,y,0) can be written as a sum of plane waves 
(Fourier integral):

Eq. (1)



Diffraction Integral

𝐸𝐸 𝑥𝑥, 𝑦𝑦, 𝑧𝑧 = �𝑁𝑁 𝑘𝑘𝑥𝑥, 𝑘𝑘𝑦𝑦 𝑒𝑒−𝑖𝑖 𝑖𝑖𝑥𝑥𝑥𝑥+𝑖𝑖𝑦𝑦𝑦𝑦 𝑒𝑒−𝑖𝑖𝑖𝑖𝑧𝑧𝑖𝑖𝑑𝑑𝑘𝑘𝑥𝑥𝑑𝑑𝑘𝑘𝑦𝑦

E(x,y,0)

z = 0

E(x,y,L)

z = L

At z = L the field amplitude E(x,y,z) can be expressed as:



Diffraction Integral

𝐸𝐸 𝑥𝑥, 𝑦𝑦, 𝑧𝑧 = �𝑁𝑁 𝑘𝑘𝑥𝑥, 𝑘𝑘𝑦𝑦 𝑒𝑒−𝑖𝑖 𝑖𝑖𝑥𝑥𝑥𝑥+𝑖𝑖𝑦𝑦𝑦𝑦 𝑒𝑒−𝑖𝑖𝑖𝑖𝑧𝑧𝑖𝑖𝑑𝑑𝑘𝑘𝑥𝑥𝑑𝑑𝑘𝑘𝑦𝑦
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= 𝑘𝑘𝑥𝑥2 + 𝑘𝑘𝑦𝑦2 + 𝑘𝑘𝑖𝑖2

for paraxial rays kx, ky << k

𝑘𝑘𝑖𝑖2 = 𝑘𝑘2 1 −
𝑘𝑘𝑥𝑥2 + 𝑘𝑘𝑦𝑦2

𝑘𝑘2

𝑘𝑘𝑖𝑖 ≈ 𝑘𝑘 −
𝑘𝑘𝑥𝑥2 + 𝑘𝑘𝑦𝑦2

2𝑘𝑘

1 − 𝑥𝑥 ≈ 1 −
1
2
𝑥𝑥

𝐸𝐸 𝑥𝑥, 𝑦𝑦, 𝑧𝑧 = �𝑁𝑁 𝑘𝑘𝑥𝑥, 𝑘𝑘𝑦𝑦 𝑒𝑒−𝑖𝑖 𝑖𝑖𝑥𝑥𝑥𝑥+𝑖𝑖𝑦𝑦𝑦𝑦 𝑒𝑒
−𝑖𝑖 𝑖𝑖−

𝑖𝑖𝑥𝑥2+𝑖𝑖𝑦𝑦2

2𝑖𝑖
𝑖𝑖
𝑑𝑑𝑘𝑘𝑥𝑥𝑑𝑑𝑘𝑘𝑦𝑦

𝑁𝑁 𝑘𝑘𝑥𝑥, 𝑘𝑘𝑦𝑦 =
1

2𝜋𝜋 2�𝐸𝐸 𝑥𝑥,𝑦𝑦 𝑒𝑒𝑖𝑖 𝑖𝑖𝑥𝑥𝑥𝑥+𝑖𝑖𝑦𝑦𝑦𝑦 𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦From Eq. (1)



Diffraction Integral

𝐸𝐸 𝑥𝑥,𝑦𝑦, 𝑧𝑧 =
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it can be shown using the information 
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Diffraction Integral in Spherical Coordinates
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Q is so called inclination factor: for paraxial rays it can be assumed that Q ≈ 1



Diffraction
Diffraction integral

𝐸𝐸 𝑥𝑥,𝑦𝑦, 𝑧𝑧 =
1
𝑠𝑠𝜆𝜆𝑧𝑧

𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖�
𝑆𝑆′

𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥′,𝑦𝑦𝑦 𝑒𝑒
−𝑖𝑖𝑖𝑖

𝑥𝑥−𝑥𝑥′ 2− 𝑦𝑦−𝑦𝑦′ 2

2𝑖𝑖 𝑑𝑑𝑥𝑥′𝑑𝑑𝑦𝑦𝑦

Diffraction integral in spherical coordinates

𝐸𝐸 𝑟𝑟 =
1
𝑠𝑠𝜆𝜆
�
𝑆𝑆′

𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖 𝑟𝑟𝑦
𝑒𝑒𝑖𝑖𝑖𝑖 𝑟𝑟−𝑟𝑟′

𝑟𝑟 − 𝑟𝑟𝑦
𝑑𝑑𝑆𝑆′

Example: a plane wave focused using a lens

𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖 𝑟𝑟𝑦 =
𝑁𝑁
𝑅𝑅
𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 , 𝑤𝑤𝑒𝑒 𝑠𝑠𝑒𝑒𝑠𝑠𝑒𝑒𝑠𝑠𝑠𝑠 𝑆𝑆′ 𝑠𝑠𝑠𝑠 𝑠𝑠𝑡𝑡𝑡𝑠𝑠 𝑅𝑅 = 𝑟𝑟 − 𝑟𝑟𝑦 = 𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠𝑡𝑡𝑛𝑛𝑠𝑠(𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑛𝑛𝑠𝑠𝑒𝑒 𝑓𝑓𝑟𝑟𝑠𝑠𝑓𝑓 𝑓𝑓𝑠𝑠𝑠𝑠𝑓𝑓𝑠𝑠)

𝐸𝐸 𝑟𝑟 =
1
𝑠𝑠𝜆𝜆
�
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𝑁𝑁
𝑅𝑅
𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖

𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖

𝑅𝑅
𝑑𝑑𝑆𝑆′ =

𝑁𝑁
𝑠𝑠𝜆𝜆
�
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1
𝑅𝑅2

𝑑𝑑𝑆𝑆′ =
𝑁𝑁
𝑠𝑠𝜆𝜆
Ω

the E field amplitude in the focus is not infinite like for an ideal spherical wave Einc



Fraunhofer Approximation

Assuming that a plane wave arrives at S’ so that
• both the light source and obervation location are ”far away from the aperture”
• R > a2/λ, where R is the shortest distance before and after the aperture

and a is the largest dimension of the aperture

𝐸𝐸 𝑟𝑟 =
1
𝑠𝑠𝜆𝜆
�
𝑆𝑆′

𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖 𝑟𝑟𝑦
𝑒𝑒𝑖𝑖𝑖𝑖 𝑟𝑟−𝑟𝑟′

𝑟𝑟 − 𝑟𝑟𝑦
𝑑𝑑𝑆𝑆′

𝑟𝑟 − 𝑟𝑟𝑦 = 𝑧𝑧2 + 𝑥𝑥 − 𝑥𝑥𝑦 2 + 𝑦𝑦 − 𝑦𝑦𝑦 2

On surface S’ (z’=0) the exponent in the nominator:

≈ 𝑧𝑧 1 + 𝑥𝑥−𝑥𝑥′ 2

2𝑖𝑖2
+ 𝑦𝑦−𝑦𝑦′ 2

2𝑖𝑖2

= 𝑧𝑧 − 𝑥𝑥𝑥𝑥′

𝑖𝑖
− 𝑦𝑦𝑦𝑦′

𝑖𝑖
+ 𝑥𝑥2+𝑦𝑦2

2𝑖𝑖
+ 𝑥𝑥′2+𝑦𝑦′2

2𝑖𝑖
𝑘𝑘 𝑥𝑥′2 + 𝑦𝑦′2 ≪ 2𝐿𝐿

≈ 𝑧𝑧 − 𝑥𝑥𝑥𝑥′

𝑖𝑖
− 𝑦𝑦𝑦𝑦′

𝑖𝑖
+ 𝑥𝑥2+𝑦𝑦2

2𝑖𝑖

approximation (z=L)

denominator: 𝑟𝑟 − 𝑟𝑟𝑦 ≈ 𝑧𝑧



Fraunhofer Approximation

𝐸𝐸 𝑟𝑟 =
1
𝑠𝑠𝜆𝜆
�
𝑆𝑆′

𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖 𝑟𝑟𝑦
𝑒𝑒𝑖𝑖𝑖𝑖 𝑟𝑟−𝑟𝑟′

𝑟𝑟 − 𝑟𝑟𝑦
𝑑𝑑𝑆𝑆′

𝑟𝑟 − 𝑟𝑟𝑦 ≈ 𝑧𝑧 − 𝑥𝑥𝑥𝑥′

𝑖𝑖
− 𝑦𝑦𝑦𝑦′

𝑖𝑖
+ 𝑥𝑥2+𝑦𝑦2

2𝑖𝑖

𝑟𝑟 − 𝑟𝑟𝑦 ≈ 𝑧𝑧

𝐸𝐸 𝑥𝑥,𝑦𝑦, 𝑧𝑧 =
𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖+

𝑖𝑖𝑖𝑖
2𝑖𝑖 𝑥𝑥2+𝑦𝑦2

𝑠𝑠𝜆𝜆𝑧𝑧
�
𝑆𝑆′

𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥′, 𝑦𝑦𝑦 𝑒𝑒
−𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥

′+𝑦𝑦𝑦𝑦′
𝑖𝑖 𝑑𝑑𝑥𝑥′𝑑𝑑𝑦𝑦𝑦

Using notation 𝜈𝜈𝑥𝑥 =
𝑥𝑥
𝜆𝜆𝑧𝑧

𝜈𝜈𝑦𝑦 =
𝑦𝑦
𝜆𝜆𝑧𝑧

𝐸𝐸 𝑥𝑥, 𝑦𝑦, 𝑧𝑧 =
𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖+

𝑖𝑖𝑖𝑖
2𝑖𝑖 𝑥𝑥2+𝑦𝑦2

𝑠𝑠𝜆𝜆𝑧𝑧
�
𝑆𝑆′

𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥′,𝑦𝑦𝑦 𝑒𝑒−𝑖𝑖2𝜋𝜋 𝜈𝜈𝑥𝑥𝑥𝑥′+𝜈𝜈𝑦𝑦𝑦𝑦′ 𝑑𝑑𝑥𝑥′𝑑𝑑𝑦𝑦𝑦

ℱ 𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥′,𝑦𝑦𝑦 𝜈𝜈𝑥𝑥, 𝜈𝜈𝑦𝑦 = �
𝑆𝑆′

𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥′,𝑦𝑦𝑦 𝑒𝑒−𝑖𝑖2𝜋𝜋 𝜈𝜈𝑥𝑥𝑥𝑥′+𝜈𝜈𝑦𝑦𝑦𝑦′ 𝑑𝑑𝑥𝑥′𝑑𝑑𝑦𝑦𝑦
2D Fourier-
transformation

𝐼𝐼 𝜈𝜈𝑥𝑥, 𝜈𝜈𝑦𝑦 =
1

𝜆𝜆2𝑧𝑧2
𝐹𝐹 𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥′,𝑦𝑦𝑦 𝜈𝜈𝑥𝑥, 𝜈𝜈𝑦𝑦

2

Intensity of the diffraction pattern results from 2D-Fourier transformation of the incident field.



Fraunhofer Diffraction of a Single Slit



Convolution Theorem
Fourier transformation of convolution of two functions f(x) and g(x) is equal to product
of the individual Fourier transformations: 
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Example: diffraction of a dual slit
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slit width b
distance between slits a P

With respect to an observation point P for each ”single slit
diffraction field” the relative phase-differences are:
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Fraunhofer Diffraction of 1 - N Slits
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Fraunhofer Diffraction of Slits in 1D and 2D

one, two, …, N slits

1D 2D



Diffraction Grating
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Diffraction Grating – Physical Approach

reflection grating

transmission grating



Properties of Diffraction Grating

angular dispersion:
a

m
d
d mm θ
λ
θ cos

=

( ) λθθ ma im =− sinsingrating equation:

wavelength resolution or smallest measurable change in wavelength:

( )im

MIN

Na θθ
λ

λ
λ

sinsin0 −
=

∆
where N is the number of slits illuminated

Example: 150 mm wide grating which has 600 grooves/mm is completely illuminated.
N = 90 000 so for the 2nd order diffraction (m=2) ∆λ/λ0=180 000. If the centre
wavelength of incident light is 540 nm then the wavelength resolution of this
measurement is  0.003 nm or 3 picometers (cf. FTIR resolution 1/∆x cm-1).



Limitation of diffraction grating: for spectrally broadband light the diffraction orders
overlap if the lights’ spectral bandwidth is larger than one octave, e.g, 
400-800 nm covers one octave:

Properties of Diffraction Grating



Grating Monochromator and Grating Spectrometer

monochromator spectrometer
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