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Last Lecture — Fibre Optics & Optical Telecom

 Fibre optics
* Optical telecom

Today’s Lecture — Diffraction |

« Diffraction

» Diffraction integral

* Fraunhofer and Fresnel approximations

* Fraunhofer diffraction intensity for one, two and N slits
» Diffraction grating and grating spectrometer



Diffraction Limit

In 1873 Ernst Abbe found out that light with wavelength A traveling in a
medium with refractive index n and converging into a spot at an angle 6
will form a spot with diameter
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Diffraction Limit
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The denominator nsin@® is the numerical aperture NA and it can reach
about 1.4-1.6 using the best modern lenses. Considering green light at
500 nm and a NA of 1 the Abbe limit is roughly equal to A = 500 nm (0.5
um) which is small compared to most biological cells (1 pm to 100 ym) but
large compared to viruses (100 nm), proteins (10 nm) and less complex
molecules (1 nm).

Shorter wavelengths such as UV and X-ray offer better resolution but are
expensive, suffer from the lack of contrast in biological samples and are
likely to damage the sample.



The Nobel Prize in
Chemistry 2014
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The Nobel Prize in Chemistry 2014 was awarded jointly to Eric
Betzig, Stefan W. Hell and William E. Moerner "for the development
of super-resolved fluorescence microscopy”.



Super-resolution Microscopy —
Beyond the Diffraction Limit

Conventional

confocal

widefield imaging stochastic switching
sample sample
Stimulated Emission Depletion - STED Stochastic Optical Reconstruction

Microscopy (STORM)



Diffraction

In the 15th century it was observed that intense light created a shadow that did not
have ’sharp edges’ as predicted by the geometrical optics ('particle-like’ light).

Diffraction — deviation of light from rectlinear propagation (= geometrical optics)
due to obstruction

Figure 10.1 The shadow of a hand holding a dime, cast directly on

4 X 5 Polaroid A.S.A. 3000 film using 2 He-Ne beam and no lenses.
(Photo by E.H.)



Interference and Diffraction

* There is no physical difference between interference and diffraction.
* However, it has become customary to differentiate the two concepts from each other:

» interference = interplay between a few (discrete) EM waves
» diffraction = interplay between a large number of EM waves (geometrically large,
continuous surface of a light source)

Like for interference, wave optics is also a powerful tool to study diffraction.



Diffraction

For light diffraction in an aperture S’ so called diffraction integral can be derived.
Solving the diffraction integral is tedious so approximations have been developed:

In Fraunhofer approximation it is assumed that a plane wave arrives at the aperture S
* both light source and obervation location are "far away from the aperture”
« R > a?/x, where R is the shortest distance before and after the aperture
and a is the largest dimension of the aperture
In Fresnel approximation a spherical wave is assumed on the surface S’
* both light source and obervation location are "close to the aperture”

N
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Other remarks on the solutions of diffraction problems:

« If S’ is large compared with the wavelength of light, the edges of the aperture
(electrons) do not significantly contribute to diffraction.

 If S’ is small (~1), the effects due to electrons in the aperture edges must be included.



Diffraction Integral
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Diffraction Integral

E(x,y,0) E(x,y,L)

z=0 z=1L

At z = 0 the field amplitude E(x,y,0) can be written as a sum of plane waves
(Fourier integral):

E(x,y) = f j A(ky, ky) e~ +iyy) e dk.,, Eq. (1)



Diffraction Integral

E(x,y,0) E(x,y,L)

z=0 z=1L

At z = L the field amplitude E(x,y,z) can be expressed as:

E(x,y,2) = f j A(ky, ky) e~ ilax+iyy) g=ikez e .,



Diffraction Integral
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Diffraction Integral
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Diffraction Integral in Spherical Coordinates

ik|F—F"|

E(F)=—[ E,.()— 0ds

=7

Q= %(cos 6 +cos 0

Q is so called inclination factor: for paraxial rays it can be assumed that Q = 1



Diffraction

Diffraction integral
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Example: a plane wave focused using a lens

R A . IR
E,.0r") = Ee‘”‘R, we select S' so that R = |r — r'| = constant(distance from focus)

E@) = AU TR mﬂ_dy_

the E field amplitude in the focus is not infinite like for an ideal spherical wave E,_.



Fraunhofer Approximation

£ = ] B s

Assuming that a plane wave arrives at S’ so that
* both the light source and obervation location are "far away from the aperture”
* R > a?/), where R is the shortest distance before and after the aperture

and a is the largest dimension of the aperture

On surface S’ (z’=0) the exponent in the nominator:
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Fraunhofer Approximation
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Intensity of the diffraction pattern results from 2D-Fourier transformation of the incident field.




Fraunhofer Diffraction of a Single Slit



Convolution Theorem

Fourier transformation of convolution of two functions f(x) and g(x) is equal to product
of the individual Fourier transformations:

SV () ® g(x)}= I/ (x))Ig(x)]

where [ (x)®g(x) = [ [(Og(x~1)dr

Example: diffraction of a dual slit b
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Diffracted Intensity of N Slits

slit width b
distance between slits a
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With respect to an observation point P for each "single slit
diffraction field” the relative phase-differences are:

E = Esinc(zv, b)e'™ + Esinc(zv b)e' ™™ +...+ E,sinc(zv, b)e™
We define the 6 phase-shift between slits next to each other:
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Diffracted Intensity of N Slits
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Diffracted Intensity of N Slits
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Fraunhofer Diffraction of 1 - N Slits

E(x,y,z)=3{E, (x'. )}
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Fraunhofer Diffraction of Slits in 1D and 2D

one, two, ..., N slits
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Figure 10.24 (a) Fraunhofer patern of a square aperture. (b) The
same pattern further exposed to bring out some of the faint terms.
(Photos

by E. H.)



Diffraction Grating
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Diffraction Grating — Physical Approach

transmission grating

reflection grating

N

diffraction
arating

white light I




Properties of Diffraction Grating

grating equation: a(sin 6, —sinf ) =mA |
& \

do 0 x

: : m COS :
angular dispersion: m — UL air / glass \\\
dA a

Blue light is refracted at Blue light is diffracted at

larger angle than red: smaller angle than red:
normal dispersion anomalous dispersion

wavelength resolution or smallest measurable change in wavelength:

Moy A
l,  Nalsin@ —sin,)

where N is the number of slits illuminated

Example: 150 mm wide grating which has 600 grooves/mm is completely illuminated.
N =90 000 so for the 2nd order diffraction (m=2) AA/A,=180 000. If the centre
wavelength of incident light is 540 nm then the wavelength resolution of this
measurement is 0.003 nm or 3 picometers (cf. FTIR resolution 1/Ax cm1).



Properties of Diffraction Grating

Limitation of diffraction grating: for spectrally broadband light the diffraction orders
overlap if the lights’ spectral bandwidth is larger than one octave, e.g,
400-800 nm covers one octave:

WHITE LIGHT

m=0
) . & SHORTEST WAVELENGTH
TRANSMITTED. (~180 nm
Y m=-1 FOR MOST SYSTEMS.)

AN INCREASING WAVELENGTHS

= 360 nm, 1st ORDER
=2 AND
\ 180 nm, 2nd ORDER
A

ORDERS OVERLAP, UNLESS
SHORT WAVE CUT-OFF FILTER
IS INSERTED IN BEAM



Grating Monochromator and Grating Spectrometer

monochromator spectrometer

Reflection
| —— — |

Entrance grating Exit
=it =it

light %
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diffraction
grabing

aperture
detectar

sample
cuvette
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